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Abstract

In the present paper we will introduce a new approach to multivariate interpolation by employing polyhar-
monic functions as interpolants, i.e. by solutions of higher order elliptic equations. We assume that the data
arise from C∞ or analytic functions in the ball BR . We prove two main results on the interpolation of C∞
or analytic functions f in the ball BR by polyharmonic functions h of a given order of polyharmonicity p.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

Interpolation theory is one of the oldest and most classical subjects of mathematical analysis.
It has been established in the work of Newton, Lagrange and numerous other mathematicians.
Interpolation plays a fundamental role in algebraic geometry and numerical analysis, in particular
in approximation of integrals (quadrature and cubature formulas), in finite element methods, and
others.

There is a number of approaches to multivariate interpolation which are based on multivariate
polynomials and radial basis functions (RBF), see e.g. [6,7,18–20]. From the practical point of
view the problem of interpolation of scattered data has been treated successfully by means of
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tools such as RBF (see e.g. [9,19] and references therein) or polysplines (see [15]), which are in
general not globally analytic.

So far there remains the fundamental problem from the point of view of mathematical analysis
to construct a multivariate interpolation theory based on globally analytic tools. The multivariate
polynomials fail to deliver such tools. Indeed, it is well known and quite clear that multivariate
polynomial interpolation differs in important ways from its univariate counterpart. The main
difference is the fact that the multivariate polynomials fail to constitute a Chebyshev system, cf.
[1,10].

Furthermore, let us recall that in the one-dimensional case the polynomial interpolation is
closely related to a wide class of quadrature formulas. And the existing multivariate interpolation
theories mentioned above do not provide a satisfactory theory of multivariate cubatures.

On the other hand, objects like the solutions of elliptic PDEs, in particular the polyharmonic
functions, have entered the scene of approximation and spline theory (see e.g. [8,11–15] and ref-
erences given therein), and they satisfy a generalized definition of a Chebyshev system, see [16].
Is there an interpolation theory based on solutions of elliptic PDEs which provides a satisfactory
analog to the classical one-dimensional results?

In the present paper we address the above question by considering an interpolation theory
based on polyharmonic functions. Let us recall that a function h is polyharmonic of order p

in a domain D ⊆ R
n if it satisfies the equation Δph(x) = 0 in D, cf. [2,20]. It is important to

emphasize the fact that in order to obtain satisfactory interpolation results one has to reconsider
the whole paradigm of “set of interpolation points.” In particular, in view of the fact that the
space of polyharmonic functions is infinite-dimensional, one may consider interpolation sets Γ

which are the union of hypersurfaces in R
n. Some results towards this interpolation theory have

been obtained in [3,8,11,12]. Let us focus on the analogy with the one-dimensional case: one is
seeking such sets Γ which would correspond to the usual N points {x1, x2, . . . , xN } in R

1 where
a polynomial P of degree � N − 1 solves the interpolation problem

P(xj ) = cj for j = 1,2, . . . ,N

for arbitrary data cj . In particular, P(xj ) = 0 for j = 1,2, . . . ,N implies P ≡ 0. It is clear that
the main problem is to identify multivariate analogs to the “unisolvent” sets {x1, x2, . . . , xN }.

Let us draw the reader’s attention to the obstacles faced by the usual theory of interpolation
with polyharmonic functions, related to the zero sets of polyharmonic functions. In [3,8,12], and
references therein, such sets of interpolation Γ ⊆ D have been considered which are unions of
N concentric spheres. It has been proved in these works that Γ is a set of uniqueness, i.e. if
ΔNh = 0 in D and if h(x) = 0 for all x ∈ Γ then h ≡ 0 in D. So far, attempts to consider sets
Γ with a slightly more general geometry have led to a dead-end. In [3] (see the Russian edition
of 1985) Atakhodzhaev has constructed a set of two closed convex curves γ1 and γ2 in R

2 with
γ1 contained in the convex hull of γ2, such that there exists a (non-trivial) biharmonic function
h with Δ2h = 0 inside γ2 and h(x) = 0 for all x ∈ γ1 ∪ γ2. This result has been dealt with in [8]
as well.

The last fact completely destroys any hope of finding reasonable unisolvent sets living in the
space R

n. In the present paper we formulate a concept of interpolation where the unisolvent sets
live in what we call a “semi-frequency domain” which arises from the Laplace–Fourier spherical
harmonic expansion of a function, see formula (2) below.
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In order to motivate our approach to polyharmonic interpolation let us recall that in the clas-
sical one-dimensional interpolation theory error estimates are proved when data cj are obtained
from a differentiable function, i.e.

cj = f (xj ) for j = 1,2, . . . ,N,

with f ∈ CN+1. In that case one may consider estimates of the error of interpolation

EN [f ](x) = f (x) − PN(x),

see [5,17]. More subtle results are obtained when f is an analytic function and N → ∞.

Now let us turn to the multivariate situation. Corresponding to the univariate case, in order
to obtain a reasonable multivariate polyharmonic interpolation theory we will assume that the
multivariate data arise from C∞ or analytic functions.

Let us first introduce some necessary notions and notations. We will work in the ball BR

defined by

BR := {
x ∈ R

n: |x| < R
}
.

Assume that we have a basis of the space of harmonic homogeneous polynomials of degree k

(called spherical harmonics) which are denoted as Yk�(x) for k = 0,1, . . . , and � = 1,2, . . . , dk,

where

dk = 1

(n − 2)! (n + 2k − 2)(n + k − 3) · · · (k + 1), (1)

see [21]. They are assumed to be orthonormalized with respect to the scalar product

1

ωn−1

∫
Sn−1

u(θ)v(θ) dθ

on the unit sphere, where ωn−1 is the area of the unit sphere S
n−1 in R

n; we have put

x = rθ, r = |x|.
Let us denote by C∞(BR) the set of C∞ functions on a neighborhood of BR. For f ∈

C∞(BR) we have the expansion in spherical harmonics

f (x) =
∞∑

k=0

dk∑
�=1

f̃k,�(r)Yk,�(θ). (2)

We will use the following representation of C∞ and of analytic functions in the ball, see [4,
p. 501, Proposition 1]:

Proposition 1. Let f be in C∞(BR). Then we have the following expansion

f (x) =
∞∑

k=0

dk∑
�=1

fk,�

(
r2)rkYk,�(θ), (3)

where the functions fk,� ∈ C∞([0,R2]). The function f is analytic in some neighborhood of 0
in R

n if and only if there exist t0 > 0 and M > 0 such that, for all indices k � 0, 1 � � � dk, and
j � 0, we have

sup
0�t�t0

∣∣∣∣
(

dj

dtj

)
fk,�(t)

∣∣∣∣ � Mk+j+1j !. (4)

I.e. f is analytic if and only if (4) holds, and in that case each function fk,� is also analytic.
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On the other hand, if h is a function polyharmonic of order N in the ball BR , then we have as
in (3) the expansion

h(x) =
∞∑

k=0

dk∑
�=1

hk,�

(
r2)rkYk,�(θ), (5)

and it is well known (see Sobolev [20], or [15]) that the coefficients hk,�(·) are polynomials of
degree N −1. Thus we may put into correspondence the functions fk,� and the polynomials hk,�,

which is the core of the polyharmonic interpolation.
The polyharmonic interpolation problem is now very natural to formulate: Assume that for

every fixed (k, �) with k = 0,1, . . . and � = 1,2, . . . , dk we have interpolation points which we
assume to be pairwise different:

0 � rk,�,1 < rk,�,2 < · · · < rk,�,N � R.

Then for every (k, �) we find the polynomials hk,� of degree � N − 1 from the one-dimensional
interpolation problems

hk�

(
r2
k,�,j

) = fk�

(
r2
k,�,j

)
for j = 1,2, . . . ,N. (6)

Now the main question is: For which distribution of the points {rk,�,j } and for which functions
f is the series in (5) convergent? If we have convergence then we will call the function h a
polyharmonic interpolant of order N. Our first result says that for every distribution of the points
{rk,�,j } and for a wide class of C∞ functions f we have convergence. Indeed, we have the
following amazing result.

To make our result more transparent we will introduce the following seminorms denoted by
‖ · |N , which are motivated by (4):

‖f |N := lim
k,�

sup
0�t�R

∣∣∣∣ 1

N !
(

dN

dtN

)
fk,�(t)

∣∣∣∣
1

k+N+1

. (7)

We see that

sup
N�0

‖f |N = M,

where M is the constant in (4).

Theorem 2. Let the function f be C∞ in a neighborhood of the closed ball BR and the interpo-
lation knots {rk,�,j }k,�,j satisfy

0 � rk,�,j � R,

where k = 0,1,2, . . . , � = 1,2, . . . , dk and j = 1,2, . . . ,N. If the seminorm ‖f |N satisfies

R‖f |N < 1, (8)

then there exists a unique polyharmonic interpolation function h(rθ) of order N which belongs
to L2(S

n−1) for every r � R, and h belongs to L2(BR).

Assuming (8), the error of interpolation is given by∥∥f (rθ) − h(rθ)
∥∥

L2(S
n−1)

� CR2N‖f |N+1
N .
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We see that in a certain sense the above Theorem 2 presents a complete analog to the one-
dimensional interpolation since we may take arbitrary knots of interpolation rk,�,j . However we
see that condition (8) is a restriction on the arbitrariness of the data f and this is the price which
we have to pay for the infinite-dimensionality of the problem. Does this restriction imply a spe-
cialization in the one-dimensional case? The answer is “no.” Indeed, since the one-dimensional
polyharmonic functions of order N are just polynomials of degree � 2N − 1 we see that condi-
tion (8) is trivially fulfilled due to lim in (7).

There is still another way to consider the one-dimensional case embedded into the multivariate
case, namely, when in the sums (3) and (5) only the term for k = 0 is non-zero. Then f (x) =
f0,1(r

2) and h(x) = h0,1(r
2) where h0,1(·) is a polynomial of degree � N − 1. Indeed, in the

univariate case a C∞ function f is identical with the univariate analytic function f0,1(·) in the
expansion (2), and the knots are r0,1,j with 1 � j � N. We see that in this case restriction (8) is
always satisfied, i.e. Theorem 2 extends the one-dimensional theory in a natural way.

If we change the point of view, and consider f to be fixed, then we have to choose a radius R

small enough to fulfill (8).
As a second result we consider the special case of the knots which are lying on N concentric

spheres in R
n, i.e. when the knots {rk,�,j }k,�,j satisfy

rk,�,j = rj for j = 0,1,2, . . . ,N − 1

for all indices (k, �). Assume that f is a function analytic in a neighborhood of BR, and that the
polyharmonic function h is an interpolant of f , i.e. satisfies (6). From the expansions in spherical
harmonics (3), (5) for every fixed r , and for j = 0,1,2, . . . ,N − 1, we see that the interpolation
problem (6) is equivalent to the following polyharmonic interpolation problem on concentric
spheres

h(rj θ) = f (rj θ) for θ ∈ S
n−1 for j = 0,1,2, . . . ,N − 1. (9)

Let us recall the following result from [20, Theorem XI.3],

Proposition 3. Let ϕ be a function defined and continuous on the unit sphere. A necessary and
sufficient condition for the analyticity of ϕ is that in the representation

ϕ(θ) =
∞∑

k=0

dk∑
�=1

ϕk,�Yk,�(θ)

the coefficients ϕk,� have exponential decay, i.e. there exist two constants K and η > 0, such that

|ϕk,�| � Ke−ηk for every k = 0,1,2, . . . ; � = 1,2, . . . , dk. (10)

Let us put

ϕj (θ) := f (rj θ) for θ ∈ S
n−1.

From the estimate (10) we see that for all j = 0,1,2, . . . ,N − 1 we have a number ηj > 0 such
that ∣∣ϕj

k,�(θ)
∣∣ � Ke−ηj k. (11)

Now we have again the question of convergence of the series (5) and it is solved by the second
main result of our paper:
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Theorem 4. Let the numbers rj with 0 < r0 < r1 < · · · < rN−1 � R be given, and for the para-
meters ηj of the analytic functions ϕj defined in (11) the inequality

R · max
j

(
e−ηj

rj

)
< 1 (12)

be satisfied. Then the polyharmonic function of order of polyharmonicity N satisfying the inter-
polation problem (9) has an L2-convergent series in the ball BR.

Finally, let us remark that the polyharmonic interpolation problem (6) may be considered as
embedded in a more general scheme of interpolation theory [5] in the following way: Let us
introduce the functionals

Lk,�,j (f ) = 1

ωn−1

∫
Sn−1

f (rk,�,j θ)Yk,�(θ) dθ.

Then the polyharmonic interpolation problem (6) may be reformulated as the problem of finding
the polyharmonic function h satisfying the infinite number of equations

Lk,�,j (h) = Lk,�,j (f ) for all k, �, j.

On the other hand, we have a nice demonstration of the polyharmonic paradigm [15] in the
present situation. As we said in the introduction, the expectation that the knots x1, x2, . . . , xN in
the one-dimensional interpolation theory will be replaced by closed surfaces γj , j = 1,2, . . . ,N

in R
n in the polyharmonic interpolation has failed. Let us consider the sets

Γj := {(
(k, �), ρk,�,j

)
: k = 0,1,2, . . . ; � = 1,2, . . . , dk

}
with ρk,�,1 < ρk,�,2 < · · · < ρk,�,N . They may be considered as a multivariate generalization of
the knots x1 < x2 < · · · < xN in the univariate case where xj is replaced by Γj . For a better
understanding of the role of the sets Γj let us make analogy with R

n where the boundary ∂D of
a star shaped domain D in R

n (centered at the origin 0) can be written in spherical coordinates
as

∂D = {
(θ, ρθ ): for all θ ∈ S

n−1}
for some function ρθ � 0 defined on the sphere S

n−1. The results of the present paper show that
the knots of interpolation x1 < x2 < · · · < xN in the one-dimensional interpolation theory have
been replaced by the sequence of monotonely increasing “sphere-like” sets Γ1,Γ2, . . . ,ΓN .

2. Proof of Theorem 2: Polyharmonic interpolant for general knots

Here we provide the proof of Theorem 2.

Proof of Theorem 2. By the definition of h in (5) and (6) hk,� are polynomials of degree � N −1
and we may apply the classical results about the remainder of the interpolation, hence

RN−1(x) = ω(x)

N ! f (N)(ξ), (13)

see [5] or [17, (3.2.10)], and we obtain the formal series

f (x) − h(x) =
∞∑

k=0

dk∑
�=1

Yk�(θ)rk ωk�(r
2)

N ! f
(N)
k� (ξk�);

here as usually ωk,�(r
2) = ∏N

j=1(r
2 − r2 ).
k,�,j
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By the definition of ‖f |N it follows by a standard argument that the L2 norm of the above is
estimated by∥∥f (rθ) − h(rθ)

∥∥2
L2(S

n−1)
=

∫
Sn−1

∣∣f (rθ) − h(rθ)
∣∣2

dθ (14)

�
∞∑

k=0

dk∑
�=1

∣∣rkωk�

(
r2)‖f |k+N+1

N

∣∣2 (15)

� CR4N‖f |2N+2
N

∞∑
k=0

dk∑
�=1

∣∣rk‖f |kN
∣∣2

.

The convergence of the last series follows from the assumption (8). Hence follows the L2-
convergence of the series for the polyharmonic function h. Also the estimate for the error of
interpolation follows directly. �
3. Proof of Theorem 4: Polyharmonic interpolation on N concentric spheres

Next we prove Theorem 4.

Proof of Theorem 4. Let us write the expansion of ϕj in spherical harmonics

ϕj (θ) =
∞∑

k=0

dk∑
�=1

ϕ
j

k,�Yk,�(θ). (16)

Since the polyharmonic function h interpolating ϕj on the sphere of radius rj has the form

h(x) =
∑
k,�

Yk�(θ)rkhk�

(
r2),

where hk� are polynomials of degree N − 1, we see that for all k = 0,1,2, . . . , and � =
1,2, . . . , dk , and for all j = 0,1,2, . . . ,N − 1 we need to have

rk
j hk�

(
r2
j

) = ϕ
j
k�;

hence,

hk�

(
r2
j

) = ϕ
j

k�

rk
j

.

We have to prove that the series for h is L2-convergent, i.e.

∑
k,�

R∫
0

∣∣rkhk�

(
r2)∣∣2

dr < ∞.

First we will find estimates for all hk,�. We have the explicit representation for the polynomials
hk� in the form given in Krylov [17, p. 42] and Davis [5, p. 33], where we put xj = r2

k,�,j . Let us
put for the Lagrange fundamental functions

ω
k,�
j

(
r2) := (r2 − x0) · · · (r2 − xj−1)(r

2 − xj+1) · · · (r2 − xN−1)

(x − x ) · · · (x − x )(x − x ) · · · (x − x )
.

j 0 j j−1 j j+1 j N−1
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Then we have

hk�

(
r2) =

N−1∑
j=0

ω
k,�
j

(
r2)ϕ

j
k�

rk
j

. (17)

Bearing in mind that r0 < r1 < · · · < rN−1, we obtain (with the same K for all j ’s and ηj ’s), the
following estimate

∣∣hk�

(
r2)∣∣ � K

N−1∑
j=0

∣∣ωk,�
j

(
r2)∣∣e−ηj k

rk
j

� K1

δ
R2N

N−1∑
j=0

e−ηj k

rk
j

;

here K1 > 0 is a suitable constant and δ := minj=1,2,...,N−1(|xj − xj−1|). Hence we obtain the
estimate

∞∑
k=0

dk∑
�=1

R∫
0

∣∣rkhk�

(
r2)∣∣2

dr �
∞∑

k=0

dk∑
�=1

R∫
0

r2k

∣∣∣∣∣K1

δ
R2N

N∑
j=0

e−ηj k

rk
j

∣∣∣∣∣
2

dr

�
(

K1

δ
R2N

)2 ∞∑
k=0

dk∑
�=1

∣∣∣∣∣
N∑

j=0

e−ηj k

rk
j

∣∣∣∣∣
2
R2k+1

2k + 1

�
(

K2

δ
R2N

)2 ∞∑
k=0

kn−2

∣∣∣∣∣
N∑

j=0

e−ηj k

rk
j

∣∣∣∣∣
2
R2k+1

2k + 1
. (18)

To obtain the last inequality we have used the estimate

dk � Ckn−2

for some constant C > 0 which follows from (1). Putting

M = max
j

(
e−ηj

rj

)
we obtain the estimate

N∑
j=0

e−ηj k

rk
j

� C(N + 1)Mk.

The convergence of the series in (18) follows from the assumption

R · max
j

(
e−ηj

rj

)
< 1. �

Remark 5. If

R max
j

(
e−ηj

rj

)
> 1,

then in general one may not expect that the series representing the polyharmonic interpolant h

will be convergent. This will be shown by the following example.
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Example. We assume that for all j we have

e−ηj

rj
= C, (19)

so that C = maxj (
e
−ηj

rj
). From (17) it follows that

hk�

(
r2) = Ck

N−1∑
j=0

ω
k,�
j

(
r2),

and hence
R∫

0

∣∣rkhk�

(
r2)∣∣2

dr = C2k

R∫
0

r2k

∣∣∣∣∣
N∑

j=0

ω
k,�
j

(
r2)∣∣∣∣∣

2

dr.

According to the basic properties of the Lagrange coefficients (see e.g. [17, pp. 42–43])
N−1∑
j=0

ω
k,�
j

(
r2) = 1,

so we get
R∫

0

∣∣rkhk�

(
r2)∣∣2

dr = C2k

R∫
0

r2k dr = C2k R2k+1

2k + 1
.

Finally, for a suitable constant C1 > 0 the inequality

∑
k,�

R∫
0

∣∣rkhk�

(
r2)∣∣2

dr � C1

∞∑
k=0

kn−2C2k R2k+1

2k + 1

holds true and the last series is divergent since CR > 1. The proof is finished using assump-
tion (19).

If assumption (19) does not hold then we can see by standard asymptotics arguments that for
large k we will have

hk�

(
r2) ≈ Ck

N−1∑
j=0

ω
k,�
j

(
r2),

and hence
R∫

0

∣∣rkhk�

(
r2)∣∣2

dr � C2C
2k R2k+1

2k + 1

for a suitable C2 > 0. This proves the divergence of the series.
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