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1. Introduction

Let Σ denote the class of functions of the following form:

f (z) = 1

z
+

∞∑
k=0

akz
k,

which areanalyticin thepuncturedopen unit disk

D = {
z: z ∈ C and 0< |z| < 1

} = U \ {0}.
A functionf ∈ Σ is said to bemeromorphic strongly starlike of orderα in D if it satisfies
the following condition:∣∣∣∣arg

(
−zf ′(z)

f (z)

)∣∣∣∣ <
π

2
α (0 < α � 1; z ∈ U).

We denote byΣ∗(α) the subclass ofΣ consisting of all meromorphic strongly starlik
functions of orderα in D. Also we note that

Σ∗(1) =: Σ∗

is the well-known class of meromorphic starlike functions inD (see, for details, [6]).
For

n ∈ N0 := N ∪ {0} (
N := {1,2,3, . . .}),

we define themultiplier transformationDn
λ of functionsf ∈ Σ by

Dn
λf (z) = 1

z
+

∞∑
k=0

(
k + 1+ λ

λ

)n

akz
k (λ > 0; z ∈ D).

Obviously, we have

Dm
λ

(
Dn

λf (z)
) = Dm+n

λ f (z) (m,n ∈ N0; λ > 0).

The operatorsDn
λ andDn

1 are the multiplier transformations introduced and studied earli
by Sarangi and Uralegaddi [16] and Uralegaddi and Somanatha ([20] and [21]), re
tively. Analogous toDn

λ , we here define a new multiplier transformationIn
λ,µ as follows.

Put

fn(z) = 1

z
+

∞∑
k=0

(
k + 1+ λ

λ

)n

zk (n ∈ N0; λ > 0)

and let the associated functionf †
n,µ be so defined that the Hadamard product (or conv

tion):

fn(z) ∗ f †
n,µ(z) = 1

z(1− z)µ
(µ > 0; z ∈ D).

Then, analogous toDn
λ , we have

In
λ,µf (z) := f †

n,µ(z) ∗ f (z). (1.1)
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We note that

I0
1,2f (z) = zf ′(z) + 2f (z) and I1

1,2f (z) = f (z).

It is easily verified from the definition (1.1) that

z
(
In+1

λ,µ f (z)
)′ = λIn

λ,µf (z) − (λ + 1)In+1
λ,µ f (z) (1.2)

and

z
(
In

λ,µf (z)
)′ = µIn

λ,µ+1f (z) − (µ + 1)In
λ,µf (z). (1.3)

The definition (1.1) of the multiplier transformationIn
λ,µ is motivated essentially by th

Choi–Saigo–Srivastava operator [3] for analytic functions, which includes a simpler
gral operator studied earlier by Noor [12] and others (cf. [8,9,13]).

LetN be the class of analytic functionsh with h(0) = 1, which are convex and univale
in U and for which

R
{
h(z)

}
> 0 (z ∈ U).

For functionsf andg analytic in

U := D ∪ {0},
we say thatf is subordinateto g, and write

f ≺ g in U or f (z) ≺ g(z) (z ∈ U),

if there exists aSchwarz functionw(z), which (by definition) is analytic inU with

w(0) = 0 and
∣∣w(z)

∣∣ < 1 (z ∈ U),

such that

f (z) = g
(
w(z)

)
(z ∈ U).

It is known that

f (z) ≺ g(z) (z ∈ U) �⇒ f (0) = g(0) and f (U) ⊂ g(U).

Furthermore, if the functiong is univalentin U, then (see, e.g., [11, p. 4])

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Making use of the principle of subordination between analytic functions, we intro
the following new subclasses:

Σl
λ,µ(l;h) and Σl

λ,µ(l;A,B;α)

of the classΣ .
Let the functionsg1, . . . , gl be in the classΣ . Then we say that the functionsg1, . . . , gl

are in the subclassΣl
λ,µ(l;h) if they satisfy the following subordination condition:

− z
(
In

λ,µgk(z)
)′

1 ∑l In gj (z)
≺ h(z) (z ∈ U; k = 1, . . . , l; h ∈N ), (1.4)
l j=1 λ,µ
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where

z

l∑
j=1

In
λ,µgj (z) �= 0 (z ∈ U).

In particular, we set

Σn
λ,µ

(
l; 1+ Az

1+ Bz

)
=: Σn

λ,µ(l;A,B) (−1 < B < A � 1; z ∈ U). (1.5)

We note that

Σ1
1,2

(
1;

(
1+ z

1− z

)α
)

= Σ∗(α) (0 < α � 1; z ∈ U)

and

Σ1
1,2

(
1; 1+ z

1− z

)
= Σ∗ (z ∈ U)

for the familiar subclassesΣ∗(α) (0 < α � 1) andΣ∗ of the classΣ .
Next, we denote byΣn

λ,µ(l;A,B;α) the class of functionsf ∈ Σ satisfying the follow-
ing inequality:

∣∣∣∣arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)∣∣∣∣ <
π

2
α

(
z ∈ U; 0 < α � 1; gj ∈ Σn

λ,µ(l;A,B); j = 1, . . . , l
)
. (1.6)

We note that, for appropriate choices of the parameters involved in (1.6), the
Σn

λ,µ(l;A,B;α) can be reduced to that of meromorphic close-to-convex functions i
duced and studied by Libera and Robertson [7] and Singh [18]. Furthermore, for
interesting developments related to the classes

Σn
λ,µ(l;h) and Σn

λ,µ(l;A,B;α),

the reader can be referred to the works of (for example) Bharati and Rajagopal [2
Padmanabhan and Parvatham [14].

In the present paper, we give some argument properties of meromorphic functio
longing to the classΣ which contain the basic inclusion relationships among the clas

Σn
λ,µ(l;h) and Σn

λ,µ(l;A,B;α).

The integral-preserving properties of the operatorIn
λ,µ defined by (1.1) are also considere

Furthermore, we obtain the previous results of Bajpai [1] and Goel and Sohi [5] as s
cases.
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2. The main inclusion properties and their consequences

The following results will be required in our investigation.

Lemma 1 (Eenigenberg et al. [4]). Leth be convex univalent inU with

h(0) = 1 and R
{
λh(z) + ν

}
> 0 (z ∈ U; λ, ν ∈ C).

If q is analytic inU with q(0) = 1, then the following subordination:

q(z) + zq ′(z)
λq(z) + ν

≺ h(z) (z ∈ U)

implies that

q(z) ≺ h(z) (z ∈ U).

Lemma 2 (Miller and Mocanu [10]). Leth be convex univalent inU andω be analytic in
U with

R
{
ω(z)

}
� 0.

If q is analytic inU and

q(0) = h(0),

then the following subordination:

q(z) + ω(z)zq ′(z) ≺ h(z) (z ∈ U)

implies that

q(z) ≺ h(z) (z ∈ U).

Lemma 3 (Cf., e.g., Takahashi and Nunokawa [19, p. 653]). Letq be analytic inU with

q(0) = 1 and q(z) �= 0 (z ∈ U).

If there exist two pointsz1, z2 ∈ U such that

−π

2
α1 = arg

(
q(z1)

)
< arg

(
q(z)

)
< arg

(
q(z2)

) = π

2
α2 (2.1)

for someα1 andα2 (α1, α2 > 0) and for all z (|z| < |z1| = |z2|), then

z1q
′(z1)

q(z1)
= −i

(
α1 + α2

2

)
m and

z2q
′(z2)

q(z2)
= i

(
α1 + α2

2

)
m, (2.2)

where

m � 1− |b|
1+ |b| and b = i tan

π

4

(
α2 − α1

α1 + α2

)
. (2.3)

First of all, with the help of Lemmas 1 and 2, we obtain the following inclusion r
tionships.
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Proposition 1. Leth ∈N with

max
z∈U

(
R

{
h(z)

})
< min(λ + 1,µ + 1) (λ,µ > 0).

Then the following inclusion relationships hold true:

Σn
λ,µ+1(l;h) ⊂ Σn

λ,µ(l;h) ⊂ Σn+1
λ,µ (l;h).

Proof. We begin by showing that

Σn
λ,µ+1(l;h) ⊂ Σn

λ,µ(l;h).

Let

gj ∈ Σn
λ,µ(l;h) (j = 1, . . . , l)

and set

pk(z) = − z
(
In

λ,µgk(z)
)′

1
l

∑l
j=1In

λ,µgj (z)
(k = 1, . . . , l),

wherepk (k = 1, . . . , l) is analytic inU with

pk(0) = 1 (k = 1, . . . , l).

By using the identity (1.3), we get

1

l

l∑
j=1

(
In

λ,µgj (z)
)
pk(z) − (µ + 1)In

λ,µgk(z) = −µIn
λ,µ+1gk(z)

(k = 1, . . . , l). (2.4)

Upon differentiating both sides of (2.4) with respect toz, and then simplifying, we have

pk(z) + zp′
k(z)

−1
l

∑l
j=1 pj (z) + µ + 1

= − z
(
In

λ,µ+1gk(z)
)′

1
l

∑l
j=1In

λ,µ+1gj (z)
≺ h(z)

(z ∈ U; k = 1, . . . , l), (2.5)

since

gk ∈ Σn
λ,µ+1(l;h) (k = 1, . . . , l).

Sinceh is convex inU, for anyz0 ∈ U, there exists a pointζ0 ∈ U such that

q(z0) + z0q
′(z0)

−q(z0) + µ + 1
= h(ζ0),

where

q(z) = 1

l

l∑
j=1

pj (z).

Thus we find from Lemma 1 thatq ≺ h in U. Applying Lemma 2 with
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at
ω(z) = 1

−q(z) + µ + 1

to (2.5) again, it follows that

pk ≺ h in U for all k (k = 1, . . . , l),

which implies that

gk ∈ Σn
λ,µ(l;h) (k = 1, . . . , l)

whenever

max
z∈U

(
R

{
h(z)

})
< µ + 1 (µ > 0).

Next, we prove that

z

l∑
j=1

In
λ,µgj (z) �= 0 (z ∈ U).

Since

gk ∈ Σn
λ,µ+1(l;h) (k = 1, . . . , l)

andh is convex inU, there exists a pointζ0 ∈ U such that, for anyz0 ∈ U,

r(z0) := −z0
(∑l

j=1In
λ,µ+1gj (z0)

)′
∑l

j=1In
λ,µ+1gj (z0)

= h(ζ0),

and hencer ≺ h in U. We note also that

l∑
j=1

In
λ,µgj (z) = µ

zµ+1

z∫
0

tµ
l∑

j=1

In
λ,µ+1gj (t) dt.

Thus, by applying a known result [5, Theorem 1] (see also [15]), we conclude that

z

l∑
j=1

In
λ,µgj (z) �= 0 (z ∈ U).

To prove the second inclusion relationship asserted by Proposition 1, let

gk ∈ Σn
λ,µ(l;h) (k = 1, . . . , l)

and put

sk(z) = − z
(
In+1

λ,µ gk(z)
)′

1
l

∑l
j=1I

n+1
λ,µ gj (z)

(k = 1, . . . , l),

wheresk (k = 1, . . . , l) is analytic inU with

sk(0) = 1 (k = 1, . . . , l).

Then, by using the arguments similar to those detailed above with (1.2), it follows th

sk ≺ h in U for all k (k = 1, . . . , l),
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d

that is,

gk ∈ Σn+1
λ,µ (l;h) (k = 1, . . . , l)

whenever

max
z∈U

(
R

{
h(z)

})
< λ + 1 (λ > 0).

Thus we have completed the proof of Proposition 1.�
If we take

h(z) = 1+ Az

1+ Bz
(−1 < B < A � 1)

in Proposition 1, we obtain the following result involving the function class define
by (1.5).

Corollary 1. Let

1+ A

1+ B
< min(λ + 1,µ + 1) (λ,µ > 0; −1< B < A � 1).

Then

Σn
λ,µ+1(l;A,B) ⊂ Σn

λ,µ(l;A,B) ⊂ Σn+1
λ,µ (l;A,B).

Proposition 2. Leth ∈N with

max
z∈U

(
R

{
h(z)

})
< c + 1 (c > 0).

Then

gk ∈ Σn
λ,µ(l;h) (k = 1, . . . , l) �⇒ Fc(gk) ∈ Σn

λ,µ(l;h),

whereFc is the integral operator defined by

Fc(gk) = Fc(gk)(z) := c

zc+1

z∫
0

tcgk(t) dt (k = 1, . . . , l; c > 0). (2.6)

Proof. Suppose that

gk ∈ Σn
λ,µ(l;h) (k = 1, . . . , l)

and set

pk(z) = − z
(
In

λ,µFc(gk)(z)
)′

1
l

∑l
j=1In

λ,µFc(gj )(z)
(k = 1, . . . , l). (2.7)

From (2.6), we have

z
(
In

λ,µFc(gk)(z)
)′ = c In

λ,µgk(z) − (c + 1)In
λ,µFc(gk)(z), (2.8)
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iven
wherepk (k = 1, . . . , l) is analytic inU with

pk(0) = 1 (k = 1, . . . , l).

Then, by applying (2.8) to (2.7), we get

1

l

l∑
j=1

(
In

λ,µFc(gj )(z)
)
pk(z) − (c + 1)In

λ,µFc(gk)(z) = −cIn
λ,µgk(z)

(k = 1, . . . , l). (2.9)

By differentiating both sides of (2.9) with respect toz, and then simplifying, we obtain

pk(z) + zp′
k(z)

−1
l

∑l
j=1 pj (z) + c + 1

= − z
(
In

λ,µgk(z)
)′

−1
l

∑l
j=1In

λ,µgj (z)
(k = 1, . . . , l).

We note also that

l∑
j=1

In
λ,µFc(gj )(z) = c

zc+1

z∫
0

tc

(
l∑

j=1

In
λ,µgj (t)

)
dt.

Therefore, by the same arguments as in the proof of Proposition 1, we conclude that Prop
sition 2 holds true as stated above.�

From Proposition 2, we immediately have the following consequence.

Corollary 2. Let

1+ A < (c + 1)(1+ B) (c > 0; −1< B < A � 1).

Then, for the function classΣn
λ,µ(l;A,B) defined by(1.5),

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l)

�⇒ Fc(gk) ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l),

whereFc is the integral operator defined by(2.6).

Remark 1. By setting

n = λ = l = 1, µ = 2, and B �→ A

in Corollary 2, we arrive at a result of Goel and Sohi [5], which includes the result g
earlier by Bajpai [1] as afurther special case.

3. Argument properties and their consequences

Theorem 1. Let 0< δ1, δ2 � 1 and

1+ A < (µ + 1)(1+ B) (µ > 0; −1< B < A � 1).
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If a functionf ∈ Σ satisfies the following two-sided inequality:

−π

2
δ1 < arg

(
− z

(
In

λ,µ+1f (z)
)′

1
l

∑l
j=1In

λ,µ+1gj (z)

)
<

π

2
δ2,

where

gk ∈ Σn
λ,µ+1(l;A,B) (k = 1, . . . , l),

then

−π

2
α1 < arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)
<

π

2
α2,

where

α1 and α2 (0 < α1, α2 � 1)

are the solutions of the following equations:

δ1 = α1 + 2

π
tan−1

(
(α1 + α2)(1− |b|)cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)
(3.1)

and

δ2 = α2 + 2

π
tan−1

(
(α1 + α2)(1− |b|)cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)
(3.2)

whenb is given by(2.3)and

t1 = 2

π
sin−1

(
A − B

(µ + 1)(1− B2) − (1− AB)

)
. (3.3)

Proof. Let

p(z) = − z
(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)
and q(z) = 1

l

l∑
j=1

qj (z),

where

qk(z) = − z
(
In

λ,µgk(z)
)′

1
l

∑l
j=1In

λ,µgj (z)
(k = 1, . . . , l).

Making use of (1.3), we readily have

1

l

l∑
j=1

(
In

λ,µgj (z)
)
p(z) − (µ + 1)In

λ,µf (z) = −µIn
λ,µ+1f (z). (3.4)

By differentiating both sides of (3.4) with respect toz, and then simplifying, we obtain

− z
(
In

λ,µ+1f (z)
)′

1 ∑l In gj (z)
= p(z) + zp′(z)

−q(z) + µ + 1
.

l j=1 λ,µ+1
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s

(by
Since

gk ∈ Σn
λ,µ+1(l;A,B) (k = 1, . . . , l),

by Corollary 1, we see that

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l).

Therefore, we get

q(z) ≺ 1+ Az

1+ Bz
(z ∈ U; −1 < B < A � 1).

Hence we observe from [17] that∣∣∣∣q(z) − 1− AB

1− B2

∣∣∣∣ <
A − B

1− B2 (z ∈ U; −1< B < A � 1). (3.5)

Thus, by using (3.5), we have

−q(z) + µ + 1 = ρei
πφ
2 ,

where

µ + 1− 1+ A

1+ B
< ρ < µ + 1+ A − 1

1− B
and − t1 < φ < t1,

t1 being given by (3.3).
We note thatp is analytic inU with p(0) = 1. Letw = h(z) be the function which map

U onto the angular domain{
w: −π

2
δ1 < arg(w) <

π

2
δ2

}
with h(0) = 1.

Applying Lemma 2 for this functionh with

ω(z) = 1

−q(z) + µ + 1
,

we see that

R
{
p(z)

}
> 0 (z ∈ U),

and hence

p(z) �= 0 (z ∈ U).

If there exist two pointsz1, z2 ∈ U such that the condition (2.1) is satisfied, then
Lemma 3) we obtain (2.2) under the restriction (2.3). Hence we have

arg

(
p(z1) + z1p

′(z1)

−q(z1) + µ + 1

)

= −π

2
α1 + arg

(
1− i

α1 + α2

2
m

(
ρei

πφ
2

)−1
)

� −π

2
α1 − tan−1

(
(α1 + α2)msin(π

2 (1− φ))

2ρ + (α + α )mcos(π (1− φ))

)

1 2 2
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),
of of

may
� −π

2
α1 − tan−1

(
(α1 + α2)(1− |b|)cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)

= −π

2
δ1

and

arg

(
p(z2) + z2p

′(z2)

−q(z2) + µ + 1

)

� π

2
α2 + tan−1

(
(α1 + α2)(1− |b|)cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)

= π

2
δ2,

where we have used the inequality (2.3),δ1, δ2, andt1 being given by (3.1), (3.2), and (3.3
respectively. These obviously contradict the assumption of Theorem 1. The pro
Theorem 1 is thus completed.�

If we let δ1 = δ2 in Theorem 1, we easily obtain the following consequence.

Corollary 3. Let 0 < δ � 1 and

1+ A < (µ + 1)(1+ B) (µ > 0; −1< B < A � 1).

If a functionf ∈ Σ satisfies the following inequality:∣∣∣∣arg

(
− z

(
In

λ,µ+1f (z)
)′

1
l

∑l
j=1In

λ,µ+1gj (z)

)∣∣∣∣ <
π

2
δ,

where

gk ∈ Σn
λ,µ+1(l;A,B) (k = 1, . . . , l),

then ∣∣∣∣arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)∣∣∣∣ <
π

2
α,

whereα (0 < α � 1) is the solution of the following equation:

δ = α + 2

π
tan−1

(
α cos(π

2 t1)

A−1
1−B

+ µ + 1+ α sin(π
2 t1)

)
(3.6)

whent1 is given by(3.3).

The proof of Theorem 2 below is similar to that of Theorem 1, and so the details
be omitted.

Theorem 2. Let 0< δ1, δ2 � 1 and

1+ A < (λ + 1)(1+ B) (λ > 0; −1< B < A � 1).
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wing
If a functionf ∈ Σ satisfies the following two-sided inequality:

−π

2
δ1 < arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)
<

π

2
δ2,

where

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l),

then

−π

2
α1 < arg

(
− z

(
In+1

λ,µ f (z)
)′

1
l

∑l
j=1I

n+1
λ,µ gj (z)

)
<

π

2
α2,

where

α1 and α2 (0 < α1, α2 � 1)

are the solutions of Eqs.(3.1)and (3.2)with µ = λ.

From Theorem 1 (or Corollary 3) and Theorem 2, we immediately obtain the follo
inclusion relationships.

Corollary 4. Let

1+ A

1+ B
< min(λ + 1,µ + 1) (λ,µ > 0; −1< B < A � 1).

Then the following inclusion relationships hold true:

Σn
λ,µ+1(l;A,B;α) ⊂ Σn

λ,µ(l;A,B;α) ⊂ Σn+1
λ,µ (l;A,B;α).

Next, we prove the following argument property.

Theorem 3. Let 0< δ1, δ2 � 1 and

1+ A < (c + 1)(1+ B) (c > 0; −1< B < A � 1).

If a functionf ∈ Σ satisfies the following two-sided inequality:

−π

2
δ1 < arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)
<

π

2
δ2,

where

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l),

then

−π

2
α1 < arg

(
− z

(
In

λ,µFc(f )(z)
)′

1
l

∑l
j=1In

λ,µFc(gj )(z)

)
<

π

2
α2,

whereFc is the integral operator defined by(2.6), and

α1 and α2 (0 < α1, α2 � 1)

are the solutions of Eqs.(3.1)and (3.2)with µ = c.
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m 1,
Proof. Let

p(z) = − z
(
In

λ,µFc(f )(z)
)′
(z)

1
l

∑l
j=1In

λ,µFc(gj )(z)
and q(z) = 1

n

n∑
k=1

qk(z),

where

qk(z) = − z
(
In

λ,µFc(gk)
)′
(z)

1
l

∑l
j=1In

λ,µFc(gj )(z)
(k = 1, . . . , l).

Using the identity (2.8), we obtain

1

l

l∑
j=1

(
In

λ,µFc(gj )(z)
)
p(z) − (c + 1)In

λ,µFc(f )(z) = −cIn
λ,µf (z). (3.7)

By differentiating both sides of (3.7) with respect toz, and then simplifying, we get

− z
(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)
= p(z) + zp′(z)

−q(z) + c + 1
.

Since

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l),

by Proposition 2, we know that

Fc(gk) ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l).

Hence we find that

q(z) ≺ 1+ Az

1+ Bz
(z ∈ U; −1 < B < A � 1).

The remaining part of the proof of Theorem 3 is similar to that in the proof of Theore
and so we omit the details involved.�

For the special case whenδ1 = δ2, Theorem 3 reduces to the following form.

Corollary 5. Let 0 < δ � 1 and

1+ A < (c + 1)(1+ B) (c > 0; −1< B < A � 1).

If a functionf ∈ Σ satisfies the following inequality:∣∣∣∣arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)∣∣∣∣ <
π

2
δ,

where

gk ∈ Σn
λ,µ(l;A,B) (k = 1, . . . , l),

then ∣∣∣∣arg

(
− z

(
In

λ,µFc(f )(z)
)′

1 ∑l In Fc(gj )(z)

)∣∣∣∣ <
π

2
α,
l j=1 λ,µ
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If we

m 1.
whereFc is the integral operator defined by(2.6), andα (0 < α � 1) is the solution of
Eq. (3.6)with µ = c.

Remark 2. Corollary 6 below is an obvious consequence of Corollary 5.

Corollary 6. Let

1+ A < (c + 1)(1+ B) (c > 0; −1< B < A � 1).

Then

f ∈ Σn
λ,µ(l;A,B;α) �⇒ Fc(f ) ∈ Σn

λ,µ(l;A,B;α),

whereFc is the integral operator defined by(2.6).

Remark 3. From Theorem 3 or Corollary 6, we observe that every functionf in
Σn

λ,µ(l;A,B;α) preserves the angles under the integral operator defined by (2.6).
put

n = λ = l = α = 1, µ = 2, and B �→ A

in Corollary 6, we obtain the result given earlier by Goel and Sohi [5].

Finally, we state Theorem 4 below, the proof of which is much akin to that of Theore

Theorem 4. Let 0< δ1, δ2 � 1, γ � 0 and

1+ A < (µ + 1)(1+ B) (µ > 0; −1< B < A � 1).

If a functionf ∈ Σ satisfies the following two-sided inequality:

−π

2
δ1 < arg

(
−

[
γ

z
(
In

λ,µ+1f (z)
)′

1
l

∑l
j=1In

λ,µ+1gj (z)
+ (1− γ )

z
(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

])
<

π

2
δ2,

where

gk ∈ Σn
λ,µ+1(l;A,B) (k = 1, . . . , l),

then

−π

2
α1 < arg

(
− z

(
In

λ,µf (z)
)′

1
l

∑l
j=1In

λ,µgj (z)

)
<

π

2
α2,

whereα1 andα2 (0< α1, α2 � 1) are the solutions of the following equations:

δ1 = α1 + 2

π
tan−1

(
(α1 + α2)(1− |b|)γ cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)
(3.8)

and

δ2 = α2 + 2

π
tan−1

(
(α1 + α2)(1− |b|)γ cos(π

2 t1)

2
(

A−1
1−B

+ µ + 1
)
(1+ |b|) + (α1 + α2)(1− |b|)sin(π

2 t1)

)
(3.9)

whenb andt1 are given by(2.3)and(2.12), respectively.
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