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Abstract

For holomorphic noncontractive maps on (not necessarily bounded) domains in complex B
spaces, we establish the conditionsguaranteeing locally uniform convergence of random iterat
and study the existence of fixed points and boundary behaviour of iterations. In particular, we
that the problem, concerning the existence of the horospheres determined by Carathéodory–
Finsler pseudometrics defined on unbounded domains, has the solution and we prove new r
type of Julia’s lemma and Wolff’s theorem.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The past few years have seen several significant developments in the fields of ra
dom iteration theory, iteration theory and fixed point theory for holomorphic self-m
on bounded convex domainsG in complex Banach spaces. The important questions
cern the behaviour of the random iterationsf1 ◦f2 ◦ · · ·◦fn andfn ◦fn−1 ◦ · · · ◦f1, where
fn ∈ Hol(G,G) andn ∈ N [11,12,18–21,31,35,44,47,53], the iterative behaviour of an
dividual mapf [n] = f ◦ · · · ◦ f (n times) [1–3,5–8,13,14,26–30,33,34,36,37,41,42,45
and the existence of fixed points forf ∈ Hol(G,G) [13,24,40,43,48] and the existence
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invariant horocycles, ellipsoids or horospheres inG determined by Kobayashi metricskG

[1–8,15–17,26–30,34,42,49,53]. Many researchers (see, e.g., [2,6,7,14,22–24,29,3
45,46,48]) have made essential contributions to this areas, starting with the celebrate
point theorem of Earle and Hamilton [13]. Thesource of those studies were fundamenta
results of Julia [28], Fatou [16], Wolff [50], Denjoy [8] and Valiron [39] inC.

If we assume thatG is unbounded domain in infinite dimensional complex space
then the problems concerning the methods of investigations of the behaviour of ra
iterations and iterations of holomorphic maps, the existence of fixed points of holomo
maps and the existence of invariant horospheres determined by pseudometrics onG, are
quite different.

Let G be a nonempty (not necessarily bounded) domain in a complex Banach sE

and letρG denote the CRF-pseudometric onG (abbreviation for the term “Carathéodor
Reiffen–Finsler pseudometric”). We say that the bounded subsetD of G lies strictly inside
G if there exists a neighbourhoodW of the origin inE such thatD+W ⊂ G. In [44,47] we
characterizeρG-bounded subsetsD of G, give conditions when pseudometricρG is metric
and prove uniform convergence to constant maps of random iterationsf1 ◦ f2 ◦ · · · ◦ fn,
n ∈ N, of holomorphic contractions, i.e., such maps that, for eachn ∈ N, fn ∈ Hol(G,E)

andfn(G) ⊂ D, where subsetD of G is bounded,ρG-bounded and lies strictly insideG.
In particular, Theorem 2.1 of paper [47, Section 4] includes the fixed point theore
C.J. Earle and R.S. Hamilton [13] and the result of W.J. Zhang and F.J. Ren [53,
rem 2.1].

The present paper is a continuation of our investigations [47] and has two pur
The first purpose is to give conditions guaranteeing locally uniform convergence o
dom iterationsfn ◦ fn−1 ◦ · · · ◦ f1, n ∈ N, for {fn} in Hol(G,G) and establish the fixe
point theorems forf ∈ Hol(G,G) whenG are not necessarily bounded domains in co
plex Banach spacesE and mapsfn,f , n ∈ N, are not necessarily contractive. The seco
purpose is to construct the CRF-horospheres (i.e., the horospheres determined by CR
pseudometricsρG) and establish the results of type of Julia’s lemma and Wolff’s theo
for mapsf ∈ Hol(G,G) whenE are separable.

We use the terminology from [3,9,10,13,23,25,32,38,40,51,52].

Remark 1.1. It is worth noticing that the problems concerning the convergence of
kinds of random iterationsf1 ◦ f2 ◦ · · · ◦ fn andfn ◦ fn−1 ◦ · · · ◦ f1, n ∈ N, differ even for
unit ballG in l2; for details see Example 2.1(a).

2. Locally uniform convergence of random iterations of holomorphic
noncontractive maps

Let E be a complex Banach space, letG ⊂ E be a nonempty (not necessarily bound
domain and letD be a subset ofG.The sequence{Fn} in Hol(G,D) converges toF ∈
Hol(G, D̄) locally uniformly onG iff, for everyx ∈ G, {Fn} converges uniformly toF on
some ballB(x0, r) = {y ∈ E: ‖y − x0‖ < r}, r > 0, containingx and such thatB(x0, r)

lies strictly insideG.
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Theorem 2.1. LetE be a complex Banach space, letG ⊂ E be a nonempty(not necessarily
bounded) domain and letD be an open bounded convex subset ofG. AssumeK is a subset
of D such thatK̄ is compact inE, let {fn} be a sequence in{f ∈ Hol(G,E): f (G) ⊂ K},
and setFn = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 for all n ∈ N.

(i) The sequence{Fn} has a subsequence converging locally uniformly onG to a map
F ∈ Hol(G, D̄).

(ii) In addition, if E is strictly convex andD is open unit ball, then eitherF(G) ⊂ D or
there existsw ∈ ∂D such thatF is a constant map of the formx �→ w, x ∈ G.

Proof. (i) Let a ∈ D be arbitrary and fixed and letm0 ∈ N be such thatK ∩ D1 	= ∅,
whereDn = a + [1 − 1/(m0 + n − 1)](D − a) for n ∈ N. Denotedn = dist(Dn,E \ D)

andKn = K ∩ Dn, n ∈ N. Obviously,K = ⋃∞
n=1 Kn.

Since the set̄K1 is compact, thus there exist a countable set{yn,1} in K̄1 which is dense
in K̄1.

We consider the sequence{Tn}, Tn = fn ◦ fn−1 ◦ · · · ◦ f3 ◦ f2, n � 2. Since{Tn(y1,1)}
is a subset of a compact setK̄ , then there exists a subsequence{Tn,1} of {Tn} such that
{Tn,1(y1,1)} converges. By using analogous considerations, by induction, for eachk ∈ N,
we find subsequence{Tn,k} of {Tn,k−1} which converges aty1,1, y2,1, . . . , yk,1. Conse-
quently, the diagonal sequence{Tn,n} converges in the points of sequence{yn,1}.

Let ε > 0 be arbitrary and fixed. LetM = sup{‖y‖: y ∈ D}. Since the set{yn,1} is
dense inK̄1, thusK̄1 ⊂ ⋃∞

j=1 B(yn,1, εd1/(3M)). By compactness, there exists a fin
subsequenceyn1,1, yn2,1, . . . , ynm,1 of {yn,1} such that

K̄1 ⊂
m⋃

j=1

B
(
ynj ,1, εd1/(3M)

)
.

Obviously, the sequences{Tn,n(ynj ,1)}, j = 1,2, . . . ,m, are Cauchy’s sequences an
consequently, there existsn0 ∈ N such that ifp,q > n0, then∥∥Tp,p(ynj ,1) − Tq,q(ynj ,1)

∥∥ < ε/3 for j = 1,2, . . . ,m.

Let nowy ∈ K1. Theny ∈ B(ynj ,1, εd1/(3M)) for somej = 1,2, . . . ,m and, using the
Hahn–Banach theorem, we define the mapsgk = (1/M)(Lk ◦ Tk,k), where

Lk ∈ E∗,
∣∣Lk(v)

∣∣ � ‖v‖ for eachv ∈ E,

and

Lk

[
Tk,k(y) − Tk,k(ynj ,1)

] = ∥∥Tk,k(y) − Tk,k(ynj ,1)
∥∥, k ∈ N.

Then, using Cauchy’s integral formula, we get|Dgk(u)(v)| � ‖v‖/d1 for u ∈ B(ynj ,1,

εd1/(3M)) andv ∈ E. Consequently,∥∥Tk,k(y) − Tk,k(ynj ,1)
∥∥ � (M/d1)‖y − ynj ,1‖ < ε/3, k ∈ N.

By the above two estimates we obtain
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∥∥Tp,p(y) − Tq,q(y)
∥∥ �

∥∥Tp,p(y) − Tp,p(ynj ,1)
∥∥ + ∥∥Tp,p(ynj ,1) − Tq,q(ynj ,1)

∥∥
+ ∥∥Tq,q(ynj ,1) − Tq,q(y)

∥∥
< ε/3+ ε/3+ ε/3 = ε

wheneverp,q > n0. This shows that{Tn,n} is uniformly convergent onK1.
We denoteTn1 = Tn,n, n ∈ N, and, using analogous consideration as the above

{Tn2} denote the subsequence of{Tn1} which converges uniformly onK2. Generally, let
{Tnp+1}denote, converging uniformly onKp+1, p = 2,3, . . . , the subsequence of{Tnp }.
Let us observe that then the diagonal sequence{Tnn} converges uniformly onKp for each
p ∈ N.

Finally, letx ∈ G be arbitrary and fixed. Denoteλ = dist(x,E \G) andµ = dist(f1(x),

E \ D) and letr > 0 be such thatλ = r + γ andrM/γ < µ for someγ > 0. Obviously,
thenB(x, r) ⊂ G andB(f1(x), rM/γ ) ⊂ D. Moreover, since dist(B(x, r),E \G) � γ > 0
thus

∥∥f1(x) − f1(u)
∥∥=

∥∥∥∥∥
1∫

0

Df1
[
tx + (1− t)u

]
(x − u) dt

∥∥∥∥∥ � M ‖x − u‖ < Mr/γ

for eachu ∈ B(x, r). The above implies that

f1
(
B(x, r)

) ⊂ B
(
f1(x),Mr/γ

) ∩ K ⊂ K ∩ Ds = Ks

for somes ∈ N. Consequently{Tnn} converges uniformly onf1(B(x, r)) and thus{Fnn},
whereFnn = Tnn ◦ f1, n ∈ N, converges uniformly onB(x, r). This proves the assertion.

(ii) Applying E. Thorp and R. Whitley theorem [38] forF we obtain the assertion.�
Remarks 2.1. (a) The setK does not necessarily lie strictly insideG.

(b) Theorem 2.1 is new even whenG is bounded andE is finite dimensional (compar
with results of J. Gill [18–21] and L. Lorentzen [31] inC and results of Z. Zhang an
F. Ren [53, Theorem 4.2] inCn).

Examples 2.1. Let E = l2 andG = {x ∈ l2: ‖x‖ = (
∑∞

k=1 |xk|2)1/2< 1}. Herel2 denotes
the complex Hilbert space of all sequencesx = {xk} of complex numbers.

(a) For eachn ∈ N, let fn ∈ Hol(G,G) be defined by the formulae

f2n−1(x) = {
3−1(x1 − 2/3),3−2/2x2,3−3/2x3,3−4/2x4, . . .

}
,

f2n(x) = {3−1x1,3−2/2x2,3−3/2x3,3−4/2x4, . . .}.
Thus the mapsf1 andf2 are compact [43, Criterion, pp. 156–157] and we may ass

thatK = f1(G) ∪ f2(G). Of course,K̄ lies strictly insideG and{Fn} cannot converge a
any point ofG. Moreover, for eachn ∈ N, F2n−1(G) ⊂ K, F2n(G) ⊂ K and the sequence
{F2n−1} and{F2n} converges to constant mapsx �→ −4−1 andx �→ −12−1, respectively.
However, the sequence{f1 ◦ f2 ◦ · · · ◦ fn} converges to mapx �→ −4−1 onG.

(b) Letfn ∈ Hol(G,G), n ∈ N, be defined by the formulae

f1(x) = 2−1{x1,2−2/2x2,2−3/2x3,2−4/2x4, . . .},
fn(x) = 2−1{Anx1,2−2/2x2,2−3/2x3,2−4/2x4, . . .},
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whereAn = 1− n−2, n � 2, and limm→∞
∏m

n=2 Am = 2−1. Thenf1 is compact,fn(G) ⊂
K = f1(G), n ∈ N, K̄ lies strictly insideG and{Fn} converges to a constant mapF such
thatF(x) = {0,0,0, . . .}, x ∈ G.

(c) Definefn ∈ Hol(G,G), n ∈ N, by the formulae

fn(x) = {
2−1 + 4−1(x1 + x2

1

)
,2−2n/2x2,2−3n/2x3,2−4n/2x4, . . .

}
.

Thenf1 is compact,fn(G) ⊂ K = f1(G), n ∈ N, K does not lie strictly insideG and
{Fn} converges to a constant mapF such thatF(x) = {1,0,0, . . .}, x ∈ G.

3. Fixed points and boundary behaviour of holomorphic maps
on unbounded domains

The following generalization of C.J. Earle and R.S. Hamilton result [13] is establ
in [47, Section 4 and inequalities (3.19) and (3.20)].

Theorem 3.1. Let G be a nonempty domain(not necessarily bounded) in a complex Ba-
nach spaceE and suppose that a subsetD of G is bounded,ρG-bounded and lies strictly
insideG. Each mapf ∈ Hol(G,E) such thatf (G) ⊂ D has a unique fixed pointw ∈ G

and the sequence{f [n]} converges to the constant mapx �→ w uniformly onG.

In this section we study the existence of fixed points and boundary behaviour of
f ∈ Hol(G,G) whenG is unbounded,f (G) is bounded andf (G) not lies strictly in-
sideG. As a consequence of Theorem 3.1, the proof of Theorem 2.1 in [47] and
from [43] we obtain the following three facts.

Theorem 3.2. Let E be a complex Banach space, letG ⊂ E be a nonempty(not necessarily
bounded) domain, letf ∈ Hol(G,E) and letf (G) be contained in some open bound
convex subsetD of G.

(i) Assume

ht,a(x) = tf (x) + (1− t)a for x ∈ G, (3.1)

wherea ∈ D and t ∈ [0,1) are arbitrary and fixed. Then there exists a unique fi
pointw(t, a) of the mapht,a :G → D.

(ii) Let, additionally,D lie strictly insideG. Then, for eacht ∈ [0;1), the mapw(t, ·) :
D → D is holomorphic in D.

We call the setAppr(f ) = {w(t, a): (t, a) ∈ [0;1) × D} an approximative set forf .

Proof. (i) We may assume without loss of generality that 0∈ D. We have

tD + (1− t)D ⊂ D and tf (G) ⊂ tD. (3.2)

Further,a is an interior point ofD. Consequently, there existsr = r(a) > 0 such that
y ∈ B(0, r) impliesa + y ∈ D. So,

(1− t)a + (1− t)y ∈ (1− t)D for all y ∈ B(0, r). (3.3)
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Thus (3.2) and (3.3) implytf (x) + (1− t)a + (1− t)y ∈ D for all x ∈ G andy ∈ B(0, r),

or, equivalently,tf (x) + (1 − t)a + w ∈ D for all x ∈ G andw ∈ B[0, (1 − t)r]. Thus
the setht,a(G) lies strictly insideD. Consequently, the setht,a(G) is bounded and lie
strictly insideG and, by Theorem 3.1, there exists a unique fixed pointw(t, a) of the map
ht,a :G → D defined by (3.1), which show the first assertion.

(ii) Let t ∈ [0;1) be arbitrary and fixed. Letw(t, a) = ht,a(w(t, a)) for a ∈ D. By
Theorem 3.1, we getw(t, a) = limn→∞(ht,a)

[n](0).

Notewn(t, a) = (ht,a)
[n](0). Obviously,{wn(t, ·)} is locally uniformly bounded onD

and converges uniformly tow(t, ·) onD. Indeed, there exists 0< λ < 1 such that∥∥wn(t, a) − wn+1(t, a)
∥∥ = ∥∥(ht,a)

[n](0) − (ht,a)
[n+1](0)

∥∥
� diam

(
ht,a(G)

) · λn · ρG

(
0, ht,a(0)

)
� diam(D) · λn · MD,

whereMD = sup{ρG(x, y): x, y ∈ D} < +∞ (see [47, Theorem 2.1, formula (3.14) a
inequalities (3.19) and (3.4)]). Hence the sequence of maps{wn(t, ·)} is uniformly Cauchy
onD. Consequently, the mapw(t, ·) is holomorphic inD. �
Theorem 3.3. Let E be a complex Banach space,G ⊂ E an nonempty(not necessarily
bounded) domain andD an open bounded convex subset ofG. Assume thatf ∈ Hol(G,D)

is a compact map having no fixed points inG. Then there existw ∈ ∂G ∩ f (G) and se-
quence{w(tn, an)} ⊂ Appr(f ) such thatlimn→∞ tn = 1 and

lim
n→∞ w(tn, an) = lim

n→∞ f
[
w(tn, an)

] = w. (3.4)

In addition, iff is continuous inw, thenf (w) = w.

Proof. The setf (G) is contained in a compact subset ofE andf having no fixed points
in G. By Theorem 3.2(i), there existsw ∈ D ∪ (∂G ∩ ∂D) and sequence{w(tn, an)} ⊂
Appr(f ) such that limn→∞ tn = 1 and limn→∞ ‖w(tn, an) − w‖ = 0.

If w ∈ G, then

f (w) = lim
n→∞htn,an

(
w(tn, an)

) = lim
n→∞w(tn, an) = w,

which is impossible. Thereforew ∈ ∂G ∩ f (G).
Furthermore, limn→∞ ‖f [w(tn, an) − w‖= 0 since

f
[
w(tn, an)

] = w(tn, an)/tn − (1− tn)an/tn,∥∥f
[
w(tn, an)

] − w
∥∥ �

∥∥[
w(tn, an) − tnw

]
/tn

∥∥ + (1− tn)‖an‖/tn

�
∥∥w(tn, an) − w

∥∥/tn + (1− tn)
(‖w‖ + ‖an‖

)
/tn, n ∈ N,

andD is bounded.
If f is continuous inw, then we may assume thatf (w) = w. �

Theorem 3.4. Let E be a complex Banach space,G an nonempty(not necessarily
bounded) domain inE andD an open bounded convex subset ofG. Let f ∈ Hol(G,D)

and letf :f (G) → E be continuous. If(IE −f )(f (G)) is closed, thenf has a fixed poin
in f (G).
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Proof. Let a ∈ D be arbitrary and fixed. By Theorem 3.1, for eacht ∈ (0,1), the mapht,a

defined by (3.1), has a unique fixed pointw(t, a) ∈ D. But ‖w(t, a) − f (w(t, a))‖ �
|1− t|(‖f (w(t, a))‖ + ‖a‖) and D is bounded. This means that limt→1[w(t, a) −
f (w(t, a))] = 0. Hence we conclude that 0∈ (IE − f )(f (G)). �
Examples 3.1. Let E = C,

G = {
x ∈ E: 0 < |x|, 0 < Arg(x) < π/2

}
,

D = {
y ∈ E: |y − 1| < 1, Im(y) > 0

}
and letf : G → D be of the formf (x) = 1+ (x − 1)/(x + 1). Thusf is a biholomorphic
compact map of unbounded domainG onto bounded convex domainD ⊂ G, continuous
onG ∪ (∂G ∩ ∂D), having no fixed point inG and Fix(f ) = {0,1} ⊂ ∂G ∩ ∂D.

4. Construction of invariant CRF-horospheres, Julia’s lemma and Wolff’s theorem

The different constructions of horospheres and results of type of Julia’s lemma a
Wolff’s theorem in bounded domains were given by several authors [1–4,7,15,17,
30,34,36,42,45,46,49].

For our further study of the boundary behaviour of holomorphic maps and iteratio
holomorphic maps on unbounded domainsG, we need a new tool: the horospheres inG.
In this section we show that the question concerning the existence of horosphereG

determined by CRF-pseudometricsρG has positive answer and as applications of th
we give new results of type of Julia’s lemma and Wolff’s theorem. For details conce
CRF-pseudometrics, see [10,13,23,40,44,47].

First, we obtain

Lemma 4.1. LetG be a nonempty(not necessarily bounded) domain contained in a com
plex Banach spaceE. Let a subsetD of G be bounded and convex, and suppose thaD

lies strictly insideG. Then there existsε > 0 such that

ρG(x, y) � (1/ε)‖x − y‖ for all x, y ∈ D.

Proof. We proceed as in the proof of [47, Theorem 2.1]. Suppose thatH∞(G) is a normed
vector space of bounded mapsg ∈ Hol(G,C) with the norm‖g‖ = sup{|g(x)|: x ∈ G}. For
(x, g) ∈ G × H∞(G), we setϕ(x)(g) = g(x). It is clear thatϕ ∈ Hol(G,H∞(G)∗), and
that

ϕ′(x)(υ)(g) = g′(x) for (x,υ, g) ∈ G × E × H∞(G).

We first chooseε > 0 such that for allu ∈ D, whereB(ε) = {z ∈ E: ‖z‖ � ε}. Now, for
u ∈ D, g ∈ H∞(G) such that‖g‖ � 1, andh ∈ E \ {0}, we haveεh/‖h‖ ∈ B(ε) and, by
the Cauchy integral formula,

∣∣g′(u)
(
h/‖h‖)∣∣ =

∣∣∣∣∣(2πi)−1
∫

g
(
u + µh/‖h‖)µ−2 dµ

∣∣∣∣∣ � (1/ε)‖g‖ � 1/ε.
|µ|=ε
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This shows that|g′(u)(h)| � (1/ε)‖h‖ for (u,h) ∈ D ×E. Finally, if (x, y) ∈ D ×D, then

ρG(x, y) � sup
{∥∥ϕ′[tx + (1− t)y

]
(y − x)

∥∥: t ∈ 〈0,1〉}
� sup

{∣∣g′[tx + (1− t)
]
(y − x)

∣∣: t ∈ 〈0,1〉, g ∈ H∞(G), ‖g‖ � 1
}

� (1/ε)‖x − y‖. �
Next, we shall prove

Theorem 4.1. LetE be a separable complex Banach space, letG ⊂ E be a nonempty(not
necessarily bounded) domain and letD ⊂ G be a bounded domain such that∂G∩∂D 	= ∅.

LetE0 be a dense countable subset ofE and letG0 = G ∩E0. Assume thatw ∈ ∂G ∩ ∂D,
wn ∈ G for n ∈ N and limn→∞ wn = w. Then there exists a subsequence{wnk } of {wn}
such that the limits

lim
k→∞

[
ρG(y,wnk ) − ρG(x,wnk )

]

and

lim
m→∞ lim k→∞

[
ρG(y(m),wnk ) − ρG(x(m),wnk )

]

exist and are equal for each pointsx, y ∈ G and for each sequences{x(m), y(m)} ⊂ G0 ×
G0 such thatlimm→∞ x(m) = x and limm→∞ y(m) = y. The sets

H
(
x, {wnk },w;ρG,R

) =
{
y ∈ G: lim

k→∞
[
ρG(y,wnk ) − ρG(x,wnk )

]
< (1/2) logR

}
,

x ∈ G, R > 0,we call CRF-horospheres inG.

Proof. If x, y, z ∈ G, then|ρG(y, z) − ρG(x, z)| � ρG(x, y). Hence we obtain that

−∞ < −ρG(x, y) � lim
z→w

[
ρG(y, z) − ρG(x, z)

]

� lim
z→w

[
ρG(y, z) − ρG(x, z)

]
� ρG(x, y) < +∞. (4.1)

First we prove that there exists a subsequence{wnk } of {wn} such that the limits
limk→∞[ρG(y,wnk ) − ρG(x,wnk )] exists for each(x, y) ∈ G0 × G0.

Indeed, letG0 × G0 = {x(n), y(n)}. By (4.1), there exists a subsequence{wn,1} of {wn}
such that the limit limn→∞[ρG(y(1),wn,1) − ρG(x(1),wn,1)] exists. By induction, using
analogous consideration, we conclude that there exist a subsequence{wn,k} of {wn,k−1}
such that the limit limn→∞[ρG(y(k),wn,k) − ρG(x(k),wn,k)] exists. Thus, for eachk ∈ N,
there exists a subsequence{wn,k} of {wn} such that, for eachi = 1, . . . , k, the lim-
its limn→∞[ρG(y(i),wn,k) − ρG(x(i),wn,k)] exist. Consequently, the diagonal sequenc
{wn,n} is a required subsequence{wnk } of {wn} such that the limit limk→∞[ρG(y,wnk ) −
ρG(x,wnk )] exists for each(x, y) ∈ G0 × G0.

Let now x, y ∈ G be arbitrary and fixed, let{x(m), y(m)} ⊂ G0 × G0 be an arbitrary
and fixed sequence such that limm→∞ x(m) = x and limm→∞ y(m) = y and let{wnk } be a
sequence defined above. Since, for eachm,k ∈ N,
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ρG(y(m),wnk ) − ρG(x(m),wnk ) − Am − Bm

� ρG(y,wnk ) − ρG(x,wnk )

� ρG(y(m),wnk ) − ρG(x(m),wnk ) + Am + Bm,

thus we have

Qm − Am − Bm � C � C̄ � Qm + Am + Bm, (4.2)

where

Qm = lim
k→∞

[
ρG(y(m),wnk ) − ρG(x(m),wnk )

]
,

Am = ρG(x(m), x),Bm = ρG(y(m), y), m ∈ N,

C = lim
k→∞

[
ρG(y,wnk ) − ρG(x,wnk )

]
,

C̄ = lim
k→∞

[
ρG(y,wnk ) − ρG(x,wnk )

]
.

Let us observe that the conditions limm→∞ x(m) = x and limm→∞ y(m) = y imply that
limm→∞ Am = limm→∞ Bm = 0. Indeed, we first assume that limm→∞ x(m) = x, so that
there existB(x, r) ⊂ G, r > 0, andm0 ∈ N, such thatD = B(x, r/2) lies strictly insideG,
and, for eachm > m0, x(m) ∈ D. Now, we are able to apply Lemma 4.1 to have that th
exists a positive numberε such thatρG(x(m), x) � (1/ε)‖x(m) − x‖ for eachm > m0.
Hence limm→∞ Am = 0. Identically, we show that limm→∞ Bm = 0.

Therefore inequalities (4.2) implies

lim inf
m→∞ Qm � lim sup

m→∞
Qm � C � C̄ � lim inf

m→∞ Qm � lim sup
m→∞

Qm

and, consequently, limm→∞ Qm = C = C̄, as required. �
Our version of Julia’s lemma is

Theorem 4.2. LetE be a separable complex Banach space, letG ⊂ E be a nonempty(not
necessarily bounded) domain, letf ∈ Hol(G,E) and letf (G) be contained in some ope
bounded subsetD of G. Assume that∂G ∩ ∂D 	= ∅, w,υ ∈ ∂G ∩ ∂D, wn ∈ G for n ∈ N,
limn→∞ wn = w, limn→∞ f (wn) = υ and, for somex ∈ G andα > 0,

lim
n→∞

[
ρG(x,wn) − ρG

(
x,f (wn)

)]
� (1/2) logα < +∞.

Then there exists a subsequence{wnk } of {wn} such that, for eachR > 0,

f
[
H

(
x, {wnk },w;ρG,R

)] ⊂ H
(
x,

{
f (wnk )

}
, υ;ρG,αR

)
.

Proof. Indeed, since CRF-pseudometrics are a Schwarz–Pick system [10,23,40], in
of Theorem 4.1, for some subsequence{wnk } of the sequence{wn} and for eachy ∈
H(x, {wnk},w;ρG,R), we have
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Pick
lim
k→∞

[
ρG

(
f (y), f (wnk )

) − ρG

(
x,f (wnk )

)]

� lim
k→∞

[
ρG(y,wnk ) − ρG

(
x,f (wnk )

)]

� lim
k→∞

[
ρG(y,wnk ) − ρG(x,wnk )

] + lim
k→∞

[
ρG(x,wnk ) − ρG

(
x,f (wnk )

)]

� lim
k→∞

[
ρG(y,wnk ) − ρG(x,wnk )

] + (1/2) logα

� (1/2) log(αR).

This concludes the proof.�
Now, as an application of Section 3, Theorem 4.1 and Lemma 4.1, we prove the fo

ing new version of Wolff’s theorem.

Theorem 4.3. Let E be a separable complex Banach space,G ⊂ E a nonempty(not
necessarily bounded) domain andD ⊂ G a open bounded convex set. Assume thatf ∈
Hol(G,D) is a compact map having no fixed points inG. Then there existw ∈ ∂G ∩ ∂D

and sequence{w(tn, an)} ⊂ Appr(f ) such thatlimn→∞ tn = 1,

lim
n→∞ w(tn, an) = lim

n→∞ f
[
w(tn, an)

] = w

and, for eachx ∈ G, R > 0 andk ∈ N,

f [k][H (
x,

{
w(tn, an)

}
,w;ρG,R

)] ⊂ H
(
x,

{
w(tn, an)

}
,w,ρG,R

)
.

Proof. By Theorems 3.3 and 4.1 (up toa subsequence of the sequence{w(tn, an)}
if it is necessary), without loss of generality, we may assume that, for eachx ∈ G

and R > 0, the CRF-horospheresH(x, {w(tn, an)},w;ρG,R) exist. Suppose thaty ∈
H(x, {w(tn, an)},w;ρG,R). Then since the limit limn→∞htn,an(y) = f (y) holds, there
existB(f (y), r)⊂ G, r > 0, andn0 ∈ N, such thatD = B(f (y), r/2) lies strictly insideG,
and, for eachn > n0, htn,an(y) ∈ D. By Lemma 4.1, there existsε > 0 such that

ρG

(
f (y),htn,an(y)

)
� (1/ε)

∥∥f (y) − htn,an(y)
∥∥ for n > n0.

Hence limn→∞ ρG(f (y),htn,an(y)) = 0 and since CRF-pseudometrics are a Schwarz–
system, we conclude that

lim
n→∞

[
ρG

(
f (y),w(tn, an)

) − ρG

(
x,w(tn, an)

)]
� lim

n→∞
[
ρG

(
f (y), (htn,an)(y)

)
+ ρG

(
(htn,an)(y), (htn,an)

(
w(tn, an)

)) − ρG

(
x,w(tn, an)

)]
� lim

n→∞
[
ρG

(
f (y),htn,an(y)

) + ρG

(
y,w(tn, an)

) − ρG

(
x,w(tn, an)

)]
= lim

n→∞
[
ρG

(
y,w(tn, an)

) − ρG

(
x,w(tn, an)

)]
.

Therefore

f
[
H

(
x,

{
w(tn, an)

}
,w;ρG,R

)] ⊂ H
(
x,

{
w(tn, an)

}
,w,ρG,R

)
,
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a,

nces in
and so, by induction, for eachi ∈ N ∪ {0},
f [i+1][H (

x,
{
w(tn, an)

}
,w;ρG,R

)] ⊂ f [i][H (
x,

{
w(tn, an)

}
,w,ρG,R

)]
,

wheref [0] = IE . This implies the assertion.�
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