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Abstract

Consider the initial-boundary value problem for a Temple system of balance laws. Aim o
paper is to prove the well posedness of this problem for large times and without requiring th
variation of the initial data be small.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the well posedness of the following initial-boundary
problem for a nonlinear system of balance laws:


∂tu + ∂xf (u) = g(t, x,u), (t, x) ∈ Ω,

u(t0, x) = ū(x), x � Ψ (t0),

u(t,Ψ (t)) = ũ(t), t � t0,

(1.1)

wheret0 ∈ R, Ω = {(t, x) ∈ R
2: t � t0 andx � Ψ (t)} andu denotes the unknown vect

function. The present result extends and unifies those obtained in [12,13].
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We consider the conservation law with boundary


∂tu + ∂xf (u) = 0, (t, x) ∈ Ω,

u(t0, x) = ū(x), x � Ψ (t0),

u(t,Ψ (t)) = ũ(t), t � t0,

(1.2)

and the source part


∂tu = g(t, x,u), (t, x) ∈ Ω,

u(t0, x) = ū(x), x � Ψ (t0),

u(t,Ψ (t)) = ũ(t), t � t0,

(1.3)

separately. Indeed, the well posedness of (1.1) is proved below under those assu
onf , respectively ong, that make (1.2), respectively (1.3), well posed. Besides, we re
a sort of compatibility between the conservation law (1.2) and the ordinary differe
equation (1.3). Namely we ask that there exists a domain which is invariant for both
and (1.3).

This assumption replaces other compatibility conditions (dissipativity, diagonal d
nance) found in the literature, see [16, §13.8] for a survey of related results. On the
hand, in the present setting, the total variation and theL∞ norm of the solution may wel
grow exponentially with time, see (6) in Theorem 2.3. Aiming at the well posedne
the whole time interval[t0,+∞[ we necessarily require on (1.2) hypotheses that en
the well posedness for large data. Therefore, in view of [5,6,12], we assume that (1
Temple system.

A further motivation for the present result is given by several traffic flow mod
see [3,4,9,10]. Indeed, macroscopic continuum models are often stated through
vation laws. The role of source terms is then justified by the presence of entries/exits
inhomogeneities in the road, see [4].

We follow here the definition of solution to the boundary value problem (1.2) prop
in [17]. This approach is completely independent from the choice of any viscosity op
and is questionable in the case of gas dynamics, where the role of the boundary la
hardly be neglected. On the contrary, in traffic models the boundary is usually th
entry to a highway and no boundary layer seem to play any role.

2. Preliminaries and main result

We introduce the following assumptions on the convective part (1.2):

(F) Let U be the closure of an open subset ofR
n, f :U �→ R

n be smooth and such th
∂tu + ∂xf (u) = 0 is a Temple system, i.e.
(F1) The system is strictly hyperbolic inU , i.e. the JacobianDf hasn real eigenvalues

λ1, . . . , λn and supu∈U λi(u) < infu∈U λi+1(u), for all i = 1, . . . , n − 1.
(F2) For i = 1, . . . , n, thei-shock curve and thei-rarefaction curve coincide.
(F3) In U , there exists a system of Riemann coordinates{w1, . . . ,wn}, such that∂u

∂wi
is

parallel tori , ri being the right eigenvector corresponding toλi , for i = 1, . . . , n.
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Recall the definition of solution to the convective problem (1.2), see [1,17]. Below, w
u(x±) = limξ→x± u(ξ) for any functionu ∈ BV(R,R

n).

Definition 2.1. Let u :Ω �→ U be such that for a.e.t ∈ [t0,+∞[, x �→ u(t, x) is in
BV([Ψ (t),+∞[,R

n). u solves the convective problem (1.2) if

(1) it is a weak entropic solution to (1.2) inΩ ,
(2) it coincides withū at timet = t0,
(3) it satisfies the boundary condition: for a.e.τ � t0, u(τ,Ψ (τ)+) = w(t, x) for all

(t, x) ∈ Ω such that{
x − Ψ (τ) > D−Ψ (τ) · (t − τ),

t > τ,

wherew is the self-similar Lax solution to the Riemann problem


∂tw + ∂xf (w) = 0, t � τ, x ∈ R,

w(τ, x) =
{

ũ(τ ) if x < Ψ (τ),

u(τ,Ψ (τ)+) if x > Ψ (τ).

D−Ψ (t) = lim infh→0− Ψ (t+h)−Ψ (t)
h

is the lower left Dini derivative. At (1), for the de
finition of weak entropic solution see [7,11] or Definition 2.4 below.

On (1.3) we assume (here,| · | denotes the norm (2.2) inRn):

(G) The source termg : [t0,+∞[ × R × U �→ R
n is such that

(G1) For a.e.t ∈ [t0,+∞[ and allx ∈ R, g(t, x,0) = 0.
(G2) For all (x,u) ∈ R × U the mapt �→ g(t, x,u) is measurable.
(G3) For a.e. t ∈ [t0,+∞[ and all u ∈ U , the mapx �→ g(t, x,u) is uniformly

BV(R,R
n), i.e. there exists a finite positive measureµ such that for a.e.t ∈

[t0,+∞[, for all x1, x2 ∈ R with x1 � x2 and for allu ∈ U ,∣∣g(t, x2+, u) − g(t, x1−, u)
∣∣ � µ

([x1, x2]
)
.

(G4) For a.e.t ∈ [t0,+∞[ andx ∈ R, the mapu �→ g(t, x,u) is locally Lipschitz and
sublinear inU , i.e. for every compact subsetK of U , there exists a functionlK ∈
L∞

loc([t0,+∞[,R) such that for a.e.t ∈ [t0,+∞[, all x ∈ R and allu1, u2 ∈ K ,∣∣g(t, x,u2) − g(t, x,u1)
∣∣ � lK(t) · |u2 − u1|

and there exists a functionl ∈ L1
loc([t0,+∞[,R) such that for a.e.t ∈ [t0,+∞[,

all x ∈ R and allu ∈ U ,∣∣g(t, x,u)
∣∣ � l(t) · |u|.

Assumption (G1) ensures thatL1 is invariant with respect to (1.3); in [4] this assumpti
is relaxed. Given(t, x) ∈ Ω we define

α(t, x) = inf
{
s > t0:

(
θs + (1− θ)t, x

) ∈ Ω, ∀θ ∈ [0,1]}. (2.1)

Introduce the following definition of solution to (1.3).



686 R.M. Colombo, M.D. Rosini / J. Math. Anal. Appl. 311 (2005) 683–702

deed,
he trace

, we

l

nd

y
f
fficient
U

mo

.

Definition 2.2. By solution to (1.3) we mean a mapu :Ω �→ U such that for all(τ, x) ∈ Ω

the mapt �→ u(t, x) is an absolutely continuous Carathéodory solution [18, §1] of


∂tu = g(t, x,u), t ∈ ]α(τ, x), τ [,

u(α(τ, x), x) =
{

ũ(α(τ, x)) if α(τ, x) > t0,

ū(x) if α(τ, x) = t0.

Here, the role of the boundary condition is analogous to that in Definition 2.1. In
as it is usual, we consider the source as generating waves with 0 speed. Therefore, t
u(t,ψ(t)+) of the solution on the boundary ofΩ may differ from the boundary datãu(t)

only at those points(t,ψ(t)) where the boundary has positive speed. In the following
let

|v| = maxi=1,...,n |vi | for v ∈ R
n,

‖u‖ = ∣∣w(u)
∣∣ for u ∈ U,

TV(u) = ∑n
i=1 total variation ofwi

(
u(·)) for u :R �→ U . (2.2)

On any compact subset ofU , ‖ · ‖ (and, respectively TV( · )) is equivalent to the usua
Euclidean norm (respectively total variation) because of (F3).

It is useful to consider the setDt of triples(ū, ũ,Ψ ), wheret � t0 and

ū ∈ L1([Ψ (t),+∞[
,U

) ∩ BV
([

Ψ (t),+∞[
,U

)
,

ũ ∈ L1([t,+∞[,U) ∩ BV
([t,+∞[,U)

,

Ψ ∈ C0([t,+∞[,R
)
.

ForM > 0, introduce for later use the set

Dt,M = {
(ū, ũ,Ψ ) ∈ Dt : TV(ū) + ∥∥ū

(
Ψ (t)

) − ũ(t)
∥∥ + TV(ũ) � M

}
.

As in [12], we further require a sort ofcompatibilitybetween the convective part (1.2) a
the source term (1.3).

(U) (U1) The setU is invariant with respect to (1.2).
(U2) The setU is invariant with respect to (1.3).

In (U1), invariance means that any data(ū, ũ,Ψ ) with values inU leads to a solutionu
to (1.2) valued inU . Equivalently, if ū([Ψ (t0),+∞[) ⊆ U and ũ([t0,+∞[) ⊆ U , then
u(Ω) ⊆ U . Recall that a closed setU is invariant with respect to (1.2) if and only if an
Riemann problem with data inU yields a solution attaining values inU . For a treatment o
invariant domains for conservation laws, we refer to [19], where a necessary and su
condition for the invariance ofU is proved. Due to this condition, in the present case (1)
could be replaced by the assumption that the boundary ofU be the juxtaposition of Lax
curves.

Similarly, in (U2), invariance means that any data(ū, ũ,Ψ ) valued inU yields a solu-
tion u to (1.3) with values inU . Therefore, (U2) could be replaced by the classical Nagu
condition, see [20], stating thatg needs to point towardsU all along the boundary∂U of U .

Remark that, in both cases,U needs neither be convex nor compact in theu coordinates



R.M. Colombo, M.D. Rosini / J. Math. Anal. Appl. 311 (2005) 683–702 687

e

en
y

ann
Below we show that (1.1) generates a processF ,

F :
{
(p, t1, t2): p ∈Dt1, t2 � t1 � t0

} �→
⋃
t�t0

Dt ,

(
(ū, ũ,Ψ ), t1, t2

) �→ (
u(t2),Tt2−t1ũ,Tt2−t1Ψ

)
,

u being a solution to (1.1) with data(ū, ũ,Ψ ) at time t1, andTt being the translation
operator, i.e.(Tt ũ)(s) = ũ(t + s) and (TtΨ )(s) = Ψ (t + s). Moreover, if p ∈ Dt1, then
F(p, t1, t2) ∈Dt2.

We are now ready to state the main result of this paper.

Theorem 2.3. Let (1.1) satisfy assumptions(F), (G) and (U). Then, there exists a uniqu
evolution operatorF with the properties:

(1) For all t ∈ [t0,+∞[ and (ū, ũ,Ψ ) ∈ Dt0 the functionu :Ω �→ U defined by(u(t, ·),
Tt−t0ũ,Tt−t0Ψ ) = F((ū, ũ,Ψ ), t0, t) is a weak entropic solution to(1.1).

(2) For all t1, t2, t3 with t3 � t2 � t1 � t0, F(F(p, t1, t2), t2, t3) = F(p, t1, t3) for all p ∈
Dt1, while for all t � t0, F(p, t, t) = p for all p ∈ Dt .

(3) If ū and ũ are piecewise constant and ifΨ is piecewise linear and continuous, th
for small times the corresponding solutionu coincides with the function obtained b
piecing together the solutions to the Riemann problems on the points of jump ofū and
at (t0,Ψ (t0)).

Moreover, for everyT ,M > 0, there exist constantsL,C such that

(5) Fix two triples(ū, ũ,Ψ ) and (ū′, ũ′,Ψ ′) in Dt0,M and callu,u′ the solutions to(1.1)
yielded byF .
(a) If ũ = ũ′ then, for anyt ∈ [t0, T ],∥∥u(t) − u′(t)

∥∥
L1 � L · (‖ū − ū′‖L1 + ‖Ψ − Ψ ′‖C0

)
.

(b) If Ψ,Ψ ′ are Lipschitz with constantsL,L′ and t, t ′ ∈ [t0, T ], then∥∥u(t) − u′(t ′)
∥∥

L1 � L · (‖ū − ū′‖L1 + ‖Ψ − Ψ ′‖C0

)
+ L · (1+L+L′)

(‖ũ − ũ′‖L1 + |t − t ′|).
(6) For any data(ū, ũ,Ψ ) ∈Dt0,M , the solution yielded byF satisfies

∥∥u(t)
∥∥

L∞ � e
C

∫ t
t0

l(τ ) dτ (‖ū‖L∞ + ‖ũ‖L∞
)
,

TV
(
u(t)

)
� eC(t−t0)

(
TV(ū) + ∥∥ū

(
Ψ (t0)

) − ũ(t0)
∥∥ + TV(ũ)

)
+ CeC(t−t0)µ(R)(t − t0).

(7) If U is compact, thenC does not depend onT .

We recall the definition of weak solution to (1.1) and to the corresponding Riem
problem.
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Definition 2.4. u :Ω �→ U is a solution of the problem (1.1) if

(1) for any functionϕ ∈ C∞
c (Ω ∪ ]−∞, t0[ × R),

+∞∫
t0

+∞∫
Ψ (t)

[
∂tϕ(t, x)u(t, x) + ∂xϕ(t, x)f

(
u(t, x)

)]
dx dt

+
+∞∫
t0

+∞∫
Ψ (t)

ϕ(t, x)g
(
t, x, u(t, x)

)
dx dt +

+∞∫
Ψ (t0)

ϕ(t0, x)ū(x) dx = 0,

(2) for a.e.τ ∈ [t0,+∞[, the Riemann problem


∂tu + ∂xf (u) = 0, t � τ, x ∈ R,

u(τ, x) =
{

ũ(τ ) if x < Ψ (τ),

u(τ,Ψ (τ)+) if x > Ψ (τ),

admits a solution with waves all slower than the boundary atτ , in the sense of (iii)
in Definition 2.1.

Given an entropy–entropy flux pair(η, q) (see [7,12,16]), the weak solutionu is entropic
if for any ϕ ∈ C∞

c (Ω ∪ ]−∞, t0[ × R), with ϕ � 0,

+∞∫
t0

+∞∫
Ψ (t)

[
∂tϕ(t, x)η

(
u(t, x)

) + ∂xϕ(t, x)q
(
u(t, x)

)]
dx dt

+
+∞∫
t0

+∞∫
Ψ (t)

ϕ(t, x)Dη
(
u(t, x)

)
g
(
t, x, u(t, x)

)
dx dt

+
+∞∫

Ψ (t0)

η
(
ϕ(t0, x)

)
u0(x) dx � 0.

Definition 2.5. Fix m in R and letΩ = {(t, x) ∈ R
2: t � 0, x � mt}. Let ū, ũ in U be

fixed. The solution to the Riemann problem with boundary{
∂tu + ∂xf (u) = 0, (t, x) ∈ Ω,

u(0, x) = ū, x � 0,

u(t,mt) = ũ, t � 0,

(2.3)

is the restriction toΩ of the Lax solution to the standard Riemann problem


∂tu + ∂xf (u) = 0, (t, x) ∈ [0,+∞[ × R,

u(0, x) =
{

ũ if x < 0,

ū if x > 0.

(2.4)

Remark that if the boundary is not a straight line, then the restriction toΩ of the solution
to (2.4) not necessarily solves (2.3) in the sense of Definition 2.1.
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3. Technical proofs

In this section,ε is sufficiently small and fixed, all estimates being uniform inε. L̄ de-
notes an upper bound for the Lipschitz constants of all the boundariesΨ . The limit ε → 0
and the case of a continuous boundary will be considered only in the final part
section. Below, we writeD instead ofDt for notational simplicity.

3.1. The convective part

We let t0 = 0 throughout this paragraph.
Following [12], we introduce anε-grid in w(U). More precisely, by (U) we know tha

w(U) is the Cartesian product of closed possibly unbounded intervals:w(U) = ∏n
i=1Ii .

For all i, introduce in eachIi a finite setIε
i with the properties

(i) ]wi − ε,wi + ε[ ∩ Iε
i �= ∅ for anywi ∈ Ii;

(ii ) there exists a positiveδε such that min
w′

i ,w
′′
i ∈Iε

i ,w′
i �=w′′

i

|w′
i − w′′

i | > δε;

(iii ) minIε
i =




−1/ε if inf Ii = −∞,

inf Ii if inf Ii ∈ Ii ,

inf Ii + ε if inf Ii /∈ Ii ,

maxIε
i =




1/ε if supIi = ∞,

supIi if supIi ∈ Ii ,

supIi − ε if supIi /∈ Ii .

Finally, we call the setGε = ∏n
i=1Iε

i anε-grid in w(U).
Fix anε-grid Gε. As in [6,12], we consider Riemann problems


∂tu + ∂xf (u) = 0,

u(0, x) =
{

ul if x < 0,

ur if x > 0,

(3.1)

with datawl = w(ul) andwr = w(ur) in Gε. Introduce the statesu0, . . . , un through their
Riemann coordinatesw0, . . . ,wn as follows:

u0 = ul : w0 = (
wl

1,w
l
2, . . . ,w

l
n−1,w

l
n

)
, i.e.w0 = w(ul),

u1 : w1 = (
wr

1,w
l
2, . . . ,w

l
n−1,w

l
n

)
,

...

un−1 : wn−1 = (
wr

1,w
r
2, . . . ,w

r
n−1,w

l
n

)
,

un = ur : wn = (
wr

1,w
r
2, . . . ,w

r
n−1,w

r
n

)
, i.e.wn = w(ur). (3.2)

Note thatwi ∈ Gε for i = 0, . . . , n.
The exact weak entropic solution to (3.1) is the juxtaposition of then solutions to then

scalar Riemann problems


∂t si + ∂xfi(u
i−1; si) = 0,

si(0, x) =
{

0 if x < 0,

σ if x > 0,
i
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wherefi(u
i−1; s) = ∫ s

0 λi(Li (u
i−1, s)) ds andσi satisfies

Li (u
i−1, σi) = ui for i = 1, . . . , n, (3.3)

where we denoted byσ �→ Li (u0, σ ) the ith generalized Lax curve exitingu0, parameter-
ized through the signed arc lengthσ .

We now aim at the definition of a piecewise constant weak solution to (3.1), w
entropy defect isO(ε). Let s �→ f ε

i (ui−1; s) be the piecewise linear function that coincid
with s �→ fi(u

i−1; s) onGε.
A weak, possibly nonentropic, solution to (3.1) is obtained gluing then (weak entropic)

exact solutions to then (approximate) Riemann problems


∂t si + ∂xf
ε
i (ui−1; si) = 0,

si(0, x) =
{

0 if x < 0,

σi if x > 0,

(3.4)

whereσi is defined in (3.3). Let

DM(Gε) =


(ū, ũ,Ψ ) ∈D:




(ū, ũ,Ψ ) ∈ PC × PC × PLC,

w(ū)(R) ⊆ Gε, w(ũ)(R) ⊆ Gε,

TV(ū, ũ,Ψ ) � M,

|Ψ̇ | = max{λ̂ + 1, L̄}


 . (3.5)

Above, PC is the set of piecewise constant functions[0,+∞[ �→ R
n with finitely many

jumps.λ̂ is an upper bound for all characteristic speeds on a compact set to be pre
chosen below, see the proof of Lemma 3.10. Note that ifu ∈ PC ∩ L1([0,+∞[) thenu has
compact support.PLC is the set of piecewise linear and continuous functions[0,+∞[ �→
R with finitely many corners on any compact interval.

To construct an approximate solution to (1.2), the standard wave front tracking p
dure [6,12,13], see also [1,2,5,7,8,11,14,15], can now be started. First, fix anε-grid Gε and
approximate the given triple(ū, ũ,Ψ ) in (1.1) through a triple(ūε, ũε,Ψ ε) in DM(Gε).

At time t = 0, at every pointx > Ψ ε(0) whereūε has a jump, we approximately solv
the Riemann problem (3.1) withul = ūε(x−) andur = ūε(x+) by means of the exact solu
tions to then Riemann problems (3.4). Similarly, at(0,Ψ ε(0)) we approximately solve th
Riemann problem with boundary restricting toΩε = {(t, x) ∈ R

2: t � 0 andx � Ψ ε(t)}
the juxtaposition of the solutions to (3.4) withul = ũε(0+) andur = ūε(Ψ ε(0)+).

Patching together these solutions, we obtain a piecewise constant approximate s
of (1.2) onΩε up to the first timet1 at which one of the following interactions takes pla

(I) two or more waves collide in the interior ofΩε;
(II) one or more waves hits the boundary;

(III) the value of the boundary condition changes
(III.1) where the slope of the boundary is positive,
(III.2) where the slope of the boundary is negative;

(IV) the slope of the boundary changes.

In case (I), the approximate solution is extended beyondt1 by solving again the correspon
ing Riemann problem. In cases (II), (III) and (IV) the extension beyondt1 is achieved
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Fig. 1. Notation for case (II).

applying the Riemann solver above to the Riemann problem with boundary aris
(t1,Ψ

ε(t1)). We prove below that this procedure can be iterated leading to an ap
mate solutionuε(t, x) defined on allΩε. To this aim, we need to provide the usual bou
on the total variation and on the number of interaction points.

First we prove that the total variation of the approximate solution is bounded fort

uniformly in ε. Fix some positive timēt . The approximate solutionuε at time t̄ and the
approximate boundary condition have the form

uε =
n∑

α=1

uαχ[xα−1,xα[ and ũε =
n∑

α=1

ũαχ[tα−1,tα[,

where t0 = t̄ and x0 = ψ(t̄). For α = 1, . . . , call σi,α (respectivelyσ̃i,α) the total size
of the i-wavesσh

i,α , h = 1, . . . , in the Riemann problem betweenuα and uα+1 at xα

(respectivelytα) as defined by (3.3). According to Definition 2.1, there may well b
jump between the traceuε(t,Ψ ε(t)+) of uε at the boundary and the boundary dataũε(t).
Call σi,0 the total size of thei-waves in the solution of the Riemann problem (3.4) w
ul = uε(t,Ψ ε(t)+) andur = ũε(t).

For notational simplicity, in the sequel we omitε. Following [6], we introduce for late
use the quantityτi,α (respectivelyτ̃i,α andτi,0) as the signed length of the waveσi,α (re-
spectivelyσ̃i,α andσi,0) measured in the space of the Riemann coordinates. More prec
setul = uα−1 andur = uα , thenτi,α is the signed length of the segment betweenwi−1 and
wi as defined in (3.2).

Define now the following functionals:

V =
n∑

i=1

∑
α�0

|τi,α| and Ṽ =
n∑

i=1

∑
β>0

|τ̃i,β |, (3.6)

where we omitted the various dependencies onp, t̄ andε. Note that the waves with inde
α = 0 are considered as located along the boundary.

Proposition 3.1. Along any approximate solutionu, the mapt �→ V (t) + Ṽ (t) is nonin-
creasing.

Proof. For any fixedt̄ > 0, let∆V = V (t̄+) − V (t̄−) and∆Ṽ = Ṽ (t̄+) − Ṽ (t̄−). Con-
sider the cases (I)–(IV) separately:

(I) Clearly,∆Ṽ = 0. By [6, Paragraph 2], we have that∆V � 0.
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Fig. 2. On the left, case (III.1) wherėΨ > 0 and, on the right, case (III.2) wherėΨ < 0.

(II) Again, ∆Ṽ = 0. By [13, Proposition 3.1], we obtain that∆V � 0.
(III) Here, ∆V �

∑
i |τ̃i,α̃| = −∆Ṽ as in [13, Proposition 3.1], see Fig. 2.

(IV) In this case,∆V = 0 and∆Ṽ = 0.

The proof is complete. �
By the proposition above,DM(Gε) is positively invariant as long as the approxima

solution is defined.
To bound the number of interaction points, introduce

Q =
∑

i>j, xα<xβ

|τi,ατj,β | and Υ = Q + M̂Ṽ .

Q is the Glimm interaction potential,τi,α is the jump in theith Riemann coordinate of th
discontinuity located atxα and the functional̃V is defined in (3.6). Above,̂M is chosen so
thatM̂ > 2TV(u(t)) for all t ∈ [t0, T ], which is available by Lemma 3.9.

The mapt �→ Υ (t) is nonincreasing along any approximate solution belongin
DM(Gε) in any strip](h − 1)ε,hε[, h = 1, . . . ,N . Moreover, at interactions

∆Υ � −
∑

τ−
α ,τ−

β interact and are
of different families

∣∣τ−
α τ−

β

∣∣ in cases (I), (II), (IV),

∆Υ � −
∑

τ̃α enteringΩ

∑
α>0

∣∣τ̃ατ−
α

∣∣ in case (III).

Therefore, at each interaction∆Υ < −(δε)
2 and the total number of interactions

bounded.
By [6,12], for everyε > 0, the above algorithm yields a semigroupSε : [0,+∞[ ×

DM(Gε) �→ DM(Gε) whose orbits approximately solve (1.2).
We now prove the Lipschitz continuous dependence of the approximate solution

form in ε by means of the now classical technique based onpseudopolygonals, see [1,5–8
11–14].

Definition 3.2. Let a < b. An elementary path inPC is a map

γ : ]a, b[ �→ PC

θ �→ ∑
uαχ

with
xα(θ) = x̄α + θξα,

x (θ) < x (θ) ∀θ.
α [xα−1(θ),xα(θ)[ α−1 α
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Fix T > 0 and assume thatΨ ′,Ψ ′′ ∈ PLC do not coincide on[0, T ]. Theelementary
path inPLC joining Ψ ′ andΨ ′′ on [0, T ] is the curve

γ (θ)(t) =
{

Ψ ′(t) + ��Ψ ′′(t) − Ψ ′(t)�+ + θ�+ if θ < 0,

Ψ ′′(t) + ��Ψ ′(t) − Ψ ′′(t)�+ − θ�+ if θ > 0,

defined for|θ | � ‖Ψ ′ − Ψ ′′‖C0([0,T ]), where�x�+ = max(x,0). If Ψ ′ = Ψ ′′, the mapγ
defined byγ (θ) = Ψ ′ for all θ is also an elementary path inPLC.

Call πi , i = 1,2,3, the three canonical projections defined inDM(Gε). An elementary
path inDM(Gε) is a mapγ : ]a, b[ �→ DM(Gε) such thatπi ◦ γ is a PC-elementary path
for i = 1,2, and aPLC-elementary path fori = 3.

A continuous mapγ : [a, b] �→ DM(Gε) is apseudopolygonal inDM(Gε) if there exist
countably many disjoint open intervalsJh ⊆ ]a, b[ such that]a, b[ \ ⋃

h Jh is countable
and the restriction ofγ to eachJh is an elementary path inDM(Gε).

By [1, Proposition 3], any two triples inDM(Gε) can be joined by a pseudopolygon
contained inDM(Gε). Furthermore,Sε preserves pseudopolygonals: ifγ is a pseudopolyg
onal, then so isSε

t ◦ γ , for all t � 0.
Consider a pseudopolygonalγ joining two triples inDM(Gε). Introduce the shift spee

of the boundary

κ(γ ) =
{

0 if θ �→ π3 ◦ γ (θ) is constant,
1 otherwise.

(3.7)

Define thegeneralized shift speeds

ηi,α = max
{
κ, |ξi,α|}, ηi,0 = κ, η̃α = κ + 2L|ξ̃α|, (3.8)

whereξi,α is the horizontal shift speed of theith waveσi,α at xα , ξ̃α is the vertical shift
speed of the jump attα in the boundary condition andL= max{LΨ ′ ,LΨ ′′ , λ̂+1}, similarly
to (3.5).

Along a pseudopolygonal, through

Ῡη(γ ) =
∑
i,α

|σi,αηi,α|Wi,α and Υ̃η(γ ) =
∑
i,α̃

|σ̃i,α̃ η̃α̃|W̃i,α̃

define the functionals

Υη(γ ) = Ῡη(γ ) + Υ̃η(γ ), (3.9)

Ξε(γ ) =
b∫

a

Υη

(
γ (θ)

)
dθ, (3.10)

‖γ ‖ε =
b∫

a

(
Υη

(
γ (θ)

) + κ
(
γ (θ)

))
dθ, (3.11)

Wi,α, W̃i,α̃ being weights bounded uniformly inε, see (3.17).
Call below�X(γ ) the length of the curveγ with respect to the distance in the met

spaceX. For instance, inD, we consider the metric

d(p′,p′′) = ‖ū′′ − ū′‖L1 + ‖ũ′′ − ũ′‖L1 + ‖Ψ ′′ − Ψ ′‖C0. (3.12)
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one
Lemma 3.3. Fix a positiveM . Then, there exists a positive constantC such that for all
p1,p2 ∈ DM with π3pi having Lipschitz constantLi , for all pseudopolygonalγ : [a, b] �→
DM joining p1 to p2 and for all smallε, the following estimates hold:

‖γ ‖ε � 1

C
· �D(γ ),

‖γ ‖ε � C · (�L1(γ1) + (
1+ max{L1,L2}

)
�L1(γ2) + �C0(γ3)

)
,

Ξε(γ ) � 1

C
· �L1(γ1),

Ξε(γ ) � C · (�L1(γ1) + �L1(γ2) + (
TV(p1|[0,T ]) + TV(p2|[0,T ])

)
�C0(γ3)

)
,

whereπi ◦ γ = γi .

Above, referring to the choice (2.2) of the norms, we denoted

TV(p|[t0,T ]) = TV(ū) + ∥∥ū
(
Ψ (t0+)

) − ũ(t0+)
∥∥ + TV(ũ|[t0,T ]).

It immediately follows that the metric onDM(Gε) defined by

dε
η(p1,p2) = inf

{‖γ ‖ε: γ pseudopolygonal joiningp1 to p2
}

is equivalent to the distance (3.12), see also [1,5–7,13].
Due to the possible “movement” of the boundary, below it is necessary to consider

more type of interaction, namely the points where

(V) the boundary stops shifting, i.e. whereκ passes from 1 to 0.

The following interaction estimates, see Figs. 1–3 for the notation:

(I):

∣∣∣∣∑
α>0

σ+
i,α

∣∣∣∣ �
(

1+ K
∑
k �=i

∣∣∣∣∑
α>0

τ−
k,α

∣∣∣∣
)∣∣∣∣∑

α>0

σ−
i,α

∣∣∣∣,
(II):

∣∣σ+
i,0

∣∣ �
(

1+ K
∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)∣∣∣∣∑

α�0

σ−
i,α

∣∣∣∣,
(III.1):

∣∣σ+
i,0

∣∣ �
(

1+ K
∑
k �=i

(∣∣τ−
k,0 + τ̃k,α̃

∣∣))(∣∣σ−
i,0 + σ̃i,α̃

∣∣),

Fig. 3. Notation for case (IV).
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(III.2):

∣∣∣∣∑
α>0

σ+
i,α

∣∣∣∣ = |σ̃i,α̃|,

(IV):

∣∣∣∣∑
α>0

σ+
i,α

∣∣∣∣ = ∣∣σ−
i,0

∣∣ and σ+
i,0 = 0 (3.13)

hold for a suitable positive constantK . The former estimate comes from [6, formula (5.7
while the others are refinements of analogous results in [13].

Proposition 3.4. Consider a pointP∗ = (t∗, x∗) of interaction. Letu(t, x) be the approx-
imate solution to(1.2) defined fort < t∗ by extending backward the shocks and fort � t∗
by solving the approximate Riemann problem. Then

(I):
∑
α>0

∣∣σ+
i,αη+

i,α

∣∣ �
(

1+ K
∑
k �=i

∣∣∣∣∑
α>0

τ−
k,α

∣∣∣∣
)2 ∑

α>0

∣∣σ−
i,αη−

i,α

∣∣
+ K

∣∣∣∣∑
α

τ−
i,α

∣∣∣∣∑
k �=i

∑
α>0

∣∣σ−
k,αη−

k,α

∣∣, (3.14)

(II): ∣∣σ+
i,0η

+
i,0

∣∣ �
(

1+ K
∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)2 ∑

α�0

∣∣σ−
i,αη−

i,α

∣∣, (3.15)

(III .1): ∣∣σ+
i,0η

+
i,0

∣∣ �
(

1+ K
∑
k �=i

∣∣τ−
k,0 + τ̃−

k,α̃

∣∣)2(∣∣σ−
i,0η

−
i,0

∣∣ + |σ̃i,α̃ η̃α̃|). (3.16)

Proof. We consider the various cases separately.

(I) If η+
i,α = |ξ+

i,α|, (3.14) follows from [6, formula (5.8)]. Ifη+
i,α = κ , then we assum

η−
i,α = κ , since in the caseη+

i,α > κ the right-hand side in (3.14) becomes grea

Now, (3.14) follows from [6, formula (5.8)] setting for alli, α, ξ−
i,α = 1, which

impliesξ+
i,α = 1.

(II) If κ = 0, thenη+
i,0 = 0 and (3.15) holds. Ifκ = 1, then, by (3.8), we haveη±

i,0 = 1

andη−
i,α � 1 for α > 0. Thus (II) in (3.13) implies (3.15), indeed(

1+ K
∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)2 ∑

α�0

∣∣σ−
i,αη−

i,α

∣∣
�

(
1+ K

∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)∣∣σ+

i,0

∣∣ �
∣∣σ+

i,0η
+
i,0

∣∣.
(III.1) In this case,σ+

i,α = 0 for anyα > 0. If κ = 0, thenη+
i,0 = 0 and hence (3.16) follows

If on the other handκ = 1, by (3.8) we havẽηα � 1, α > 0, andη±
i,0 = 1. Thus(

1+ K
∑∣∣τ−

k,0 + τ̃k,α̃

∣∣)2(∣∣σ−
i,0η

−
i,0

∣∣ + ∣∣σ̃−
i,α̃

η̃α̃

∣∣)

k �=i
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dy
,

d
ith
�
(

1+ K
∑
k �=i

∣∣τ−
k,0 + τ̃k,α̃

∣∣)∣∣σ+
i,0

∣∣ �
∣∣σ+

i,0η
+
i,0

∣∣. �

We now specialize the choice of the approximating boundaryΨ . Indeed, letT ε be such
that limε→0+ T ε = +∞ and particularize (3.5) aṡΨ (t) = −max{λ̂ + 1,LΨ } for t � T ε.
ũ andū have bounded support, hence there exists a timeT̂ ε (with T̂ ε > T ε) such that no
interaction takes place fort > T̂ ε, see [21].

Following [6], assign weight 1 at all waves inu(T̂ ε, ·). Next consider a pointP∗ of in-
teraction and suppose that the weightsW+

i,α of the waves exiting the interaction are alrea
assigned. The incoming waves are weighted as follows. If noi-wave exits the interaction
eachi-wave that enters the interaction is assigned weightW−

i,α = 1. In the other cases let

(I) W−
i,α =

(
1+ K

∑
k �=i

∣∣∣∣∑
α>0

τ−
k,α

∣∣∣∣
)2

max
α>0

W+
i,α

+ K
∑
k �=i

(∣∣∣∣∑
α>0

τ−
k,α

∣∣∣∣max
α>0

W+
k,α

)
,

(II) W−
i,α =

(
1+ K

∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)2

W+
i,0,

(III.1) W−
i,0 =

(
1+ K

∑
k �=i

∣∣τ−
k,0 + τ̃−

k,α̃

∣∣)2

W+
i,0,

W̃i,α̃ =
(

1+ K
∑
k �=i

∣∣τ−
k,0 + τ̃−

k,α̃

∣∣)2

W+
i,0,

(III.2) W̃i,α̃ = max
{
W+

i,α: σi,α exits the interaction
}
,

(IV) W−
i,0 = max

{
W+

i,α: σi,α exits the interaction
}
. (3.17)

In case (V), since there is no interaction, it is not necessary to define weights.

Proposition 3.5. Fix an elementary pathγ . Let an interaction take place atP∗. LetΥη(t) =
Υη(S

ε
t ◦ γ ), whereΥη is defined in(3.9), andκ(t) = κ(Sε

t ◦ γ ), κ being defined in(3.7).
Then in any of the cases(I)–(V),

Υη(t∗+) � Υη(t∗−) and Υη(t∗+) + κ(t∗+) � Υη(t∗−) + κ(t∗−).

Proof. Sinceκ can only decreases passing from 1 to 0, it is sufficient to show that∆Υη � 0
in all cases.

(I) In this case∆Υ̃ ε
η = 0 andκ remains constant. Moreover∆Ῡη � 0. Indeed, as prove

in [6, Paragraph 6] and [13, Proposition 3.6], by (I) in (3.17), it holds that, w
obvious notation,∑

α

∣∣σ+
i,αη+

i,α

∣∣W+
i,α �

∑
α

∣∣σ−
i,αη−

i,α

∣∣W−
i,α.
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(II) We refer to Fig. 1. As before,∆Υ̃η = 0 andκ remains constant. Furthermore∆Ῡη

� 0. In fact, using (3.15) and (II) in (3.17) we have

∣∣σ+
i,0η

+
i,0

∣∣W+
i,0 �

(
1+ K

∑
k �=i

∣∣∣∣∑
α�0

τ−
k,α

∣∣∣∣
)2 ∑

α�0

∣∣σ−
i,αη−

i,α

∣∣W+
i,0

=
∑
α�0

∣∣σ−
i,αη−

i,α

∣∣W−
i,α.

(III) First consider case (III.1), see Fig. 2, left. In this case∆Υη � 0 because for (3.16
and (III.1) in (3.17) we have

∣∣σ+
i,0η

+
i,0

∣∣W+
i,0 �

(
1+ K

∑
k �=i

∣∣τ−
k,0 + τ̃−

k,α̃

∣∣)2(∣∣σ−
i,0η

−
i,0

∣∣ + |σ̃i,α̃ η̃α̃|)W+
i,0

= ∣∣σ−
i,0η

−
i,0

∣∣W−
i,0 + ∣∣σ̃−

i,α̃
η̃−

α̃

∣∣W̃i,α̃.

Consider case (III.2), see Fig. 2, right. By (III.2) in (3.17) and in (3.13), we imm
ately obtain∆Ῡη � −∆Υ̃η.

(IV) We refer to Fig. 3. In this case, by (IV) in (3.13) and sinceξ+
iα = κ , ∆Ῡη � 0 and

∆Υ̃η = 0. Hence∆Υη � 0.
(V) In this case∆Ῡη = ∆Υ̃η = 0 because the waves do not change sizes.�

As a consequence of Proposition 3.5, the length ofSε ◦ γ computed as in (3.11) i
nonincreasing as a function of time.

3.2. The source term

We approximateg as

gε(t, x,u) =
∑
k∈Z

1

ε

( kε∫
(k−1)ε

g(t, ξ, u) dξ

)
· χ](k−1)ε,kε](x) (3.18)

and consider the approximate problem


∂tu = gε(t, x,u), (t, x) ∈ Ω,

u(0, x) = ūε(x), x � Ψ ε(t0),

u(t,Ψ ε(t)) = ũε(t), t � t0,

(3.19)

where(ūε, ũε,Ψ ε) are as in the previous paragraph. In [12, Lemma 4.3] the follow
lemma is proved.

Lemma 3.6. Let g be as in(G). Thengε satisfies(G) with (G3) modified as follows: if
h, k ∈ Z andh � k, for all x1 ∈ ]hε, (h + 1)ε] andx2 ∈ ]kε, (k + 1)ε] we have∣∣gε(t, x2, u) − gε(t, x1, u)

∣∣ � 3µ
([

hε, (k + 1)ε
])

. (3.20)

Below, spt(u) denotes the support of the functionu.
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Lemma 3.7. The differential equation(3.19)generates the map

Σε :I ×D �→ L1 ∩ BV
([

Ψ (t0),+∞[
,U

)
,

(t0, t),p �→ Σε
t0,t

p (3.21)

in the sense that for all(ūε, ũε,Ψ ε) ∈ D, the mapt �→ Σε
t0,t

(ūε, ũε,Ψ ε) is the solution

to (3.19). For all R > 0 andT > t0, there exist a positivẽl ∈ L1
loc([t0,+∞[) and constants

C,M̂ > 0, both independent fromε, such that for allt ∈ [t0, T ] and p = (ū, ũ,Ψ ) ∈ D
with TV(p|[t0,T ]) � R,∥∥Σε

t0,t
p
∥∥

L∞ � e

∫ t
t0

l̃(τ ) dτ · ‖ū‖L∞ + sup
τ∈[t0,t]

e
∫ t
τ l̃(s) ds · ∥∥ũ(τ )

∥∥, (3.22)

spt
(
Σε

t0,t
p
) ⊆ spt(ū) ∪ Ψ

(
spt(ũ) ∩ [t0, t]

)
, (3.23)

TV
(
Σε

t0,t
p
)
� eC(t−t0) · (1+ C(t − t0)

) · TV(p|[t0,t])
+ eC(t−t0) · 9Lw · nµ(R) · (t − t0). (3.24)

Finally, there exists anε-grid Ḡε such that

(ū, ũ,Ψ ) ∈DM(Gε) ⇒ (
Σε

t0,t
(ū, ũ,Ψ ),Tt−t0ũ,Tt−t0Ψ

) ∈ D
M̂

(Ḡε). (3.25)

Proof. By the standard theory of ordinary differential equations, there exists a compK

in the space of the conserved quantities such that the solutions to (3.19) with datap with
TV(p|[t0,T ]) � R attain values inK for all t ∈ [0, T ]. Let K̃ = w(K) and denote byLw, Lu

the Lipschitz constants of the mapsw → u andu → w restricted onK andK̃ , respectively.
Now, we use the formulation of (1.3) in the Riemann coordinates, i.e.

∂tw = g̃ε(t, x,w), (3.26)

whereg̃ε(t, x,w) = Duw(t, x)gε(t, x,u(w)) satisfies conditions analogous to (G) ong. In
fact, (G1) and (G2) are immediate. Condition (G3) holds modified as in (3.20), withLwµ

in place ofµ. Concerning (G4), for anyw,w1,w2 ∈ K̃ ,∣∣g̃ε(t, x,w2) − g̃ε(t, x,w1)
∣∣ � l̃K (t) · |w2 − w1|, (3.27)∣∣g̃ε(t, x,w)

∣∣ � l̃(t) · |w|, (3.28)

wherel̃
K̃

(t) = (supK ‖D2
uw‖ · supK |u| + Lw) · Lu · lK(t) and l̃(t) = c · Lw · Lu · l(t), for

a suitable constantc > 0.
We consider now (3.22). Letu(t) = Σε

t0,t
p. (2.1), (2.2) and (3.28) imply

if α(t, x) = t0,
∥∥u(t, x)

∥∥ �
∥∥ū(x)

∥∥ +
t∫

t0

l̃(τ ) · ∥∥u(τ, x)
∥∥dτ,

if α(t, x) > t0,
∥∥u(t, x)

∥∥ �
∥∥ũ

(
α(t, x)

)∥∥ +
t∫

α(t,x)

l̃(τ ) · ∥∥u(τ, x)
∥∥dτ.

By Grönwall lemma and passing toL∞ norm, the inequality (3.22) follows.
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4],
(3.23) follows from (F3), (G1) and Definition 2.2.
Consider (3.24). FixR andT . If u ∈ D with ‖ū‖L∞ + ‖ũ‖L∞ � R, then (3.22) implies

that for t ∈ [t0, T ], the solutionw(t) = w(u(t)) to (3.26) with dataw̄(x) = w(ū(x)) and
w̃(t) = w(ũ(t)), attains values in the compact set

K̃ = w(U) ∩ [−Re

∫ t
t0

l̃(τ ) dτ
,Re

∫ t
t0

l̃(τ ) dτ ]n
.

DefineK = u(K̃) and note thatK ⊆ U . We seek an upper bound for
∑

i |w(t, xi−1) −
w(t, xi)|, wherex0 � Ψ (t) and xi > xi−1 for all i. Let hi ∈ Z be such thatxi ∈ [hiε,

(hi + 1)ε[. Note thathi−1 � hi and, by (2.1),α(t, xi−1) � α(t, xi) for all i. Let i0 be the
smallest index such thatα(t, xi0) = t0. Then, following the same lines of [12, Lemma 4.
we obtain for any fixedi > i0,

hi−1 = hi,
∣∣w(t, xi−1) − w(t, xi)

∣∣ � e

∫ t
t0

l̃K (τ ) dτ ∣∣w(t0, xi−1) − w(t0, xi)
∣∣,

hi−1 < hi,
∣∣w(t, xi−1) − w(t, xi)

∣∣ � e

∫ t
t0

l̃K (τ ) dτ ∣∣w(t0, xi−1) − w(t0, xi)
∣∣

+ 3Lwe

∫ t
t0

l̃K (τ ) dτ
nµ

([hi−1, hi]ε
)
(t − t0).

Choose nowi � i0. By the same procedure we get, ifhi−1 = hi ,∣∣w(t, xi−1) − w(t, xi)
∣∣

� e

∫ t
α(t,xi−1) l̃K (τ ) dτ ∣∣w(

α(t, xi−1), xi−1
) − w

(
α(t, xi−1), xi

)∣∣
� e

∫ t
α(t,xi−1) l̃K (τ ) dτ∥∥ũ

(
α(t, xi−1)

) − ũ
(
α(t, xi)

)∥∥
+ e

∫ t
α(t,xi−1) l̃K (τ ) dτ ∣∣w(

α(t, xi−1), xi

) − w
(
α(t, xi), xi

)∣∣
� e

∫ t
α(t,xi−1) l̃K (τ ) dτ · ∥∥ũ

(
α(t, xi−1)

) − ũ
(
α(t, xi)

)∥∥
+ e

∫ t
α(t,xi )

l̃K (τ ) dτ ·
α(t,xi−1)∫
α(t,xi )

l̃(τ ) dτ · ‖ũ‖L∞(t0,t),

while in the casehi−1 < hi , by [12, (4.20)] and Lemma 3.6,∣∣w(t, xi−1) − w(t, xi)
∣∣

� e

∫ t
α(t,xi−1) l̃K (τ ) dτ ∣∣w(

α(t, xi−1), xi−1
) − w

(
α(t, xi), xi

)∣∣
+ e

∫ t
α(t,xi )

l̃K (τ ) dτ · 3Lw · µ([hi−1, hi]ε
) · (t − α(t, xi−1)

)
� e

∫ t
t0

l̃K (τ ) dτ · ∥∥ũ
(
α(t, xi−1)

) − ũ
(
α(t, xi)

)∥∥
+ e

∫ t
t0

l̃K (τ ) dτ ·
t0∫

α(t,xi )

l̃(τ ) dτ · ‖ũ‖L∞(t0,t)

+ e

∫ t
t0

l̃K (τ ) dτ · 3Lw · nµ
([hi−1, hi]ε

) · (t − t0).
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itting

ll
Summing up overi we get∑
i

∣∣w(t, xi−1) − w(t, xi)
∣∣

� e

∫ t
t0

l̃K (τ ) dτ · (TV(ū) + ∥∥ū(t0+) − ũ(t0+)
∥∥ + TV(ũ|[t0,t])

)

+ Ce

∫ t
t0

l̃K (τ ) dτ ·
t∫

t0

l̃(τ ) dτ · TV(ũ|[t0,t])

+ e

∫ t
t0

l̃K (τ ) dτ · 9Lw · nµ
([

Ψ (t),+∞[) · (t − t0)

� e

∫ t
t0

l̃K (τ ) dτ ·
(

1+ C

t∫
t0

l̃(τ ) dτ

)
· (TV(ū) + ∥∥ū(t0+) − ũ(t0+)

∥∥ + TV(ũ|[t0,t])
)

+ e

∫ t
t0

l̃K (τ ) dτ · 9Lw · nµ(R) · (t − t0).

Finally, we obtain

TV
(
u(t)

)
� eC(t−t0) · (1+ C(t − t0)

)
× (

TV(ū) + ∥∥ū
(
Ψ (t0+)

) − ũ(t0+)
∥∥ + TV(ũ|[t0,t])

)
+ eC(t−t0) · 9Lwn · µ(R) · (t − t0).

Using (2.2), we obtain (3.24) for a suitableC � 9nLw.
Concerning (3.25), with a slight abuse of notation, letΣε

t0,t
act onU instead of on func-

tions valued inU . Then,Σε
t0,t

(Gε) is a finite set and is contained in a suitableε-grid Ḡε. �
3.3. Operator splitting

An approximate solution to (1.1) is constructed through the following operator spl
scheme. Fix positiveε,M and anε-grid Gε. Let p = (ū, ũ,Ψ ) ∈ DM(Gε). Let h > k be
in N and fort0 ∈ [kε, (k + 1)ε[ define recursively

Fε
t0,t

p =




Sε
t−t0

p if t ∈ [t0, (k + 1)ε[,
(Σε

t0,t
(Sε

t−t0
p),Tt−t0ũ,Tt−t0Ψ ) if t = (k + 1)ε,

Sε
t−hε(©h−1

i=k+1F
ε
iε,(i+1)ε)F

ε
t0,(k+1)εu if t ∈ [hε, (h + 1)ε[.

(3.29)

Concerning the grid, refine it recursively. Indeed start with an initial datump ∈ D(Gε)

assigned at timet0. For t ∈ [t0, (k + 1)ε[, Fε
t0,t

p attains values in the same gridGε. At time
(k + 1)ε we apply the o.d.e. solverΣε

t0,(k+1)ε and at the same time pass to anotherε-grid

Gε
1 = Ḡε, according to (3.25).

Recursively, ifFε
t0,hεp attains values inGε

m, thenFε
t0,t

p is valued in the same grid for a

t ∈ [hε, (h + 1)ε[. Applying Σε we pass to anotherε-grid Gε = Ḡε
m.
hε,(h+1)ε m+1
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Lemma 3.8. Let T > t0. The operatorFε :I ×D �→ D is well defined and can be writte
asFε

t0,t
(ū, ũ,Ψ ) = (uε(t),Tt−t0ũ,Tt−t0Ψ ). Moreover, the total number of discontinuiti

is finite on any strip[t0, T ] × R.

Proof. For (3.29) to be well defined, it is necessary to check that all composition
possible: indeed, for allp ∈D, Sε

t p is in D as well asΣε
kε,(k+1)εp, thanks to Lemma 3.7.

The use of a discrete grid at each convective step ensures that the number of inte
remains finite over all the time interval[0, T ]. �
Lemma 3.9. For all R > 0 andT > t0, there exist positivẽl ∈ L1([t0, T ]) and a constantC,
both independent fromε, such that fort ∈ [t0, T ] and forp = (ū, ũ,Ψ ) ∈D with ‖ũ‖L∞ +
‖ū‖L∞ � R, the functionu defined by(u(t),Tt−t0ũ,Tt−t0Ψ ) = Fε

t0,t
p satisfies

∥∥u(t)
∥∥

L∞ � e

∫ t
t0

l̃(τ ) dτ · (‖ũ‖L∞ + ‖ū‖L∞
)
, (3.30)

TV
(
u(t)

)
� eC(t−t0) · (1+ C(t − t0)

) · TV(p|[t0,t])
+ eC(t−t0) · 9Lwn · µ(R) · (t − t0). (3.31)

Proof. The first estimate follows from Proposition 3.1 and (3.22). Similarly, to prove (3
we use Proposition 3.1 and (3.24).�

In particular, the previous lemma provides an upper bound of the total variation
approximate solution uniform inε. By Helly compactness theorem, the above lemmas y
an existence result to (1.1). We now proceed towards an estimate of the Lipschitz co
for Fε uniform in ε.

Lemma 3.10. Fix M > 0, N ∈ N and letT = t0 + Nε. Considerp1,p2 in DM(Gε) with
max{TV(p1|[0,T ]),TV(p2|[0,T ])} � R and a pseudopolygonalγ joining p1 to p2. Then, for
all t ∈ [t0, T ], there exist weights uniformly bounded from above by a quantity depe
fromM andT but not fromε, such that for allt ∈ [t0, T ],∥∥Fε

t0,t
◦ γ

∥∥
ε
� e

∫ t
t0

l̃(τ ) dτ · ‖γ ‖ε, Ξε

(
Fε

t0,t
◦ γ

)
� e

∫ t
t0

l̃(τ ) dτ · Ξε(γ ).

Thanks to the construction above, this proof is entirely similar to that of
Lemma 4.7].

Proof of Theorem 2.3. Let εν = 2−ν for ν ∈ N. For any data construct a sequence
approximate solutions by means of (3.29). A standard argument, see [2,7,8,14,15],
that this is a Cauchy sequence inL1 and that it converges to a weak entropic solut
of (1.1), proving points (1)–(3).

Consider now point (5)(b), withp = (ū, ũ,Ψ ), p′ = (ū′, ũ′,Ψ ′) andΨ,Ψ ′ having Lip-
schitz constantsL,L′. Then∥∥u(t) − u′(t)

∥∥
L1 � d(Ft0,tp,Ft0,tp

′) � C lim
ν→+∞dεν

(
Ft0,tpεν ,Ft0,tp

′
εν

)
� Ce

∫ t
t0

l̃(τ ) dτ
lim dεν

(
pεν ,p′

εν

)
� Ce

∫ t
t0

l̃(τ ) dτ
d(p,p′)
ν→+∞
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n, J. Dif-
� Ce

∫ t
t0

l̃(τ ) dτ (‖ū − ū′‖L1 + ‖Ψ − Ψ ′‖C0

)
+ Ce

∫ t
t0

l̃(τ ) dτ (
1+ max{L,L′})‖ũ − ũ′‖L1.

Point (5)(a) follows, in the casẽu = ũ′, approximatingΨ andΨ ′ through suitable sequenc
of Lipschitz functions converging uniformly on[t0, T ].

Finally, point (6) follows from Lemma 3.9. �
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