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Extremal problems of Hardy-Littlewood-Sobolev

inequalities on compact Riemannian manifolds ∗

Shutao Zhang Yazhou Han†

Department of Mathematics, College of Science,
China Jiliang University, Hangzhou 310018, China

Abstract

In this paper we study the existence of extremal problems for the
Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds
without boundary via Concentration-Compactness principle.

keywords: Hardy-Littlewood-Sobolev inequalities, Existence of ex-
tremals, Concentration-Compactness principle, Compact Riemannian man-
ifold.

1 Introduction

It is well known that classical Sobolev inequalities and Hardy-Littlewood-
Sobolev (HLS) inequalities are basic tools in analysis and geometry, and their
sharp constants play essential role on certain geometric and probabilistic in-
formation. In fact, in past decades, these sharp inequalities were applied ex-
tensively in the study of curvature equations, see, e.g. [1, 3, 4, 14–16, 26] and
references therein. Recently, there have been some interesting results concern-
ing the globally defined fractional operators such as fractional Yamabe prob-
lems, fractional prescribing curvature problems, fractional Paneitz operators,
etc. (see, e.g. [11–13,20–23] and references therein), which are closely related to
singular integral operators. In particular, sharp HLS inequalities and reversed
HLS inequalities are immediately applied to discuss a class of prescribing inte-
gral curvature problems by Zhu [30] and integral equations on bounded domain
in [6, 7]. So, HLS inequalities play essential role in the global analysis of some
operators of geometric interest.

Motivated by these studies, there are some extensions of classical HLS in-
equalities, such as reversed HLS inequalities on R

n [9,28], HLS inequalities and
reversed HLS inequalities on the upper half space [5, 8, 29], HLS inequalities
on compact Riemannian manifolds [17], or HLS inequalities on the Heisenberg
group [10]. This paper is mainly devoted to discuss the sharp HLS inequalities
on compact manifolds without boundary.

Let (Mn, g) be a given compact Riemmanian manifold without boundary,
α ∈ (0, n) be a parameter and |x − y|g represent the distance from x to y on
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Mn under metric g. In [17], Han and Zhu have introduced the following integral
operator

Iαf(x) =

∫
Mn

f(y)

|x− y|n−α
g

dVy (1.1)

and studied the following Hardy-Littlewood-Sobolev inequalities, which are well
known in the community.

Proposition 1.1 (Proposition 1.1. in [17]). Assume that α ∈ (0, n), 1 <
p < n

α and q is given by
1

q
=

1

p
− α

n
. (1.2)

Then there is a positive constant C(α, p,Mn, g), such that

||Iαf ||Lq(Mn) ≤ C(α, p,Mn, g)||f ||Lp(Mn) (1.3)

holds for all f ∈ Lp(Mn). Moreover, for 1 ≤ r < q, the operator Iα : Lp(Mn) →
Lr(Mn) is a compact embedding.

As everyone knowns, it is important to study the extremal problems of (1.3),
which can be stated as follows:

Np,α,M := sup{‖Iαf‖Lq(Mn) : ‖f‖Lp(Mn) = 1}

:= sup
{‖Iαf‖Lq(Mn)

‖f‖Lp(Mn)
: f ∈ Lp(Mn)\{0}

}
. (1.4)

By duality, Np,α,M is also defined equivalently as

Np,α,M := sup
{∣∣∣

∫
Mn

∫
Mn

f(x)g(y)|x− y|α−n
g dVxdVy

∣∣∣ : ‖f‖p = ‖g‖t = 1
}

(1.5)

:= sup
‖f‖p>0,‖g‖t>0

∣∣∣∫Mn

∫
Mn f(x)g(y)|x− y|α−n

g dVxdVy

∣∣∣
‖f‖p‖g‖t

, (1.6)

where t = q
q−1 . In particular, we denote Np,α,Rn as Np,α.

In [17], Han and Zhu have discussed the extremal problems (1.4) for the
conformal case, i.e. the case p = t and f = g. Then as an application, they
studied a class of integral curvature problems. Particularly, they gave a new
proof for the Yamabe problems on compact locally conformally flat manifold.

This paper will deal with the remaining cases. Firstly, we will get the fol-
lowing estimate for the sharp constant.

Proposition 1.2 (Estimate). Np,α,M ≥ Np,α.

Then, similar to the existence criteria for the classical Yamabe problems, we
will give the following existence criteria of the extremal problems (1.4) by the
Concentration-Compactness principle introduced by Lions (see [24, 25]).

Theorem 1.3 (Criteria of Existence). Under the assumption of Proposition
1.1 and if Np,α,M > Np,α, then the supremum is attained, i.e., there exists some

function f(x) ∈ Lp(Mn) such that Np,α,M =
‖Iαf‖Lq(Mn)

‖f‖Lp(Mn)
.
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Remark 1.4. Let Gg
x(y) = n(n − 2)ωnΓ

g
x(y), where Γg

x(y) is the Green’s
function with pole at x for the conformal Laplacian operator −Δg +

n−2
4(n−1)Rg

and ωn is the volume of the unit ball. Arguing as in [17], for the operator

IMn,g,α =

∫
Mn

[
Gg

x(y)
]α−n

2−n g(y)dVy,

we can also get the similar results of estimate (Proposition 1.2) and existence
criteria (Theorem 1.3). Since the details of the proof is similar, we omit it for
conciseness.

The plan of the paper is following. In Section 2, we introduce some known
facts and give a new proof of compactness of the operator (1.1) for convenience.
Then, we present our Concentration-Compactness Lemma in Section 3. Finally,
Section 4 is devoted to get the estimate (Proposition 1.2) and prove the existence
for the extremal problems (Theorem 1.3).

2 Preliminary

Firstly, we recall the existence of the extremal problems of classical Hardy-
Littlewood-Sobolev inequalities on R

n.

Theorem 2.1 (Theorem 2.3 of [27] & Theorem 2.1 of [25]). There exist a
pair of nonnegative functions f ∈ Lp(Rn) and g ∈ Lt(Rn) such that

{∫
Rn |f |pdx =

∫
Rn |g|tdy = 1

Np,α =
∫
Rn

∫
Rn f(x)g(y)|x− y|α−ndxdy.

(2.1)

Hence, the extremal pair satisfies the Euler-Lagrange equations

{
|x|α−n ∗ g = Np,αf

p−1(x),

|x|α−n ∗ f = Np,αg
t−1(x).

(2.2)

Furthermore, by scaling, we know that function pairs

fλ(x) = λ−p/nf(x/λ), gλ(y) = λ−t/ng(y/λ), ∀λ > 0 (2.3)

also satisfy (2.1) and (2.2).

For convenience, we introduce the following Young’s inequality.

Lemma 2.2 (Young’s inequality, Lemma 2.1 of [17]). For a given compact
manifold (Mn, g), define

g ∗ h(x) =
∫
Mn

g(y)h(|y − x|g)dVy.

Then, there is a constant C > 0, such that

||g ∗ h||Lr ≤ C||g||Lq · ||h||Lp ,

where p, q, r ∈ (1,∞) and satisfy 1 + 1
r = 1

q + 1
p .
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Following, we give a new proof of compactness for the operator (1.1).

Proposition 2.3 (Compactness). For all r ∈ [1, q), where q is defined as
(1.2), the operator Iα : Lp(Mn) → Lr(Mn) is compact.

Proof. Take any bounded sequence {fm} in Lp(Mn). Then, there exists a sub-
sequence (still denoted by {fm}) and some function f ∈ Lp(M) such that

fm ⇀ f weakly in Lp(Mn). (2.4)

It is known that the proof will be completed if it holds that

Iαfm → Iαf strongly in Lr(Mn).

Denoted by Kρ(t) = tα−nχ{t>ρ} and Kρ(t) = tα−n −Kρ(t) for t > 0, where
ρ > 0 is a parameter to be chosen later. Then, we decompose the integral
operator as

Iαfm(x) = Kρ ∗ fm(x) +Kρ ∗ fm(x) � I1αfm(x) + I2αfm(x).

Since, for any fixed x ∈ Mn, Kρ(|x−y|g) ∈ Lp′
(Mn) with respect to y, then

weak convergence implies that Kρ ∗ fm → Kρ ∗ f pointwisely. Notice also that

∣∣Kρ ∗ fm(x)
∣∣ ≤ ‖Kρ‖P ′‖fm‖p ≤ C(ρ),

where C(ρ) is independent of x and m. By dominated convergence theorem, we
have

Kρ ∗ fm → Kρf strongly in Lr(Mn).

Since ∫
Mn

Kρ(|x− y|g)sdVx ≤ Cρ(α−n)s+n,

where 0 < s < n
n−α , we take parameter s > 1 satisfying 1

r + 1 = 1
p + 1

s and get

from the Young’s inequality (see Lemma 2.2) that

‖Kρ ∗ (fm − f)‖r ≤ Cρ(α−n)+n/s‖fm − f‖p ≤ Cρ(α−n)+n/s.

By now, through choosing first ρ small and then m large, we deduce the
claimed convergence in Lr(Mn).

Based on the Proposition 2.3, we have the following conclusions.

Remark 2.4. For any bounded sequence {fm} ⊂ Lp(Mn), there exists a
subsequence (still denoted by {fm}) and some function f ∈ Lp(Mn) such that

fm ⇀ f weakly in Lp(Mn),

Iαfm ⇀ Iαf weakly in Lq(Mn),

Iαfm → Iαf strongly in Lr(Mn)

for all r ∈ [1, q). Furthermore, Iαfm → Iαf pointwisely a.e. in Mn.
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3 Concentration-Compactness Lemma

Lemma 3.1. Let {fm} ⊂ Lp(Mn) be a bounded nonnegative sequence and
suppose that there exists some function f ∈ Lp(Mn) such that

fm ⇀ f weakly in Lp(Mn).

After passing to a subsequence, assume that |Iαfm|qdVx, |fm|pdVx converge
weakly in the sense of measure to some bounded nonnegative measures ν, μ
on Mn, respectively. Then we have:

i) There exist some countable set J , a family {Pj : j ∈ J} of distinct points
in Mn, and a family {νj : j ∈ J} of nonnegative numbers such that

ν = |Iαf |qdVx +
∑
j∈J

νjδPj , (3.1)

where δPj is the Dirac-mass of mass 1 concentrated at Pj ∈ Mn;
ii) In addition we have

μ ≥ |f |pdVx +
∑
j∈J

μjδPj (3.2)

for some family {μj > 0 : j ∈ J}, where μj satisfy

ν
1/q
j ≤ Np,αμ

1/p
j for all j ∈ J. (3.3)

In particular,
∑

j∈J ν
p/q
j < +∞.

Proof of i). By the conditions of the sequence {fm} ⊂ Lp(Mn), we know
from the Remark 2.4 that

Iαfm ⇀ Iαf weakly in Lq(Mn),

Iαfm → Iαf strongly in Lr(Mn)

Iαfm → Iαf pointwisely a.e. in Mn,

where r ∈ [1, q). Then, Brézis-Lieb Lemma leads that

0 = lim
m→+∞

∫
Mn

(|Iαfm|q − |Iα(fm − f)|q − |Iαf |q) dVx

=

∫
Mn

dν −
∫
Mn

|Iαf |qdVx − lim
m→+∞

|Iα(fm − f)|qdVx.

So, it is sufficient to discuss the case f ≡ 0. By the classical argument of Lions
(see [24, 25]), it is sufficient to prove

(∫
Mn

|ϕ|qdν
)1/q

≤ Np,α,M

(∫
Mn

|ϕ|pdμ
)1/p

, ∀ϕ ∈ C∞
0 (Mn). (3.4)

In fact, (3.4) is the main assumption of Lemma 1.2 in [24] and is the key in the
proof of the second Concentration-Compactness Lemma given by Lions, see the
proof of Lemma 1.1 in [24].
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Since, for any ϕ(x) ∈ C∞
0 (Mn),

(∫
Mn

|ϕ(x)Iαfm|qdVx

)1/q

≤
(∫

Mn

|Iα(ϕfm)|qdVx

)1/q

+

(∫
Mn

|ϕ(x)Iαfm − Iα(ϕfm)|qdVx

)1/q

≤Np,α,M

(∫
Mn

|ϕfm|pdVx

)1/p

+

(∫
Mn

|ϕ(x)Iαfm − Iα(ϕfm)|qdVx

)1/q

,

we get as m → +∞ that

(∫
Mn

|ϕ|qdν
)1/q

≤Np,α,M

(∫
Mn

|ϕ|pdμ
)1/p

+ lim
m→+∞

(∫
Mn

|ϕ(x)Iαfm − Iα(ϕfm)|qdVx

)1/q

.

So, we can obtain (3.4) if

lim
m→+∞

(∫
Mn

|ϕ(x)Iαfm − Iα(ϕfm)|qdVx

)1/q

= 0. (3.5)

Notice that

|ϕ(x)Iαfm − Iα(ϕfm)| =
∣∣∣
∫
Mn

(ϕ(x)− ϕ(y))|x− y|α−n
g fm(y)dVy

∣∣∣
≤C

∫
Mn

|x− y|α+1−n
g |fm(y)|dVy

and
R(x, y) := (ϕ(x)− ϕ(y))|x− y|α−n

g ∈ Lr(Mn),

where r ≤ +∞ if α+1−n ≥ 0 and r < n
n−α−1 if α+1−n < 0. If α+1−n ≥ 0,

we can prove (3.5) by dominated convergence theorem. While for the case
α + 1 − n < 0, we obtain through the Hardy-Littlewood-Sobolev inequalities
(1.3) that ∫

Mn

R(x, y)fm(y)dVy ∈ Ls(Mn),

where s = ( 1p − α+1
n )−1 > q. Furthermore, repeating the proof of Proposition

2.3, we have
∫
Mn

R(x, y)fm(y)dVy →
∫
Mn

R(x, y)f(y)dVy = 0 strongly in Lq(Mn).

So, we get (3.5) and complete the proof of i). �
Proof of ii). Since

fm ⇀ f weakly in Lp(Mn),

then, μ ≥ |f |pdVx. So, we just have to show that for each fixed j ∈ J ,

ν
1/q
j = ν({Pj})1/q ≤ Np,αμ({Pj})1/p = Np,αμ

1/p
j .
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For point Pj ∈ Mn, choose a neighbourhood ΩPj ⊂ Mn so that for δ > 0
small enough, in normal coordinates, exp(Bδ) ⊂ ΩPj and

(1− ε)I ≤ g(x) ≤ (1 + ε)I, ∀x ∈ Bδ.

Take ϕλ(x) = ϕ(xλ ), where ϕ(x) ∈ C∞
0 (Rn) satisfies 0 ≤ ϕ(x) ≤ 1, ϕ(0) =

1, supp ϕ ⊂ B1 and λ ∈ (0, δ). Then,

Iα((ϕλ ◦ exp−1) · fm) =

∫
Mn

(ϕλ ◦ exp−1)(y)fm(y)|x− y|α−n
g dVg(y)

=

∫
Bδ

ϕλ(y)(fm ◦ exp)(y)|x− y|α−n
g

√
det g(y)dy

≤ (1 + ε)n/2

(1− ε)n−α

∫
Bδ

ϕλ(y)(fm ◦ exp)(y)|x− y|α−ndy

and

(∫
exp(Bδ)

|Iα((ϕλ ◦ exp−1) · fm)|qdVx

)1/q

≤(1 + ε)n/(2q)
(∫

Bδ

|Iα((ϕλ ◦ exp−1) · fm)|qdx
)1/q

≤ (1 + ε)
n
2 (1+ 1

q )

(1− ε)n−α

(∫
Bδ

∣∣∣
∫
Bδ

ϕλ(y)(fm ◦ exp)(y)|x− y|α−ndy
∣∣∣qdx

)1/q

≤ (1 + ε)
n
2 (1+ 1

q )

(1− ε)n−α
Np,α

(∫
Bδ

|ϕλ(y)(fm ◦ exp)(y)|pdy
)1/p

≤ (1 + ε)
n
2 (1+ 1

q )

(1− ε)
n
2p+n−α

Np,α

(∫
exp(Bδ)

|(ϕλ ◦ exp−1) · fm|pdVy

)1/p

.

So,

(∫
Mn

|(ϕλ ◦ exp−1) · Iαfm|qdVx

)1/q

≤
(∫

exp(Bδ)

|Iα((ϕλ ◦ exp−1) · fm)|qdVx

)1/q

+

(∫
exp(Bδ)

|(ϕλ ◦ exp−1) · Iαfm − Iα((ϕλ ◦ exp−1) · fm)|qdVx

)1/q

≤ (1 + ε)
n
2 (1+ 1

q )

(1− ε)
n
2p+n−α

Np,α

(∫
exp(Bδ)

|(ϕλ ◦ exp−1) · fm|pdVy

)1/p

+ I, (3.6)

where

I :=

(∫
exp(Bδ)

|(ϕλ ◦ exp−1) · Iαfm − Iα((ϕλ ◦ exp−1) · fm)|qdVx

)1/q

.
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Repeating the argument of (3.5), we have, as m → +∞,

I →
(∫

exp(Bδ)

|(ϕλ ◦ exp−1) · Iαf − Iα((ϕλ ◦ exp−1) · f)|qdVx

)1/q

.

So, letting m → +∞ leads

(∫
Mn

|ϕλ ◦ exp−1 |qdν
)1/q

≤ (1 + ε)
n
2 (1+ 1

q )

(1− ε)
n
2p+n−α

Np,α

(∫
Mn

|(ϕλ ◦ exp−1)|pdμ
)1/p

+

(∫
exp(Bδ)

|(ϕλ ◦ exp−1) · Iαf − Iα((ϕλ ◦ exp−1) · f)|qdVx

)1/q

. (3.7)

Since ∫
exp(Bδ)

|(ϕλ ◦ exp−1) · Iαf |qdVx → 0 as λ → 0+

and

(∫
exp(Bδ)

|Iα((ϕλ ◦ exp−1) · f)|qdVx

)1/q

≤C

(∫
Bδ

|(ϕλ ◦ exp−1) · f |pdVy

)1/p

→ 0 as λ → 0+,

we can complete the proof by letting λ → 0+ and ε → 0+. �

4 Estimate and criteria of existence

Proof of Proposition 1.2. For small positive constant λ > 0, recall that
fλ(x) and gλ(y) are given in (2.3). Take

f̃(x) =

{
fλ(x), in Bδ(0)

0, in R
n\Bδ(0)

and g̃(y) =

{
gλ(y), in Bδ(0)

0, in R
n\Bδ(0)

where δ > 0 is a fixed constant to be determined later. Then, for small enough
λ and by (2.2),

∫
Rn

∫
Rn

f̃(x)g̃(y)|x− y|α−ndxdy

=

∫
Rn

∫
Rn

fλ(x)gλ(y)|x− y|α−ndxdy

−
∫
|x|>δ

∫
Rn

fλ(x)gλ(y)|x− y|α−ndxdy

−
∫
Rn

∫
|y|>δ

fλ(x)gλ(y)|x− y|α−ndxdy
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+

∫
|x|>δ

∫
|y|>δ

fλ(x)gλ(y)|x− y|α−ndxdy

=Np,α −Np,α

∫
|x|>δ

fp
λ(x)dx−Np,α

∫
|y|>δ

gtλ(y)dy

+

∫
|x|>δ

∫
|y|>δ

fλ(x)gλ(y)|x− y|α−ndxdy

:=Np,α − I− II+ III, (4.1)

where, for fixed δ > 0 and as λ → 0+,

I := Np,α

∫
|x|>δ

fp
λ(x)dx = Np,α

∫
|x|>δ/λ

fp(x)dx → 0,

II := Np,α

∫
|y|>δ

gtλ(y)dy → 0,

III :=

∫
|x|>δ

∫
|y|>δ

fλ(x)gλ(y)|x− y|α−ndxdy

≤ C

(∫
|x|>δ

fp
λdx

)1/p (∫
|y|>δ

gtλdx

)1/t

→ 0.

So, for small enough λ,

∫
Rn

∫
Rn f̃(x)g̃(y)|x− y|α−ndxdy

‖f̃‖Lp(Rn)‖g̃‖Lt(Rn)

≥ Np,α − I− II

‖fλ‖Lp(Rn)‖gλ‖Lt(Rn)
= Np,α − I− II. (4.2)

For any given point P ∈ Mn, choose a neighbourhood ΩP ⊂ Mn so that for
δ > 0 small enough, in normal coordinates, exp(Bδ) ⊂ ΩP and

(1− ε)I ≤ g(x) ≤ (1 + ε)I, ∀x ∈ Bδ.

Thus,
(1− ε)|x− y| ≤ |x− y|g ≤ (1 + ε)|x− y|, ∀x, y ∈ Bδ.

In normal coordinates with respect to the center P ∈ Mn, let

u(x) =

{
fλ(exp

−1(x)), in exp(Bδ)

0, in Mn\ exp(Bδ)

and

v(y) =

{
gλ(exp

−1(y)), in exp(Bδ)

0, in Mn\ exp(Bδ).

Then ∫
Mn

|u|pdVx ≤ (1 + ε)
n
2

∫
Bδ(0)

|fλ(x)|pdx,
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∫
Mn

|v|tdVy ≤ (1 + ε)
n
2

∫
Bδ(0)

|gλ(y)|tdy,
∫
Mn

∫
Mn

u(x)v(y)|x− y|α−n
g dVxdVy

=

∫
Bδ(0)

∫
Bδ(0)

u(x)v(y)

|x− y|n−α
g

√
det g(x)

√
det g(y)dxdy

≥
∫
Bδ(0)

∫
Bδ(0)

fλ(x)gλ(y)

(1 + ε)n−α|x− y|n−α
(1− ε)ndxdy

=
(1− ε)n

(1 + ε)n−α

∫
Bδ(0)

∫
Bδ(0)

fλ(x)gλ(y)

|x− y|n−α
dxdy. (4.3)

Thus

Np,α,M ≥
∫
Mn

∫
Mn u(x)v(y)|x− y|α−n

g dVxdVy

‖u‖Lp(Mn)‖v‖Lt(Mn)

≥
(1−ε)n

(1+ε)n−α

∫
Bδ(0)

∫
Bδ(0)

fλ(x)gλ(y)|x− y|α−ndxdy

(1 + ε)
n
2 ( 1

p+
1
t )‖fλ‖Lp(Bδ(0))‖gλ‖Lt(Bδ(0))

≥ (1− ε)n

(1 + ε)
n
2 ( 1

p+
1
t )+n−α

(Np,α − I− II) .

Sending ε and λ to 0, we obtain the estimate. �

Prof of Theorem 1.3. Take a maximizing nonnegative sequence {fm(x)} ⊂
Lp(Mn) satisfying

∫
Mn fp

mdVx = 1 and

‖Iαfm‖Lq(Mn) → Np,α,M , as m → +∞. (4.4)

Then, there exist a subsequence of {fm} (still denoted by {fm}) and some
function f ∈ Lp(Mn) such that

fm ⇀ f weakly in Lp(Mn).

By Hardy-Littlewood-Sobolev inequalities (1.3), we know that

μm = |fm|pdVx, νm = |Iαfm|qdVx (4.5)

are two families of bounded measures. So, there exist two nonnegative bounded
measures μ and ν on Mn such that

μm ⇀ μ, νm ⇀ ν

weakly in the sense of measures.
Applying the Concentration-Compactness Lemma (see Lemma 3.1), we have

ν = |Iαf |qdVx +
∑
j∈J

νjδPj , μ ≥ |f |pdVx +
∑
j∈J

μjδPj , (4.6)

and ν
1/q
j ≤ Np,αμ

1/p
j for all j ∈ J . Since

∫
Mn dμ = limm→+∞

∫
Mn |fm|pdVx = 1,

then
∫
Mn |f |pdVx ≤ 1 and μj ≤ 1, j ∈ J .
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We claim that μj = 0, j ∈ J , which implies that νj = 0, j ∈ J .
In fact, otherwise, combining (4.6) and the fact q

p > 1, we have

Nq
p,α,M = lim

m→+∞

∫
Mn

|Iαfm|qdVx =

∫
Mn

dν

=

∫
Mn

|Iαf |qdVx +
∑
j∈J

νj

≤ Nq
p,α,M‖f‖qLp(Mn) +

∑
j∈J

Nq
p,αμ

q/p
j

< Nq
p,α,M

(∫
Mn

|f |pdVx

)q/p

+
∑
j∈J

Nq
p,α,Mμ

q/p
j

≤ Nq
p,α,M

⎛
⎝
∫
Mn

|f |pdVx +
∑
j∈J

μj

⎞
⎠

q/p

= Nq
p,α,M

(∫
Mn

dμ

)q/p

= Nq
p,α,M , (4.7)

which is a contradiction.
Repeating the process of (4.7), we have that

Nq
p,α,M =

∫
Mn

|Iαf |qdVx and

∫
Mn

|f |pdVx = 1,

i.e., f is a maximizer. �
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