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1. INTRODUCTION

In his earlier paper [5] the author considered the n-dimensional stochas-
tic differential delay equation

dx�t� = f �x�t�� x�t − τ�� t� dt + g�x�t�� x�t − τ�� t� dB�t� (1.1)

on t ≥ 0 with initial data �x�θ� 	 −τ ≤ θ ≤ 0� = ξ ∈ Cb
�0

�
−τ� 0�� Rn�.
Here B�t� = �B1�t�� � � � � Bm�t��T was an m-dimensional Brownian motion
defined on the complete probability space ���� � ��t�t≥0��� with a filtra-
tion ��t�t≥0 satisfying the usual conditions (i.e., right continuous and �0
containing all �-null sets). The author in [5] imposed the following hypoth-
esis:

(H1) Both f 	 �n × �n × �+ → �n and g	 �n × �n × �+ → �n×m

are Borel-measurable functions. They satisfy the local Lipschitz condition and
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the linear growth condition. That is, for each k = 1� 2� � � � � there is a ck > 0
such that

�f �x� y� t� − f �x̄� ȳ� t�� ∨ �g�x� y� t� − g�x̄� ȳ� t�� ≤ ck��x − x̄� + �y − ȳ���
for all t ≥ 0 and those x� y� x̄� ȳ ∈ �n with �x� ∨ �y� ∨ �x̄� ∨ �ȳ� ≤ k, and there
is moreover a c > 0 such that

�f �x� y� t�� ∨ �g�x� y� t�� ≤ c�1 + �x� + �y���
for all �x� y� t� ∈ �n × �n × �+.

Under the hypothesis (H1), it is well-known (cf. Mao [4]) that for any
initial data �x�θ� 	 −τ ≤ θ ≤ 0� = ξ ∈ Cb

�0
�
−τ� 0���n� (which will be

defined later), Eq. (1.1) has a unique solution that is denoted by x�t� ξ� on
t ≥ −τ.

One of the main results established in Mao [5] is the following (the
notations used will be explained later):

Theorem 1.1 (Mao [5, Theorem 2.4]). Let (H1) hold. Assume that there
are functions V ∈ C2� 1��n × �+��+�� γ ∈ L1��+��+�, and w1� w2 ∈
C��n��+� such that
�V �x� y� t� 	= Vt�x� t� + Vx�x� t�f �x� y� t�

+ 1
2

trace
[
gT �x� y� t�Vxx�x� t�g�x� y� t�]

≤ γ�t� − w1�x� + w2�y�� �x� y� t� ∈ �n × �n × �+� (1.2)

w1�x� ≥ w2�x�� x ∈ �n� (1.3)

and

lim
�x�→∞

inf
0≤t<∞

V �x� t� = ∞� (1.4)

Assume also that for each initial data ξ ∈ Cb
�0

�
−τ� 0���n� there is a p > 2
such that

sup
−τ≤t<∞

E�x�t� ξ��p < ∞� (1.5)

Then, for every ξ ∈ Cb
�0

�
−τ� 0���n�,
lim
t→∞

[
w1�x�t� ξ�� − w2�x�t� ξ��] = 0 a.s. (1.6)

This is a stochastic version of the well-known LaSalle theorem (cf. Hale
and Lunel [1] or LaSalle [2]). The main aim of this note is to show that
this theorem still holds without condition (1.5) while Hypothesis (H1) can
also be replaced with a weaker one to cover much more general stochastic
differential delay equations.
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2. GENERALIZED RESULT

The notations used in this paper are the same as in Mao [5], but for the
convenience of the reader we explain here. Let �·� denote the Euclidean
norm in �n. If A is a vector or matrix, its transpose is denoted by AT . If A

is a matrix, its trace norm is denoted by �A� =
√

trace�AT A�. Let τ > 0 and
C�
−τ� 0���n� denote the family of all continuous �n-valued functions on

−τ� 0�. Let Cb

�0
�
−τ� 0���n� be the family of all �0-measurable bounded

C�
−τ� 0���n�-valued random variables ξ = �ξ�θ� 	 −τ ≤ θ ≤ 0�. Let
C2� 1��n × �+��+� denote the family of all nonnegative functions V �x� t�
on �n × �+ which are continuously twice differentiable in x and once dif-
ferentiable in t. For each V ∈ C2� 1��n × �+��+�, define an operator �V
from �n × �n × �+ to � by

�V �x� y� t� = Vt�x� t� + Vx�x� t�f �x� y� t�

+ 1
2

trace
[
gT �x� y� t�Vxx�x� t�g�x� y� t�]�

where

Vt�x� t� = ∂V �x� t�
∂t

� Vx�x� t� =
(

∂V �x� t�
∂x1

� � � � �
∂V �x� t�

∂xn

)
�

Vxx�x� t� =
(

∂2V �x� t�
∂xi∂xj

)
n×n

�

Moreover, let C��n��+� denote the family of continuous functions from �n

to �+. If K is a subset of �n, denote by d�x� K� the Haussdorf semi-distance
between x ∈ �n and the set K, that is, d�x� K� = infy∈K �x − y�. If w is a
real-valued function defined on �n, then its kernel is denoted by Ker�w�,
namely Ker�w� = �x ∈ �n 	 w�x� = 0�. We also denote by L1��+��+� the
family of all functions γ 	 �+ → �+ such that

∫∞
0 γ�t� dt < ∞.

Instead of Hypothesis (H1) we shall impose the following weaker one:

(H2) Given any initial data �x�θ� 	 −τ ≤ θ ≤ 0� = ξ ∈ Cb
�0

�
−τ� 0��
�n�, Eq. (1.1) has a unique solution denoted by x�t� ξ� on t ≥ 0. Moreover,
both f �x� y� t� and g�x� y� t� are locally bounded in �x� y� while uniformly
bounded in t. That is, for any h > 0 there is a Kh > 0 such that

�f �x� y� t�� ∨ �g�x� y� t�� ≤ Kh�

for all t ≥ 0 and x� y ∈ �n with �x� ∨ �y� ≤ h.

Hypothesis (H2) covers much more stochastic differential delay equa-
tions than does (H1). For example, consider a one-dimensional stochastic
differential delay equation

dx�t� = [−x3�t� + x�t − τ�]dt + sin�x�t − τ�� dB�t��
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where B�t� is a one-dimensional Brownian motion. This equation does not
satisfy Hypothesis (H1) but we shall show that it satisfies Hypothesis (H2)
in the Appendix. Let us now establish an improved result of Theorem 1.1.

Theorem 2.1. Let (H2) hold. Assume that there are functions V ∈
C2� 1��n × �+��+�� γ ∈ L1��+��+�, and w1, w2 ∈ C��n��+� such that
�V �x� y� t� ≤ γ�t� − w1�x� + w2�y�� �x� y� t� ∈ �n × �n × �+� (2.1)

w1�x� ≥ w2�x�� x ∈ �n� (2.2)

and

lim
�x�→∞

inf
0≤t<∞

V �x� t� = ∞� (2.3)

Then Ker�w1 − w2� �= � and

lim
t→∞ d�x�t� ξ��Ker�w1 − w2�� = 0 a.s. (2.4)

for every ξ ∈ Cb
�0

�
−τ� 0���n�.
Proof. The proof is rather technical so we divide it into three steps.

Step 1. Fix any ξ and write x�t� ξ� = x�t� for simplicity. By Itô’s for-
mula,

V �x�t�� t� = V �x�0�� 0� +
∫ t

0
�V �x�s�� x�s − τ�� s� ds

+
∫ t

0
Vx�x�s�� s�g�x�s�� x�s − τ�� s� dB�s��

Using the conditions (2.1) and (2.2) we compute∫ t

0
�V �x�s�� x�s − τ�� s� ds

≤
∫ t

0

[
γ�s� − w1�x�s�� + w2�x�s − τ��]ds

=
∫ t

0
γ�s� ds −

∫ t

0
w1�x�s�� ds +

∫ t−τ

−τ
w2�x�s�� ds

≤
∫ t

0
γ�s� ds +

∫ 0

−τ
w2�x�s�� ds −

∫ t

0

[
w1�x�s�� − w2�x�s��]ds�

So

V �x�t�� t� ≤ V �ξ�0�� 0� +
∫ 0

−τ
w2�ξ�s�� ds +

∫ t

0
γ�s� ds

−
∫ t

0

[
w1�x�s�� − w2�x�s��]ds

+
∫ t

0
Vx�x�s�� s�g�x�s�� x�s − τ�� s� dB�s�� (2.5)
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Applying the nonnegative semimartingale convergence theorem (cf. Liptser
and Shiryayev [3, Theorem 7 on page 139] or Mao [5, Lemma 2.2]) we
immediately obtain

lim sup
t→∞

V �x�t�� t� < ∞ a.s. (2.6)

Moreover, taking the expectations on both sides of (2.5) yields

Ɛ
∫ t

0

[
w1�x�s�� − w2�x�s��]ds ≤ E

[
V �ξ�0�� 0� +

∫ 0

−τ
w2�ξ�s�� ds

]

+
∫ ∞

0
γ�s� ds < ∞�

Letting t → ∞ we obtain that

Ɛ
∫ ∞

0

[
w1�x�s�� − w2�x�s��]ds < ∞� (2.7)

This implies ∫ ∞

0

[
w1�x�s�� − w2�x�s��]ds < ∞ a.s. (2.8)

Step 2. Set w = w1 − w2. Clearly, w ∈ C��n��+�. It is straightforward
to see from (2.8) that

lim inf
t→∞ w�x�t�� = 0 a.s. (2.9)

We now claim that

lim
t→∞ w�x�t�� = 0 a.s. (2.10)

If this is false, then

�

{
lim sup

t→∞
w�x�t�� > 0

}
> 0�

Hence there is a (fixed) number ε > 0 such that

���1� ≥ 3ε� (2.11)

where

�1 =
{

lim sup
t→∞

w�x�t�� > 2ε

}
�

It is easy to observe from (2.6) and the continuity of both the solution x�t�
and the function V �x� t� that

sup
−τ≤t<∞

V �x�t�� t� < ∞ a.s.
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Define µ	 �+ → �+ by

µ�r� = inf
�x�≥r� 0≤t≤∞

V �x� t� for r ≥ 0�

Clearly, µ��x�t��� ≤ V �x�t�� t� so

sup
−τ≤t<∞

µ��x�t��� ≤ sup
−τ≤t<∞

V �x�t�� t� < ∞ a.s.

On the other hand, it follows from condition (2.3) that

lim
r→∞ µ�r� = ∞�

We therefore must have

sup
−τ≤t<∞

�x�t�� < ∞ a.s. (2.12)

Recalling the boundedness of the initial data we can then find a positive
number h, which depends on ε, sufficiently large for �ξ�θ�� < h for all
−τ ≤ θ ≤ 0 almost surely while

���2� ≥ 1 − ε� (2.13)

where

�2 =
{

sup
−τ≤t<∞

�x�t�� < h

}
�

It is easy to see from (2.11) and (2.13) that

���1 ∩ �2� ≥ 2ε� (2.14)

Let us now define a sequence of stopping times,

τh = inf�t ≥ 0 	 �x�t�� ≥ h��

σ1 = inf�t ≥ 0 	 w�x�t�� ≥ 2ε��

σ2i = inf�t ≥ σ2i−1 	 w�x�t�� ≤ ε�� i = 1� 2� � � � �

σ2i+1 = inf�t ≥ σ2i 	 w�x�t�� ≥ 2ε�� i = 1� 2� � � � �

where throughout this paper we set inf � = ∞. Note from (2.9) and the
definitions of �1 and �2 that

τh�ω� = ∞ and σi�ω� < ∞ for ∀ i ≥ 1 whenever ω ∈ �1 ∩ �2� (2.15)
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By (2.7), we compute

∞ > Ɛ
∫ ∞

0
w�x�t�� dt

≥
∞∑
i=1

Ɛ

[
I�σ2i−1<∞� σ2i<∞� τh=∞�

∫ σ2i

σ2i−1

w�x�t�� dt

]

≥ ε
∞∑
i=1

Ɛ
[
I�σ2i−1<∞� τh=∞��σ2i − σ2i−1�

]
� (2.16)

where IA is the indicator function of set A and we have noted from (2.9)
that σ2i < ∞ whenever σ2i−1 < ∞. On the other hand, by Hypothesis (H2),
Hölder’s inequality, and Doob’s martingale inequality, we compute

Ɛ

[
I�τh∧σ2i−1<∞� sup

0≤t≤T

�x�τh ∧ �σ2i−1 + t�� − x�τh ∧ σ2i−1��2
]

≤ 2Ɛ
[
I�τh∧σ2i−1<∞� sup

0≤t≤T

∣∣∣∣
∫ τh∧�σ2i−1+t�

τh∧σ2i−1

f �x�s�� x�s − τ�� s� ds

∣∣∣∣
2]

+ 2Ɛ
[
I�τh∧σ2i−1<∞� sup

0≤t≤T

∣∣∣∣
∫ τh∧�σ2i−1+t�

τh∧σ2i−1

g�x�s�� x�s − τ�� s� dB�s�
∣∣∣∣
2]

≤ 2TƐ

[
I�τh∧σ2i−1<∞�

∫ τh∧�σ2i−1+T �

τh∧σ2i−1

�f �x�s�� x�s − τ�� s��2ds

]

+ 8Ɛ
[
I�τh∧σ2i−1<∞�

∫ τh∧�σ2i−1+T �

τh∧σ2i−1

�g�x�s�� x�s − τ�� s��2ds

]

≤ 2K2
h�T + 4�T� (2.17)

Since w�·� is continuous in �n, it must be uniformly continuous in the
closed ball �Sh = �x ∈ �n 	 �x� ≤ h�. We can therefore choose δ = δ�ε� > 0
so small that

�w�x� − w�y�� < ε whenever �x − y� < δ� x� y ∈ �Sh� (2.18)

We furthermore choose T = T �ε� δ� h� > 0 sufficiently small for

2K2
h�T + 4�T

δ2 < ε�

It then follows from (2.17) that

�

(
�τh ∧ σ2i−1 < ∞� ∩

{
sup

0≤t≤T

�x�τh ∧ �σ2i−1 + t�� − x�τh ∧ σ2i−1�� ≥ δ

})

≤ 2K2
h�T + 4�T

δ2 < ε�
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Consequently,

�

(
�σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�x�σ2i−1 + t� − x�σ2i−1�� ≥ δ

})

= �

(
�τh ∧ σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�x�τh ∧ �σ2i−1 + t��

− x�τh ∧ σ2i−1�� ≥ δ

})

≤ �

(
�τh ∧ σ2i−1 < ∞� ∩

{
sup

0≤t≤T

�x�τh ∧ �σ2i−1 + t��

− x�τh ∧ σ2i−1�� ≥ δ

})

≤ ε�

Recalling (2.14) and (2.15), we further compute

�

(
�σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�x�σ2i−1 + t� − x�σ2i−1�� < δ

})

= ���σ2i−1 < ∞� τh = ∞��

−�

(
�σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�x�σ2i−1 + t� − x�σ2i−1�� ≥ δ

})

≥ 2ε − ε = ε�

Using (2.18), we derive that

�

(
�σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�w�x�σ2i−1 + t�� − w�x�σ2i−1��� < ε

})

≥ �

(
�σ2i−1 < ∞� τh = ∞� ∩

{
sup

0≤t≤T

�x�σ2i−1 + t� − x�σ2i−1�� < δ

})

≥ ε� (2.19)

Set

��i =
{

sup
0≤t≤T

�w�x�σ2i−1 + t�� − w�x�σ2i−1��� < ε

}
�

Noting that

σ2i�ω� − σ2i−1�ω� ≥ T if ω ∈ �σ2i−1 < ∞� τh = ∞� ∩ ��i�
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we derive from (2.16) and (2.19) that

∞ > ε
∞∑
i=1

Ɛ
[
I�σ2i−1<∞�τh=∞��σ2i − σ2i−1�

]

≥ ε
∞∑
i=1

Ɛ
[
I�σ2i−1<∞�τh=∞�∩��i

�σ2i − σ2i−1�
]

≥ εT
∞∑
i=1

�
(
�σ2i−1 < ∞� τh = ∞� ∩ ��i

)

≥ εT
∞∑
i=1

ε = ∞�

which is a contradiction. So (2.10) must hold.

Step 3. Let us now show that Ker�w1 − w2� = Ker�w� �= �. Observe
from (2.10) and (2.12) that there is an �0 ⊂ � with ���0� = 1 such that

lim
t→∞ w�x�t� ω�� = 0 and sup

0≤t<∞
�x�t� ω�� < ∞ for all ω ∈ �0� (2.20)

Fix any ω ∈ �0. Then �x�t� ω��t≥0 is bounded in �n so there must be
an increasing sequence �ti�i≥1 such that �x�ti� ω��i≥1 converges to some
y ∈ �n. Hence

w�y� = lim
i→∞

w�x�ti� ω�� = 0�

which implies y ∈ Ker�w� so Ker�w� �= �. We shall now show that

lim
t→∞ d�x�t� ω��Ker�w�� = 0 for all ω ∈ �0� (2.21)

If this is false, then there is some ω̄ ∈ �0 such that

lim sup
t→∞

d�x�t� ω̄��Ker�w�� > 0�

whence there is a subsequence �x�ti� ω̄��i≥1 of �x�t� ω̄��t≥0 such that

d�x�ti� ω̄��Ker�w�� ≥ ε� ∀ i ≥ 1�

for some ε > 0. Since �x�ti� ω̄��i≥1 is bounded, we can find a subsequence
�x�t̄i� ω̄��i≥1 which converges to z. Clearly, z �∈ Ker�w� so w�z� > 0. How-
ever, by (2.20),

w�z� = lim
i→∞

w�x�t̄i� ω̄�� = 0�

which contradicts w�z� > 0. Hence (2.21) must hold and the required asser-
tion (2.4) follows since ���0� = 1. The proof is therefore complete.

From Steps 1 and 2 of the proof above we see clearly that Theorem 1.1
still holds without condition (1.5). In other words, Theorem 2.1 improves
one of the main results of Mao [5].
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3. USEFUL COROLLARIES

Theorem 2.1 reveals the limit set Ker�w1 − w2� of the solutions to the
stochastic differential delay equation. Should we know more about the set
Ker�w1 − w2�, we can then show the asymptotic properties of the solutions
more precisely. For example, if we know that the set Ker�w1 − w2� contains
only the origin of �n, that is, Ker�w1 − w2� = �0�, then the solutions will
all tend to the origin asymptotically with probability one. This leads to the
following useful criterion on the asymptotic stability.

Corollary 3.1. Let (H2) hold. Assume that there are functions V ∈
C2� 1��n × �+��+�� γ ∈ L1��+��+�, and w1� w2 ∈ C��n��+� such that

�V �x� y� t� ≤ γ�t� − w1�x� + w2�y�� �x� y� t� ∈ �n × �n × �+�

w1�x� > w2�x�� ∀ x �= 0� (3.1)

and

lim
�x�→∞

inf
0≤t<∞

V �x� t� = ∞�

Then

lim
t→∞ x�t� ξ� = 0 a.s. (3.2)

for every ξ ∈ Cb
�0

�
−τ� 0���n�.
Proof. By the condition (3.1), x �∈ Ker�w1 − w2� if x �= 0. On the other

hand, Theorem 2.1 shows that Ker�w1 − w2� �= �. We therefore must have
Ker�w1 − w2� = �0� and the desired assertion (3.2) follows from Theo-
rem 2.1 immediately.

Theorem 2.1 can also be used to establish the criteria on the partially
asymptotic stability. Let 1 ≤ n̂ < n and 1 ≤ i1 < i2 < · · · < in̂ ≤ n be inte-
gers. Let x̂ = �xi1

� xi2
� � � � � xin̂

� be the partial coordinates of x, which can

be regarded as in �n̂ with the norm �x̂� =
√

x2
i1

+ x2
i2

+ · · · + x2
in̂

. Moreover,
let � denote the class of continuous (strictly) increasing functions µ from
�+ to itself with µ�0� = 0. The following corollary is an improvement of
Corollary 3.4 of Mao [5].

Corollary 3.2. Let (H2) hold. Assume that there are functions V ∈
C2� 1��n × �+��+�� γ ∈ L1��+��+�� w1� w2 ∈ C��n��+�, and µ ∈ � such
that

�V �x� y� t� ≤ γ�t� − w1�x� + w2�y�� �x� y� t� ∈ �n × �n × �+�

w1�x� − w2�x� ≥ µ��x̂��� x ∈ �n� (3.3)
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and

lim
�x�→∞

inf
0≤t<∞

V �x� t� = ∞�

Then

lim
t→∞ x̂�t� ξ� = 0 a.s. (3.4)

for every ξ ∈ Cb
�0

�
−τ� 0���n�.
Proof. It is straightforward to observe from the assumption (3.3) that

if x ∈ Ker�w1 − w2� then x̂ = 0. The conclusion then follows from Theo-
rem 2.1.

Theorem 2.1 can also be applied to discuss the asymptotic bounded-
ness of the solutions. The following is a straightforward corollary from the
theorem.

Corollary 3.3. Let all the assumptions of Theorem 2.1 hold. If Ker�w1−
w2� is bounded, then for every ξ ∈ Cb

�0
�
−τ� 0���n�,

lim
t→∞ �x�t� ξ�� ≤ C a.s. (3.5)

where C = sup��x� 	 x ∈ Ker�w1 − w2��.

4. LINEAR STOCHASTIC DIFFERENTIAL
DELAY EQUATIONS

Let us now employ our new result to discuss the linear stochastic differ-
ential delay equation

dx�t� = 
A0x�t� + D0x�t − τ�� dt +
m∑

i=1


Aix�t� + Dix�t − τ�� dBi�t�� (4.1)

where Ai’s and Di’s are all n × n matrices. Let Q be a symmetric positive-
definite n × n matrix and let V �x� = xT Qx. Then the operator �V 	 �n ×
�n × �+ → � has the form

�V �x� y� t� = 2xT Q�A0x + D0y� +
m∑

i=1

�Aix + Diy�T Q�Aix + Diy��

Note that

2xT QA0x = xT �QA0 + AT
0 Q�x�

2xT QD0y ≤ 2�xT Q
1
2 �Q

1
2 D0y� ≤ �xT Q

1
2 �2 + �Q 1

2 D0y�2

= xT Qx + yT DT
0 QD0y�
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and

�Aix + Diy�T Q�Aix + Diy�
= xTAT

i QAix + xTAT
i QDiy + yT DT

i QAix + yT DT
i QDiy

= xTAT
i QAix + xTAT

i Q
1
2 Q

1
2 Diy + yT DT

i Q
1
2 Q

1
2 Aix + yT DT

i QDiy

≤ xTAT
i QAix + 2�xTAT

i Q
1
2 ��Q 1

2 Diy� + yT DT
i QDiy

≤ xTAT
i QAix + �xTAT

i Q
1
2 �2 + �Q 1

2 Diy�2 + yT DT
i QDiy

≤ 2xTAT
i QAix + 2yT DT

i QDiy�

So

�V �x� y� t� ≤ −w1�x� + w2�y��

where

w1�x� = xT

(
−QA0 − AT

0 Q − Q − 2
m∑

i=1

AT
i QAi

)
x

and

w2�x� = xT

(
DT

0 QD0 + 2
m∑

i=1

DT
i QDi

)
x�

Clearly, DT
0 QD0 + 2

∑m
i=1 DT

i QDi is nonnegative-definite so w2�x� ≥ 0. If
we impose the condition that

M 	= −QA0 − AT
0 Q − Q − 2

m∑
i=1

AT
i QAi − DT

0 QD0 − 2
m∑

i=1

DT
i QDi (4.2)

is positive-definite, then w1�x� ≥ w2�x� and Ker�w1 − w2� = �0�. In this
case, Theorem 2.1 shows that the solutions of Eq. (4.1) will tend to zero
asymptotically with probability one. However, if the matrix M is only
nonnegative-definite (but not positive-definite), then we still have that
w1�x� ≥ w2�x�. In this case, we can conclude by Theorem 2.1 that the
solutions of Eq. (4.1) will approach Ker�w1 − w2� asymptotically with prob-
ability one. If we let v1� � � � � vk be the all-orthogonal eigenvectors of M
corresponding to the eigenvalue 0, then Ker�w1 − w2� is the linear span of
v1� � � � � vk; that is,

Ker�w1 − w2� = �α1v1 + · · · + αkvk 	 �α1� � � � � αk� ∈ �k��

Summarizing the above, we obtain the following useful corollary.
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Corollary 4.1. If there is a symmetric positive-definite n × n matrix Q
such that the matrix M defined by (4.2) is positive-definite, then the solutions
of Eq. (4.1) will tend to zero asymptotically with probability one. However, if
the matrix M is only nonnegative-definite, then the solutions of Eq. (4.1) will
approach the linear span of v1� � � � � vk asymptotically with probability one,
where v1� � � � � vk are the all-orthogonal eigenvectors of M corresponding to
the eigenvalue 0.

5. NONLINEAR EXAMPLES

In the previous section we have shown the efficiency of our new result
in the study of asymptotic properties for stochastic differential delay
equations. Let us now discuss a couple of nonlinear examples to illus-
trate our new results furthermore. In this section we will let B�t� be a
one-dimensional Brownian motion while we omit mentioning the initial
data and simply write the solutions as x�t�. It is also easy to verify by the
existence-and-uniqueness theorems of solutions established in Mao [4] that
all the equations discussed in this section satisfy Hypothesis (H2).

Example 5.1. Let α and β be two constants such that 2α > β2. Con-
sider the one-dimensional stochastic differential delay equation

dx�t� = −αx�t� sin2�x�t�� dt + βx�t − τ� sin�x�t − τ�� dB�t�� (5.1)

Let V �x� = x2. Then the operator

�V �x� y� t� = −w1�x� + w2�y��

where

w1�x� = 2αx2 sin2�x� and w2�x� = β2x2 sin2�x��

Theorem 2.1 shows that the solution of Eq. (5.1) has the property

lim
t→∞ d�x�t��Ker�w1 − w2�� = 0 a.s.

Noting that Ker�w1 − w2� = �±kπ 	 k = 0� 1� 2� � � �� while the solution x�t�
is continuous, we can then conclude that

lim
t→∞ x�t� = κπ a.s.�

where κ is a random integer which may depend on the initial data.
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Example 5.2. Consider a stochastic delay oscillator

z̈�t� + 2ż�t� + 2z�t� = e−t + 
sin�z�t − τ�� + ż�t − τ��Ḃ�t�� (5.2)

Introducing a new variable x = �x1� x2�T = �z� ż�T , we can write this oscil-
lator as a stochastic differential delay equation

dx�t� =
[

x2�t�
e−t − 2x1�t� − 2x2�t�

]
dt +

[
0

sin�x1�t − τ�� + x2�t − τ�
]
dB�t��

(5.3)

Let V �x� = αx2
1 + 2βx1x2 + x2

2, where α and β are two positive constants to
be determined and we require α > β2 in order for V to be positive-definite.
Then the operator �V 	 �2 × �2 × �+ → � has the form

�V �x� y� t� = �2αx1 + 2βx2�x2 + �2βx1 + 2x2��e−t − 2x1 − 2x2�
+ �sin y1 + y2�2

≤ −4βx2
1 − �4 − 2β�x2

2 + �2α − 4 − 4β�x1x2

+ e−t�2βx1 + 2x2� + 2�y2
1 + y2

2 ��

Choosing α and β for

4β = 4 − 2β and 2α − 4 − 4β = 0�

namely, α = 10/3 and β = 2/3 which satisfy α > β2, we find that

�V �x� y� t� ≤ −8
3
�x�2 + e−t

(
4
3
x1 + 2x2

)
+ 2�y�2�

Noting

4
3
x1e

−t ≤ 1
3
x2

1 + 4
3
e−2t 2x2e

−t ≤ 1
3
x2

2 + 3e−2t �

we see that

�V �x� y� t� ≤ 13
3

e−2t − 7
3
�x�2 + 2�y�2�

By Corollary 3.1, we can then conclude that the stochastic oscillator (5.2)
has the property that

lim
t→∞
�z�t�� + �ż�t��� = 0 a.s.
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6. EQUATIONS WITH MULTIPLE DELAYS

The theory developed in Section 2 can be generalized to cope with equa-
tions with multiple delays of the form

dx�t� = f �x�t�� x�t − τ1�� � � � � x�t − τk�� t� dt

+ g�x�t�� x�t − τ1�� � � � � x�t − τk�� t� dB�t� (6.1)

on t ≥ 0, where 0 < τ1 < τ2 < · · · < τk = τ, f 	 �n ×�n×k ×�+ → �n, and
g	 �n × �n×k × �+ → �n×m. For this equation, we impose the following
hypothesis:

(H3) Given any initial data �x�θ� 	 −τ ≤ θ ≤ 0� = ξ ∈ Cb
�0

�
−τ� 0�� Rn�,
Eq. (6.1) has a unique solution denoted by x�t� ξ� on t ≥ 0. Moreover,
both f �x� y1� � � � � yk� t� and g�x� y1� � � � � yk� t� are locally bounded in
�x� y1� � � � � yk� while uniformly bounded in t. That is, for any h > 0 there is
a Kh > 0 such that

�f �x� y1� � � � � yk� t�� ∨ �g�x� y1� � � � � yk� t�� ≤ Kh�

for all t ≥ 0 and x� y1� � � � � yk ∈ �n with �x� ∨ �y1� ∨ · · · ∨ �yk� ≤ h.

The corresponding operator �V from �n × �n×k × �+ to � is now
defined as

�V �x� y1� � � � � yk� t� = Vt�x� t� + Vx�x� t�f �x� y1� � � � � yk� t�

+ 1
2

trace
[
gT �x� y1� � � � � yk� t�Vxx�x� t�

× g�x� y1� � � � � yk� t�
]
�

To close this paper let us state the following more general result, which can
be proved in the same way as in the proof of Theorem 2.1.

Theorem 6.1. Let (H3) hold. Assume that there are functions V ∈
C2� 1��n × �+��+�� γ ∈ L1��+��+�, and w� w1� � � � � wk ∈ C��n��+� such
that

�V �x� y1� � � � � yk� t� ≤ γ�t� − w�x� +
k∑

i=1

wi�yi��

�x� y1� � � � � yk� t� ∈ �n × �n×k × �+�

(6.2)

w�x� ≥
k∑

i=1

wi�x�� x ∈ �n� (6.3)
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and

lim
�x�→∞

inf
0≤t<∞

V �x� t� = ∞� (6.4)

Then Ker�w − w1 − · · · − wk� �= � and the solutions of Eq. (6.1) have the
property that

lim
t→∞ d�x�t� ξ��Ker�w − w1 − · · · − wk�� = 0 a.s. (6.5)

for every ξ ∈ Cb
�0

�
−τ� 0���n�.

A. APPENDIX

In this appendix we show that equation

dx�t� = 
−x3�t� + x�t − τ�� dt + sin�x�t − τ�� dB�t� (A.1)

satisfies Hypothesis (H2). In fact, the corresponding coefficients f �x� y� t� =
−x3 + y and g�x� y� t� = sin�y� are locally bounded in �x� y�. Hence, to
show that this equation satisfies Hypothesis (H2), we need only to show
that this equation has a unique solution for any initial data.

To the best knowledge of the author, there is no existing result that can be
applied to this nonlinear equation to guarantee the existence and unique-
ness of its (global) solution. We therefore first establish a very useful new
criterion on the existence and uniqueness and then apply it to Eq. (A.1).

Theorem A.1. Assume that both coefficients f �x� y� t� and g�x� y� t� of
Eq. (1.1) are locally Lipschitz in �x� y�. Assume also that there is a function
V ∈ C2� 1��n × �+��+� and a positive constant K such that

�V �x� y� t� ≤ K�1 + V �x� t� + V �y� t − τ��� �x� y� t� ∈ �n × �n × �+�
(A.2)

and

lim
�x�→∞

inf
0≤t≤∞

V �x� t� = ∞� (A.3)

Then Eq. (1.1) has a unique (global) solution for any initial data �x�θ� 	 −τ ≤
θ ≤ 0� = ξ ∈ Cb

�0
�
−τ� 0���n�.

Proof. Since the coefficients are locally Lipschitz in �x� y�, Eq. (1.1) has
a unique maximal local solution x�t� on t ∈ 

−τ� σ∞

 for any initial data
�x�θ� 	 −τ ≤ θ ≤ 0� = ξ ∈ Cb

�0
�
−τ� 0���n�, where σ∞ is the explosion

time (cf. Mao [6, Theorem 3.2.2 on p. 95]). We therefore need only to
show that σ∞ = ∞ a.s. For any integer k ≥ 1, define the stopping time

τk = σ∞ ∧ inf�t ∈ 

0� σ∞

	 �x�t�� ≥ k��
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where, as usual, we set inf � = ∞. Clearly, τk’s are increasing so they have
the limit τ∞ = limk→∞ τk. Obviously, τ∞ ≤ σ∞ a.s. For any k ≥ 1 and
t ≥ 0, the Itô formula shows that

ƐV �x�t ∧ τk�� t ∧ τk� = ƐV �x�0�� 0� + Ɛ
∫ t∧τk

0
�V �x�s�� x�s − τ�� s� ds�

By the condition (A.2), we compute that

ƐV �x�t ∧ τk�� t ∧ τk�

≤ ƐV �x�0�� 0� + Ɛ
∫ t∧τk

0
K
[
1 + V �x�s�� s� + V �x�s − τ�� s − τ�]ds

≤ ƐV �x�0�� 0� + Kt + KƐ
∫ t

0

[
V �x�s ∧ τk�� s ∧ τk�

+ V �x��s − τ� ∧ τk�� �s − τ� ∧ τk�]ds

= ƐV �x�0�� 0� + Kt + K
∫ t

0

[
ƐV �x�s ∧ τk�� s ∧ τk�

+ƐV �x��s − τ� ∧ τk�� �s − τ� ∧ τk�]ds

≤ C + Kt + 2K
∫ t

0

[
sup

0≤r≤s

ƐV �x�r ∧ τk�� r ∧ τk�
]

ds� (A.4)

where

C = ƐV �x�0�� 0� + K
∫ τ

0
ƐV �x�s − τ�� s − τ�� ds < ∞�

Since the right-hand side of (A.4) is increasing in t, we must have

sup
0≤r≤t

ƐV �x�r∧τk��r∧τk�≤C+Kt+2K
∫ t

0

[
sup

0≤r≤s

ƐV �x�r∧τk��r∧τk�
]
ds�

The well-known Gronwall inequality yields

sup
0≤r≤t

ƐV �x�r ∧ τk�� r ∧ τk� ≤ �C + Kt�e2Kt� ∀ t ≥ 0�

Hence

ƐV �x�t ∧ τk�� t ∧ τk� ≤ �C + Kt�e2Kt� ∀ t ≥ 0� (A.5)

On the other hand, define µ	 �+ → �+ by

µ�r� = inf
�x�≥r� 0≤t≤∞

V �x� t� for r ≥ 0�

Clearly, µ��x�t��� ≤ V �x�t�� t� and, by the condition (A.3),

lim
r→∞ µ�r� = ∞�
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It therefore follows from (A.5) that

�C + Kt�e2Kt ≥ Ɛµ��x�t ∧ τk��� ≥ µ�k���τk ≤ t��
Letting k → ∞ and then t → ∞ we obtain that

��τ∞ < ∞� = 0�

That is, τ∞ = ∞ a.s. We therefore must have that σ∞ = ∞ a.s. This com-
pletes the proof.

Let us now return to Eq. (A.1). Let V �x� t� = V �x� = x2 and compute,
with the coefficients f �x� y� t� = −x3 + y and g�x� y� t� = sin�y�, that

�V �x� y� t� = 2x�−x3 + y� + sin2�y� ≤ x2 + 2y2 ≤ 2�1 + V �x� + V �y���
Applying Theorem A.1 we can see that Eq. (A.1) does have a unique solu-
tion for any initial data.
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