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Abstract

Consider the initial-boundary value problem for a Temple system of balance laws. Aim of this
paper is to prove the well posedness of this problem for large times and without requiring the total
variation of the initial data be small.
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1. Introduction

This paper is devoted to the well posedness of the following initial-boundary value
problem for a nonlinear system of balance laws:

oru+ 0y f(u) =g, x,u), (t,x)es2,
u(to, x) = u(x), x =¥ (1), (1.1)
u(t, () =u(), t > fo,

whererg € R, 2 = {(#,x) € RZ t > tg andx > ¥ (r)} andu denotes the unknown vector
function. The present result extends and unifies those obtained in [12,13].
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We consider the conservation law with boundary

oru+ 0, f(u)=0, (t,x)€ 82,
u(to, x) = u(x), x = ¥(tg), 1.2)
ut, () =u(), t=ro,

and the source part

oru=g(t,x,u), (t,x) e $2,
u(to, x) =u(x), x = W(t), (1.3)
u(t,¥@) =u(), t=to,

separately. Indeed, the well posedness of (1.1) is proved below under those assumptions
on f, respectively ory, that make (1.2), respectively (1.3), well posed. Besides, we require

a sort of compatibility between the conservation law (1.2) and the ordinary differential
equation (1.3). Namely we ask that there exists a domain which is invariant for both (1.2)
and (1.3).

This assumption replaces other compatibility conditions (dissipativity, diagonal domi-
nance) found in the literature, see [16, §13.8] for a survey of related results. On the other
hand, in the present setting, the total variation and.tffenorm of the solution may well
grow exponentially with time, see (6) in Theorem 2.3. Aiming at the well posedness on
the whole time intervalz, +oo[ we necessarily require on (1.2) hypotheses that ensure
the well posedness for large data. Therefore, in view of [5,6,12], we assume that (1.2) is a
Temple system.

A further motivation for the present result is given by several traffic flow models,
see [3,4,9,10]. Indeed, macroscopic continuum models are often stated through conser-
vation laws. The role of source terms is then justified by the presence of entries/exits or by
inhomogenetities in the road, see [4].

We follow here the definition of solution to the boundary value problem (1.2) proposed
in [17]. This approach is completely independent from the choice of any viscosity operator
and is questionable in the case of gas dynamics, where the role of the boundary layer can
hardly be neglected. On the contrary, in traffic models the boundary is usually the first
entry to a highway and no boundary layer seem to play any role.

2. Preliminariesand main result
We introduce the following assumptions on the convective part (1.2):

(F) LetU be the closure of an open subsetl®sf, f:U — R" be smooth and such that
d;u + 9y f (u) =0 is a Temple system, i.e.
(F1) The systemis strictly hyperbolic i, i.e. the JacobiaBf hasn real eigenvalues
AL, ..., g and supgy A () < infyeq dip1(u), foralli=1,...,n — 1.
(F2) Fori =1,...,n,thei-shock curve and thierarefaction curve coincide.
(F3) InU, there exists a system of Riemann coordindtes ..., w, }, such thatd%‘i is
parallel tor;, r; being the right eigenvector corresponding.tofori =1, ..., n.
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Recall the definition of solution to the convective problem (1.2), see [1,17]. Below, we let
u(xx) =limg_, .+ u(§) for any functionu € BV (R, R").

Definition 2.1. Let u:£2 — U be such that for a.e. € [1g, +o0o[, x = u(t, x) is in
BV ([¥ (), +oo[, R"). u solves the convective problem (1.2) if

(1) itis a weak entropic solution to (1.2) i2,

(2) it coincides withi at timer = 1,

(3) it satisfies the boundary condition: for a®e> tg, u(r, ¥ (r)+) = w(t, x) for all
(t,x) € £ such that

x—Y(t)>D_Y(r) (t —1),
t>T,

wherew is the self-similar Lax solution to the Riemann problem
w40y f(w)=0, r>r1, xeR,

i if x <W(7),
w(t, x) = {u(r, U(t)+) if x> ().

D_w (1) = liminf,_,o- ZH=2D is the lower left Dini derivative. At (1), for the de-
finition of weak entropic solution see [7,11] or Definition 2.4 below.
On (1.3) we assume (here,| denotes the norm (2.2) R"*):

(G) The source terrg: [tg, +o0o[ x R x U — R" is such that
(G1) Fora.et € [tg, +oo[ and allx e R, g(¢, x,0) =0.
(Gp) Forall(x,u) e R x U the mapr — g(¢, x, u) is measurable.
(G3) For a.e.r € [tg, +oo[ and allu € U, the mapx — g(¢, x,u) is uniformly
BV (R, R"), i.e. there exists a finite positive measuresuch that for a.et
[to, +oo[, for all x1, x2 € R with x1 < x2 and for allu e U,

|g(t, xo+, u) — g(t, x1—, w)| < pu([x1, x2]).

(G4) Fora.er € [tg, +oo[ andx € R, the maps +— g(¢, x, u) is locally Lipschitz and
sublinear irt4, i.e. for every compact subsgt of I/, there exists a functioky €
ioc(lt0, +oo[, R) such that for a.e. € [to, +-oo[, all x € R and alluy, uz € K,
|g(t, x,uz) — g(t, x,un)| < Ik (1) - luz — g
and there exists a functidre L&)C([to, +o0[, R) such that for a.e. € [#g, +00],
allxeRandallu e,

g, x, w)| 1) - |ul.
Assumption (G) ensures thakt ! is invariant with respect to (1.3); in [4] this assumption
is relaxed. Giveriz, x) € £2 we define
a(t,x) = inf{s > fo: (OS +A- Q)t,x) e 2, Vo €0, 1]}. (2.2)

Introduce the following definition of solution to (1.3).



686 R.M. Colombo, M.D. Rosini / J. Math. Anal. Appl. 311 (2005) 683—-702

Definition 2.2. By solution to (1.3) we mean a map §2 — U such that for al(z, x) € £2
the map — u(z, x) is an absolutely continuous Carathéodory solution [18, §1] of

[ ou=g(t,x,u), tela(r,x),rl,

_Juaa(r,x)) if a(r,x) > 1,
u(e(z, x), x) = {ﬁ(x) if (7, x) = to.

Here, the role of the boundary condition is analogous to that in Definition 2.1. Indeed,
as itis usual, we consider the source as generating waves with 0 speed. Therefore, the trace
u(t, ¥ (t)+) of the solution on the boundary ¢ may differ from the boundary dat&r)
only at those point§t, ¥ (¢)) where the boundary has positive speed. In the following, we
let

[v] =maX=1,. . |vil forveR",

lull = |w(w)] foruei,

TV(u) =Y}_, total variation ofw; (u(-)) foru:R U. (2.2)
On any compact subset of, | - || (and, respectively TV-)) is equivalent to the usual

Euclidean norm (respectively total variation) because ¢Y.(F
It is useful to consider the s&; of triples (i, i, ¥), wheret > rg and

it € LY([w (1), +oo[ . U) NBV([¥ (1), +oo[,U),
ii € LY([r, +ool,U) NBV([r, +ool, U),
¥ e CO([t, +ool, R).
For M > 0, introduce for later use the set
Dy = {(, i, W) € Dy: TV@) + |a(¥ @) —i@)| + TV @) < M}.

As in [12], we further require a sort @bmpatibilitybetween the convective part (1.2) and
the source term (1.3).

(U) (U1) The set/ is invariant with respect to (1.2).
(U2) The set/ is invariant with respect to (1.3).

In (U1), invariance means that any data i, &) with values inl{ leads to a solutiomn

to (1.2) valued inA{. Equivalently, if i ([¥ (tp), +oo[) € U and i([zg, +00[) C U, then

u(£2) C U. Recall that a closed séf is invariant with respect to (1.2) if and only if any
Riemann problem with data i yields a solution attaining valuesdn. For a treatment of
invariant domains for conservation laws, we refer to [19], where a necessary and sufficient
condition for the invariance df is proved. Due to this condition, in the present casg) (U
could be replaced by the assumption that the boundaty bé the juxtaposition of Lax
curves.

Similarly, in (Up), invariance means that any ddfa i, ¥) valued inl{ yields a solu-
tionu to (1.3) with values ird/. Therefore, () could be replaced by the classical Nagumo
condition, see [20], stating thatneeds to point towards all along the boundar§i/ of 4.

Remark that, in both caség,needs neither be convex nor compact initfemordinates.
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Below we show that (1.1) generates a procEss
F:{(p.t1.12): peDy, 2=20>10} > | J D,

t>1o

((127 ﬁa l[/)7 11, t2) = (u(t2), szlll:h 7;2711'1/)5

u being a solution to (1.1) with daté:, u, &) at timer;, and7Z; being the translation
operator, i.e(Z;i)(s) = u(t + s) and (Z;¥)(s) = ¥ (¢t + s). Moreover, ifp € Dy, then
F(pa tl’ IZ) € th'

We are now ready to state the main result of this paper.

Theorem 2.3. Let (1.1) satisfy assumption@), (G) and (U). Then, there exists a unique
evolution operatorF with the properties

(1) Forall ¢ € [tg, +oo[ and (i, it, ¥) € Dy, the functionu : 2 — U defined by(u(t, -),
Ti—ioit, T—1, W) = F((it, i, ¥), 1o, 1) is @ weak entropic solution t.1).

(2) Forall 11,10, t3 With 1z > 10 > 11 > 19, F(F(p, 11, 12), 12, 13) = F(p,11,13) for all p €
D,,, while forallt > 1, F(p,t,r) =pforall peD,.

(3) If u and iz are piecewise constant andyf is piecewise linear and continuous, then
for small times the corresponding solutiancoincides with the function obtained by
piecing together the solutions to the Riemann problems on the points of juimgnaf
at (zo, ¥ (t0)).

Moreover, for everyf’, M > 0, there exist constants, C such that

(5) Fix two triples (i, &, ¥) and (i’, &', ') in Dy, pr and callu, u’ the solutions tq1.1)
yielded byF.
(@) If z =’ then, for anyr € [z, T,

u(e) — u/(t)|||_1 <L-(la =+ 11¥ = ¥'llco).
(b) If v, ¥’ are Lipschitz with constant8, £’ andz, ¢’ € [to, T, then
[u(e) —u' (") ||L1 <L-(la—a'll i+ 11¥ —¥'llco)
+L-A+L+LY(la—a |+t —1]).
(6) Forany data(i, i, ¥) € Dy, m, the solution yielded by satisfies

Ju )] o < o' DI (il + ),
TV (u()) < eCO(TV @) + |i (¥ (t0)) — (o) | + TV (@))
+ €S0 (R ( — o).
(7) If U is compact, thei® does not depend of.

We recall the definition of weak solution to (1.1) and to the corresponding Riemann
problem.
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Definition 2.4. u : £2 + U is a solution of the problem (1.1) if

(1) for any functiony € C°(£2 U ]—o0, 1g[ x R),
+00 +00

/ / [at(p(t, x)u(t, x) + oy e(t, x)f(u(t, x))] dxdt
0 W)
+00 +00 +00
+ / / (p(t,x)g(t,x, u(t,x)) dxdt + / o(to, x)u(x)dx =0,
o ¥() ¥ (10)
(2) fora.e.r € [tg, +o0l[, the Riemann problem
u—+0, f(u)y=0, r>1, xeR,
{ u(T, x) = {Zg,)wmqu) :; i i 58
admits a solution with waves all slower than the boundary,dh the sense of (iii)
in Definition 2.1.

Given an entropy—entropy flux pain, ¢) (see [7,12,16]), the weak solutienis entropic
if for any ¢ € C2°(£2 U ]—o0, o[ x R), with ¢ > 0,

“+00 +00

/ /[8t<p(t,x)n(u(t,x))+8x(p(t,x)q(u(t,x))]dxdt
o ¥(t)
+00 +00
~|—f /(p(t,x)Dn(u(t,x))g(t,x,u(t,x))dxdt
o W(t)
+00
+ / n(¢(t0, x))uo(x)dx > 0.
¥ (10)

Definition 2.5. Fix m in R and let2 = {(r,x) e R% + >0, x > mr}. Leti,a in U be
fixed. The solution to the Riemann problem with boundary
du—+dfu)=0, (t,x)€ 8,
{u(O,x):ﬁ, x>0, (2.3)
u(t,mt) =1u, t >0,
is the restriction ta2 of the Lax solution to the standard Riemann problem
{8,u+8xf(u)=0, (t,x) € [0, +00[ x R,

if x <O, (2.4)
u ifx>0.

u(0,x) = {ﬁ

Remark that if the boundary is not a straight line, then the restrictiehdbthe solution
to (2.4) not necessarily solves (2.3) in the sense of Definition 2.1.
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3. Technical proofs

In this sectiong is sufficiently small and fixed, all estimates being unifornzirC de-
notes an upper bound for the Lipschitz constants of all the boundarigge limite — 0
and the case of a continuous boundary will be considered only in the final part of the
section. Below, we writ® instead ofD, for notational simplicity.

3.1. The convective part

We letzg = 0 throughout this paragraph.

Following [12], we introduce an-grid in w(l{). More precisely, by (U) we know that
w(U) is the Cartesian product of closed possibly unbounded intervals) = [];_; Z;.
For alli, introduce in eacli; a finite setZ? with the properties

() Jwi—e,w;i+e[NI;#0 foranyw; € I;;

(i) there exists a positiv& such that min lw] —w| > 8%
w,w) €L, wiFw!
—1/e if inf Z; = —o0,
(i) minZ; = {infZ; if inf Z; € Z;,
infZ; +¢ ifinfZ; ¢ 7;,
1/e if supZ; = oo,
maxZ; = { supZ; if supZ; € 7;,

supzZ; —e if supZ; ¢ Z;.
Finally, we call the se¢® = [];_, Z{ ane-grid in w(l).
Fix ane-grid G¢. As in [6,12], we consider Riemann problems
Opu + 9y f(u) =0,

(0, x) = {ul if x <O, (3.1)

u" if x>0,

with dataw! = w(u!) andw” = w(u") in G¢. Introduce the stateg’, . .., u” through their
Riemann coordinates?, ..., w" as follows:

uWO=u woz(wll, wlz,...,wﬁl_l, wfl), i.e.wl=w),
1 . 1__ r [ ) )
u Dowr = (wl, wz,...,wn_l,wn),
.—1 . -1 __ 1
u” owt = (wi,wg,...,w;_l,wn),
u"=u" . w" =(wi, T T wf,), ie.w=w"). (3.2)

Note thatw' € G* fori =0, ..., n.
The exact weak entropic solution to (3.1) is the juxtaposition ofiteelutions to the:
scalar Riemann problems

dsi + 0y fi(u' L 5) =0,

0 ifx<DO,
o; ifx>0,

S,’(O,x) = {
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where f; (u' =Y s) = [5 A (Li (u' =2, 5)) ds ando; satisfies
Li (ui_l, o)=u' fori=1,...,n, (3.3)

where we denoted by — L; (ug, o) theith generalized Lax curve exiting,, parameter-
ized through the signed arc length

We now aim at the definition of a piecewise constant weak solution to (3.1), whose
entropy defect i€ (¢). Lets — ff(u"‘l; s) be the piecewise linear function that coincides
with s — f;(u'~1;5) onGe.

A weak, possibly nonentropic, solution to (3.1) is obtained gluingitbeeak entropic)
exact solutions to the (approximate) Riemann problems

dsi + 0 fE W' "L 5) =0,

0 ifx<0O, (3.4)
o; if x>0,

s; (0, x) ={

whereo; is defined in (3.3). Let

(u,i,¥) e PC x PC x PLC,
w@)(R) € G°, w)(R) € G°,
TV(@,u,¥)< M,

|¥| =maxi + 1, £}

Above, PC is the set of piecewise constant functid@s+oo[ — R”" with finitely many
jumps.A is an upper bound for all characteristic speeds on a compact set to be precisely
chosen below, see the proof of Lemma 3.10. Note thasPC N L1([0, +o00[) thenu has
compact supporPL C is the set of piecewise linear and continuous functi@s-oo[ —

R with finitely many corners on any compact interval.

To construct an approximate solution to (1.2), the standard wave front tracking proce-
dure [6,12,13], see also [1,2,5,7,8,11,14,15], can now be started. First sfigrichG® and
approximate the given tripléz, iz, ¥) in (1.1) through a tripl€u®, if, ¥*) in Dy (G°).

At time r = 0, at every poink > ¥¢(0) wherei® has a jump, we approximately solve
the Riemann problem (3.1) with = i (x—) andu” = it¢ (x+) by means of the exact solu-
tions to then Riemann problems (3.4). Similarly, &, ¥¢(0)) we approximately solve the
Riemann problem with boundary restricting @’ = {(¢, x) € R% ¢ > 0 andx > ¥*(r)}
the juxtaposition of the solutions to (3.4) wiith = i°(0+) andu” = ¢ (¥*(0)+).

Patching together these solutions, we obtain a piecewise constant approximate solution
of (1.2) on$2¢ up to the first timeq at which one of the following interactions takes place:

Dy(G°) =@, i, ¥)eD: (3.5)

() two or more waves collide in the interior ¢?¢;
(I) one or more waves hits the boundary;
() the value of the boundary condition changes
(11.1) where the slope of the boundary is positive,
(I11.2) where the slope of the boundary is negative;
(IV) the slope of the boundary changes.

In case (1), the approximate solution is extended beyphgt solving again the correspond-
ing Riemann problem. In cases (Il), (lll) and (IV) the extension beyanid achieved
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Fig. 1. Notation for case (ll).

applying the Riemann solver above to the Riemann problem with boundary arising at
(1, ¥¥(r1)). We prove below that this procedure can be iterated leading to an approxi-
mate solution:® (¢, x) defined on all2¢. To this aim, we need to provide the usual bounds
on the total variation and on the number of interaction points.

First we prove that the total variation of the approximate solution is bounded for all
uniformly in ¢. Fix some positive time. The approximate solution® at timez and the
approximate boundary condition have the form

n n
U= UaXiryrxal AN @ =Y fa Xty gt
a=1 a=1
whererg =17 andxg = ¥ (7). Fora =1,..., call 0;, (respectivelys; ,) the total size
of the i-waveSGif’a, h=1,..., in the Riemann problem betweefn, andu,,1 at x,
(respectivelyt,) as defined by (3.3). According to Definition 2.1, there may well be a
jump between the tracé (¢, ¥*(¢)+) of u® at the boundary and the boundary dat#).
Call 0; o the total size of thé-waves in the solution of the Riemann problem (3.4) with
ul = ut(r, e (H)+) andu’” = a8 (1).

For notational simplicity, in the sequel we omitFollowing [6], we introduce for later
use the quantity; , (respectivelyt; , andz; o) as the signed length of the wawg, (re-
spectivelys; , ando; o) measured in the space of the Riemann coordinates. More precisely,
setu! = uq_1 andu” = u,, thenr; 4 is the signed length of the segment betweén! and
w' as defined in (3.2).

Define now the following functionals:

n

V=Y ltial and V=> > |f4l. (3.6)

i=1la>0 i=1p>0

where we omitted the various dependencieppnande. Note that the waves with index
a = 0 are considered as located along the boundary.

Proposition 3.1. Along any approximate solutiom, the mapr — V (t) 4+ V(¢) is nonin-
creasing.

Proof. For any fixed: > 0, letAV = V(i+) — V(i—) andAV = V(i+) — V(i—). Con-
sider the cases (I)-(1V) separately:

(I) Clearly, AV =0. By [6, Paragraph 2], we have that/ <O0.
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Fig. 2. On the left, case (11l.1) wher# > 0 and, on the right, case (I1.2) whe¥e < 0.

(I) Again, AV = 0. By [13, Proposition 3.1], we obtain thatV’ < 0.
() Here, AV <}, |Tial = —AV asin[13, Proposition 3.1], see Fig. 2.
(IV) In this case, AV =0 andAV =0.

The proof is complete. O

By the proposition aboveD,,(G?) is positively invariant as long as the approximate
solution is defined.
To bound the number of interaction points, introduce

0= > Itiatjpl and T=0Q+MV.

i>],Xq<Xp

Q is the Glimm interaction potentiat;  is the jump in theth Riemann coordinate of the
discontinuity located at, and the functionaV’ is defined in (3.6). Abovel is chosen so
that M > 2TV(u(t)) for all ¢ € [tg, T], which is available by Lemma 3.9.

The maps — 7 (¢) is nonincreasing along any approximate solution belonging to
Dy (G®) in any stripl(h — De, he[, h =1, ..., N. Moreover, at interactions

AT < — > |7, 75| incases (), (II), (IV)
T, .75 interact and are
of different families

AY <= Y Y|z, | incase (Il).

7y enterings2 «>0

Therefore, at each interactionT < —(8,)2 and the total number of interactions is
bounded.

By [6,12], for everye > 0, the above algorithm yields a semigroip: [0, +oo[ x
Dy (G%) = Dy (G%) whose orbits approximately solve (1.2).

We now prove the Lipschitz continuous dependence of the approximate solutions uni-
form in ¢ by means of the now classical technique basepgsaudopolygona)see [1,5-8,
11-14].

Definition 3.2. Leta < b. An elementary path ifC is a map
y:]a,b[ — PC Xg(0) = xq + 08,

p N with 9 2 Vo
D0 U Xlxg—1(60).xa (0)] Xg—1(0) < xq(0) .
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Fix T > 0 and assume that’, " € PLC do not coincide ori0, T']. The elementary
path inPLC joining ¥/’ and¥” on [0, T is the curve
)+ [[P() - )] +06]s if6<0,

)+ [0 - O]+ — 6]+ if6>0,
defined for|6| < ¥ — ¥"|lcoqo.7)), Where[x]+ = max(x, 0). If ¥’ = ¥”, the mapy
defined byy () = ¥’ for all 6 is also an elementary path L C.

Callz;,i =1, 2, 3, the three canonical projections definedJgy (G®). An elementary
path in Dy, (G%) is a mapy :la, b[ — Dy (G*) such thatr; o y is aPC-elementary path
fori =1, 2, and aPL C-elementary path for = 3.

A continuous mayy : [a, b] — Dy (G%) is apseudopolygonal i, (G%) if there exist
countably many disjoint open intervalg C la, b[ such thafla, b[ \ |, J» is countable
and the restriction of to eachJ;, is an elementary path iy (G%).

V(G)(t)={

By [1, Proposition 3], any two triples ivy,;(G*) can be joined by a pseudopolygonal
contained irD,y, (G%). FurthermoreS¢ preserves pseudopolygonalsyifs a pseudopolyg-
onal, then so is? o y, forallr > 0.

Consider a pseudopolygongaljoining two triples inD,,(G?). Introduce the shift speed
of the boundary

[0 if 0 730y (0)is constant
“) = { 1 otherwise. 3.7)
Define thegeneralized shift speeds
77i,o:=max{’<v |Si,0[|}v 77i,0=K7 ﬁﬂt=K+2£|§Ot|’ (38)

whereg; , is the horizontal shift speed of théh waveo; , at xq, &, is the vertical shift
speed of the jump at, in the boundary condition anfl= max{Ly-, Ly, A+ 1}, similarly
to (3.5).

Along a pseudopolygonal, through

()= loiatialWie and T,()=>_|64ialWia

define the functionals
7,0 =100 + 1), (3.9
b
Eg(y)szn(y(G))dG, (3.10)
b
||V||e=/(Tn(J/(9))—l—:c()/(@)))d@, (3.11)

a

Wi o, W; 5 being weights bounded uniformly in see (3.17).
Call below¢x (y) the length of the curve with respect to the distance in the metric
spaceX. For instance, iD, we consider the metric

dE’,p") = lla" =@l +lla” =il + 19" = ¥l co. (3.12)
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Lemma 3.3. Fix a positiveM. Then, there exists a positive const@hsuch that for all
p1, P2 € Dy with w3p; having Lipschitz constart;, for all pseudopolygonay : [a, b] —
Dy joining p1 to p2 and for all smalle, the following estimates hald

1 {p(y)
¢ o).
lylle < C - (€ 1(y) + (14 max{La, L2})€ 1(y2) + Lco(y3)),
1
)= ol L 1(y1),
(¥) <C- (€La(y) + L1 (v2) + (TV(P1y0,7p) + TV (P2i0.77)) Lo (¥3)).

wherern; oy = ;.

Iy lle =

o)

&
&

o)

Above, referring to the choice (2.2) of the norms, we denoted
TVQiro.71) = TV@) + | (¥ (to+)) — iitto+) | + TV (@1,
It immediately follows that the metric 0By, (G¢) defined by
d;(p1. p2) =inf{|ly||e: ¥ pseudopolygonal joinings to p2}
is equivalent to the distance (3.12), see also [1,5-7,13].
Due to the possiblefiovemeritof the boundary, below it is necessary to consider one
more type of interaction, namely the points where
(V) the boundary stops shifting, i.e. whergpasses from 1 to 0.

The following interaction estimates, see Figs. 1-3 for the notation:

0[] < (1K T[T )| L)
a>0 k#i 'a>0 a>0
ool < (145 T )| o
ki 'a >0 a>0
) Jop| < (14K Yo+ feal) ) o+ dnal)
ki

Fig. 3. Notation for case (IV).
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m2: > ot =164l
a>0

V): Dol |=lo] and ofy=0 (3.13)
a>0

hold for a suitable positive constakit The former estimate comes from [6, formula (5.7)],
while the others are refinements of analogous results in [13].

Proposition 3.4. Consider a pointP, = (z,, x,) of interaction. Letu(z, x) be the approx-

imate solution tq1.2) defined forr < ¢, by extending backward the shocks and#or 7,
by solving the approximate Riemann problem. Then

2
M: D ot < <1+ KY 1Y 1, ) > loranial

a>0 k#i 'a>0 a>0

+ K Zti,_a ZZ|ak_’an,;a , (3.14)

o k#i a>0

2
(D |ofontol < <1+1<Z Y T ) > lovanial: (3.15)
ki 'a>0 >0

2

(1.1): |aignjo|<(1+KZ|r,;o+f,;&|> (lo7omiol + 161.a7al)- (3.16)

ki

Proof. We consider the various cases separately.

(1) If n;f, =1&7,1, (3.14) follows from [6, formula (5.8)]. Ifi, = «, then we assume
1, , =k, since in the case;fa > k the right-hand side in (3.14) becomes greater.
Now, (3.14) follows from [6, formula (5.8)] setting for all «, &, = 1, which
implies¢;, = 1.

(Il) If x =0, thenn;y =0 and (3.15) holds. It = 1, then, by (3.8), we havg, =1
andn; , > 1fore > 0. Thus (ll) in (3.13) implies (3.15), indeed

(v xS w]) S

k#i'a>0 =0
> <1+ K 1D ta )MH > |ojomol-
k#i 'a>0

(I1.1) Inthis casep;, = 0foranya > 0. If k = 0, thenn;", = 0 and hence (3.16) follows.
If on the other hand = 1, by (3.8) we haveg, > 1,«a > 0, andnl.ﬂf0 =1.Thus

2
<1+ K lno+ fk’°7|) (lo; omi ol + 167 a7a)
kot
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> <1+ KY Jrio+ fk,&|)|0,-fro| >loonfol- O

ki

We now specialize the choice of the approximating boundarindeed, letr'* be such
that lim,_, g+ T¢ = 400 and particularize (3.5) a# (r) = —max{A + 1, Ly} for r > T*.

i andiz have bounded support, hence there exists a fithéwith 7¢ > T¢) such that no
interaction takes place for> 7¢, see [21].

Following [6], assign weight 1 at all waves in(T¢, ). Next consider a poin®, of in-
teraction and suppose that the we|gwg§ of the waves exiting the interaction are already
assigned. The incoming waves are weighted as follows. ifwave exits the interaction,
eachi-wave that enters the interaction is assigned weVg,ij; 1. In the other cases let

0) <1+ KY 1> 1, ) maleij
ki a>0 >0
+ KZ( Ztl:,a T;aoxW,:a)
k#i “Ma>0
() (1+KZZT]“X> o
k#i 'a>0

2
(1) Wio= (14K Clriot 7l ) W
st
) 2
Wia= <1+ KY |to+ia |> W,
ki
(1.2) Wi g =maq{W;,: oi, exits the interactiofy
(V) W o=maq{ W i, exits the interactioh (3.17)

In case (V), since there is no interaction, it is not necessary to define weights.

Proposition 3.5. Fix an elementary patf. Let an interaction take place &,. LetT; (¢) =
7,(S¢ o v), where?Y;, is defined in(3.9), and« (t) = k (S¢ o y), k being defined ir{3.7).
Then in any of the cas€b—(V),

Tn(t*+) < Tn(t*_) and Tn(t*+) + Kk (t+) < Tn(t*_) + i (te—).

Proof. Sincex can only decreases passing from 1 to 0, it is sufficient to showAhat< 0
in all cases.

(1) Inthis caseAT? =0 andk remains constant. MoreoveyY;, < 0. Indeed, as proved
in [6, Paragraph 6] and [13, Proposition 3.6], by (I) in (3.17), it holds that, with
obvious notation,

Z|Ul anz oz itx < Z|o’i,7ani7,a ’Wzia
o
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(1) We refer to Fig. 1. As beforeA7, = 0 and« remains constant. Furthermorer,
< 0. Infact, using (3.15) and (I1) in (3.17) we have

2
tonio W< (14K | ] ) Lol Wi

k#i 'a>0 a>0
= Z |Ui,0(ni,()l | Wi,a‘
a>0

(1) First consider case (Ill.1), see Fig. 2, left. In this cas®;, < 0 because for (3.16)
and (l11.1) in (3.17) we have

2
ool Wi < (14 K Sl + 7l ) (loganiol + 1617 W
ki
= |0y om0l Wio + 16,571z Wi

Consider case (I11.2), see Fig. 2, right. By (l11.2) in (3.17) and in (3.13), we immedi-

ately obtainAT, < —A7;,. .
(IV) We refer to Fig. 3. In this case, by (IV) in (3.13) and sirg;Jg =k, AT, <0 and

AT, =0. HenceAT, <O0.
(V) Inthis caseAT, = AT, = 0 because the waves do not change sizes.

As a consequence of Proposition 3.5, the lengttsof y computed as in (3.11) is
nonincreasing as a function of time.

3.2. The source term

We approximatg as
ke
gt x )=y ;—L( / 8(t. &, M)d§> * X1k—D)e,ke] () (3.18)
keZ Nx“pe
and consider the approximate problem
oru=g°(t,x,u), (t,x) € 82,
u(0, x) = uf(x), x = ¥e(1p), (3.19)
ut, W) =u(t), t=>to,

where (u¢, u®, ¥*) are as in the previous paragraph. In [12, Lemma 4.3] the following
lemma is proved.

Lemma 3.6. Let g be as in(G). Theng® satisfies(G) with (G3) modified as followsif
h,keZandh <k, for all x1 € Jhe, (h + 1)e] andxs € Jke, (k + 1)e] we have

’gg(t, x2,u) — g°(t, x1, u)! < 3M([h8, (k+ 1)8]). (3.20)

Below, sptu) denotes the support of the function



698 R.M. Colombo, M.D. Rosini / J. Math. Anal. Appl. 311 (2005) 683—-702

Lemma 3.7. The differential equatio3.19)generates the map

T¢I x D> LN BV([¥ (t0), +oo[,U),
(to, 1), P> Zp P (3.21)
in the sense that for alfi®, 4%, w*) € D, the mapr Et%,t(ﬁ@, u®, ) is the solution
t0 (3.19) For all R > 0andT > 1o, there exist a positivee Llloc([zo, +o0[) and constants

C, M > 0, both independent from, such that for allz € [ro, T] and p = (i, ut, ¥) € D
with TV (Pjio,71) < R,

|55l <o s + sup ef IO Jaco], (3.22)
T€(1g,t]
SP{( X, ,P) € spiti) U ¥ (spi) N [1o, 11). (3.23)
TV(ZE p) <70 (14 C(t — 10)) - TV(Pjirg.r)
+ €U0 . 9L, nu(R) - (t — 1g). (3.24)

Finally, there exists ag-grid G¢ such that
(.1, %) €Dy(G°) = (Zf (1,4, ¥), Ti_il, T—1;¥) € Dy (G°). (3.25)

Proof. By the standard theory of ordinary differential equations, there exists a corkipact
in the space of the conserved quantities such that the solutions to (3.19) with wita
TV (P, 71) < R attain valuesirk forallr € [0, T]. Let K = w(K) and denote by, Ly
the Lipschitz constants of the maps— « andu — w restricted ork andK , respectively.
Now, we use the formulation of (1.3) in the Riemann coordinates, i.e.
ow =g, x,w), (3.26)

whereg® (¢, x, w) = D, w(t, x) g (¢, x, u(w)) satisfies conditions analogous to (G)grin
fact, (G1) and (&) are immediate. Condition #} holds modified as in (3.20), with,,x
in place ofu. Concerning (@), for anyw, w1, wo € K,
|g8(l3x1 w2) - gs(tv X, w1)| g lNK(l) . |w2 - wl'a (327)
185t x, w)| <I(1) - |wl, (3.28)
wherel; (1) = (supg || D2w|| - supg |ul + L) - Ly - Ik (t) andi(t) = ¢ - Ly, - Ly, - 1(¢), for

a suitable constant> 0.
We consider now (3.22). Lei(r) = X¢ ,p. (2.1), (2.2) and (3.28) imply

1
ot =0, [ut.n] < |a@00)] +/i<f) N0 dr.

fo
t

it ot >0, ult. 0| < (et 0)| + f i) - Jute. )| d.
a(t,x)

By Grénwall lemma and passing k6° norm, the inequality (3.22) follows.
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(3.23) follows from (E), (G1) and Definition 2.2.

Consider (3.24). Fix® andT. If u € D with |li||Le + ||i||L~ < R, then (3.22) implies
that fort € [tg, T, the solutionw(¢) = w(u(?)) to (3.26) with datav(x) = w(u(x)) and
w(t) = w(u(t)), attains values in the compact set

- 15 ‘7
R =wlHn [_Reftol(r)dr’ Refrol(t)dr]n.

Define K = u(K) and note thatk < {. We seek an upper bound for, lw(t, xi—1) —
w(t, x;)|, wherexg > ¥ (r) andx; > x;_1 for all i. Let h; € Z be such thaty; € [h;e¢,

(h; + De[. Note thath; 1 < h; and, by (2.1) (¢, x;—1) > a(z, x;) for all i. Letig be the
smallest index such that(z, x;,) = r9. Then, following the same lines of [12, Lemma 4.4],
we obtain for any fixed > ip,

oIk (@ de

hi—i=hi, |w(t,xi—1) —w(, x)|<e lw (10, xi—1) — w(t0, x;)|,

IK(T)df|w(tO7xi_l) — w(f, xi)}

hica<hi, |w(t,xi—1) —wt, x)| < o
+ 3Lw€f’[° ZK(T)dT”M([hi—l, hile)(t — o).
Choose now < ig. By the same procedure we gethif_1 = h;,
lw(, xi—1) — w(t, x;)|
< Juenp K@ e |w(ee(t, xi—1), xi—1) — w(e(t, xi—1), x;) |

ﬁ(a(l, xi,l)) - ﬁ(“(tv xi)) H

+ €f°i(’*xi—1) Ik (1) dr ‘w(a(t, Xi—1), xi) - w(oz(t, Xi), x,-)‘

. -
g efot(h,x;_l) Ik (t)dt H

< ef‘i(’*"i—l) Ik(@adr ||11(oc(t,x,'71)) — ﬁ(a(l, xi)) ”

a(t,xi-1)
t Ik (@)d ~ -
+€fa(t,xi) k(®)dr f I(t)dt - il 1.0
a(t,x;)

while in the casé:; _1 < h;, by [12, (4.20)] and Lemma 3.6,
|U)(t, -xi—l) - U)(t, xi)|

< efetn KO |w(er(r, xi—1), xi-1) — (et x), x;) |

Ix (t)dr

+ oty 3Ly - pu(lhiz1, hile) - (1 — @i, xi-1)

. ||11(oz(t, x,-,l)) — ﬁ(a(r, xi)) ”

< gf’i)iK(T)dT

fo

ffi) Ix(t)dt )

+e / (@) d7 - llill L o,0)

o(t,x;)

.-
" eftolk(t)df 3L, ~n/L([/’li—1, hi]g) (t —19).
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Summing up over we get
> |wit xio1) — wit, x)|

< KO (T @) + [to+) — iltob) | + TV (@)

t

./Z(r)dr TV (U|119,11)

fo

i Ceffto Ix(v)dt

i ef['ofk(t)dr 9L, - n,u([![/(f), +OOD -(t —1t9)
t
< eholk@dr <1+ c/[(f) dt) A(TV@) + [iatto+) — iitto+) || + TV (itjir.11))

10
[L k(0 de
+ e’0 -9Ly, -nu(R) - (t — o).

Finally, we obtain

TV (u()) <17 . (1+ C(t — 10))
x (TV(@) + || a(¥ (to+)) — iito+) | + TV (ijrg.r1))
+ €07 9L, n - w(R) - (1 — 1g).

Using (2.2), we obtain (3.24) for a suitalde> 9nL,,.
Concerning (3.25), with a slight abuse of notation 3&t , act oni/ instead of on func-
tions valued iri/. Then,E;;’,(gg) is a finite set and is contained in a suitablgrid G¢. O

3.3. Operator splitting

An approximate solution to (1.1) is constructed through the following operator splitting
scheme. Fix positive, M and ane-grid G¢. Letp = (i, i, ¥) € Dy (G®). Let h > k be
in N and forzg € [ke, (k + 1)¢[ define recursively

Si—1oP if 1 € [10, (k + Del,
th,[p == (Et%,t(sf—top)v 7;—10”77 Z—low) |f = (k + 1)8, (329)
h—1 .
Si—ne Oizir1 Fie i1ne) Fro rnett 171 € [he, (h+ Del.

Concerning the grid, refine it recursively. Indeed start with an initial dapueD(G?)
assigned at time). Forz € [1g, (k + D¢l Fe.p attains values in the same g@gd. At time
(k + 1)e we apply the o.d.e. solve‘f;i)’(kﬂ)a and at the same time pass to anothgrid
Gt = G¢, according to (3.25).

Recursively, ithf),hsp attains values i@, , thenFy ,p is valued in the same grid for all

t € [he, (h 4+ D)e[. Applying E;S,(Hl)s we pass to anothergrid G; ., = Ge.
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Lemma 3.8. LetT > rp. The operatorF® :Z x D +— D is well defined and can be written
as F,f)’t(ﬁ, i, ¥) = W), T—yit, T,—,¥). Moreover, the total number of discontinuities
is finite on any strifdz, 7] x R.

Proof. For (3.29) to be well defined, it is necessary to check that all compositions are
possible: indeed, for ay € D, S;p is in D as well asXy, (k1 1)ePs thanks to Lemma 3.7.
The use of a discrete grid at each convective step ensures that the number of interactions

remains finite over all the time intervld, T]. O

Lemma3.9. Forall R > 0andT > g, there exist positivée L1([to, T]) and a constan€,
both independent from, such that for € [7g, T] and forp = (u, i1, ¥) € D with ||it||L~ +
lit]lLe < R, the functioru defined by(u(r), 7;—y i, T—1, W) = Fe .p satisfies

Ju @] < " P (il + i), (3.30)
TV (u() <7 (14 C(t — 10)) - TV (P01
+ €U 9L n - w(R) - (1 — 19). (3.31)

Proof. The first estimate follows from Proposition 3.1 and (3.22). Similarly, to prove (3.31)
we use Proposition 3.1 and (3.24)a

In particular, the previous lemma provides an upper bound of the total variation of the
approximate solution uniform i, By Helly compactness theorem, the above lemmas yield
an existence result to (1.1). We now proceed towards an estimate of the Lipschitz constant
for F¢ uniformine.

Lemma 3.10. Fix M > 0, N e N and letT = rg + Ne. Considerp1, p2 in Dy (G%) with
max{TV (p1j0,77)> TV(P2j0,77)} < R and a pseudopolygong joining p; to p2. Then, for

all ¢ € [tg, T], there exist weights uniformly bounded from above by a quantity dependent
from M and T but not frome, such that for allr € [g, T],

i(t)d Tl(t)ydt
(dr ho ™4 2, ().

't
|Fe ov], <efo' @ iyle,  Ei(FE,ov)<e

0.1
Thanks to the construction above, this proof is entirely similar to that of [12,
Lemma 4.7].

Proof of Theorem 2.3. Let ¢, = 27" for v € N. For any data construct a sequence of
approximate solutions by means of (3.29). A standard argument, see [2,7,8,14,15], shows
that this is a Cauchy sequencelif and that it converges to a weak entropic solution
of (1.1), proving points (1)—(3).

Consider now point (5)(b), with = (&, &, ¥), p' = (&', &', ¥'") and¥, ¥’ having Lip-
schitz constant£€, £'. Then

||M(f) —u'(1) ”Ll < d(FypP, Frpip) < C u—liToods” (Fto,tpsv’ Fto,tp:;"v)

~ 1
104 Nimde (pe,.pL,) < Cefo" O ap.pl)

ft
< Ce'o
V—+00
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< Ce*/fol(r)dr(”ﬁ . 12’|||_1 L - W/HCO)
+Ceo" U (14 maxiL, L)l — i) 1.

Point (5)(a) follows, in the case= &', approximating? and¥’ through suitable sequence
of Lipschitz functions converging uniformly dir, 7'].
Finally, point (6) follows from Lemma 3.9. O
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