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We present an inertial proximal method for solving an inclusion involving a nonmonotone
set-valued mapping enjoying some regularity properties. More precisely, we investigate the
local convergence of an implicit scheme for solving inclusions of the type T (x) � 0 where T
is a set-valued mapping acting from a Banach space into itself. We consider subsequently
the case when T is strongly metrically subregular, metrically regular and strongly regular
around a solution to the inclusion. Finally, we study the convergence of our algorithm
under variational perturbations.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In [1], Alvarez studied the asymptotic behavior of the solutions of a second-order evolution equation with linear damping
and convex potential. More precisely, he considered the following differential system in a Hilbert space H :

u′′(t) + γ u′(t) + ∇Φ
(
u(t)

) = 0, (1.1)

where γ > 0 and Φ : H → R is a convex differentiable function. Since most differential equations cannot be solved explicitly,
he considered the following implicit discretization of (1.1)

uk+1 − 2uk + uk−1

h2
+ γ

uk+1 − uk

h
+ ∇Φ(uk+1) = 0, (1.2)

where the positive number h stands for the so-called step size parameter. Note that relation (1.2) can be rewritten in the
following way

uk+1 − uk − α(uk − uk−1) + λ∇Φ(uk+1) = 0, (1.3)

where α and λ are positive numbers depending on h and γ . Alvarez called relation (1.3) the inertial proximal method and
investigated also the case when the function Φ is not necessarily differentiable by replacing the derivative of Φ at uk+1
in (1.3) with ∂Φ(uk+1) (∂Φ denoting the standard convex subdifferential of the function Φ). Next, Alvarez and Attouch [2]
studied the case when ∇Φ is replaced with a maximal monotone operator A. More precisely, they considered the algorithm

xk+1 − xk − αk(xk − xk−1) + λk A(xk+1) � 0, (1.4)
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where αk ∈ [0,1) and λk > 0 for all k. Note that when αk = 0 for k = 0,1,2, . . . then (1.4) corresponds to the standard
proximal iteration (see, e.g., [20]):

xk+1 − xk

λk
+ A(xk+1) � 0. (1.5)

Alvarez and Attouch proved that, under several suitable assumptions involving the sequences αk and λk , there exists a point
x̂ ∈ A−1(0) such that the sequence xk generated by (1.4) is weakly convergent to x̂ whenever the operator A : H ⇒ H is
maximal monotone and such that A−1(0) �= ∅. To our knowledge, the inertial proximal method has not been investigated
outside the (maximal) monotone setting. Carrying out such a study is the purpose of this work. Indeed, there is an inter-
est in considering and studying such a method without monotonicity. First, because monotonicity forces us to work with
mappings acting between a space and its dual, which usually yields to restrict the algorithm for mappings on a Hilbert
space. Second, because in some cases monotonicity turns out to be rather a strong assumption, excluding several mappings
that are metrically regular. As a simple example, consider a continuously differentiable function f : R

n → R
n . From [21,

Proposition 12.3], f is monotone if and only if the Jacobian ∇ f (x) is positive-semidefinite at each x. On the other hand,
a consequence of the Lyusternik–Graves theorem (see Theorem 2.2, Section 2) is that f is metrically regular at some point
x̄ if and only if ∇ f (x̄) is surjective. Therefore, metric regularity does not imply monotonicity.

Furthermore, iterative methods as (1.2) and (1.5) are closely tied to some continuous differential systems. Indeed, as we
mentioned it at the very beginning of this introduction, the iteration (1.2) takes its inspiration from (1.1) while relation (1.5)
can be interpreted as an implicit one-step discretization method for the following evolution differential inclusion

x′(t) + A
(
x(t)

) � 0, a.e. t � 0. (1.6)

When A is the subdifferential of a closed proper convex function f : H → R (i.e., A = ∂ f ) we know that under suitable con-
ditions both the trajectory {x(t) : t → ∞} of (1.6) and the proximal sequence xk generated by (1.5) converge to a minimizer
of f . Moreover, in [1], Alvarez proved that whenever the function Φ is convex and bounded from below, the trajectory
{u(t) : t → ∞} defined by (1.1) is minimizing for Φ . If the infimum of Φ on H is attained, then u(t) converges weakly
to a minimizer of Φ . Here also, the implicit discretization (1.2) of (1.1) generates a sequence xk which converges weakly
to a minimizer of the mapping Φ . Thus, one may observe, that in many situations the solution trajectories converge to
a critical point of the mapping involved in the differential system, in addition, the asymptotic behavior of these solutions
is preserved by the solutions of the corresponding discrete scheme. If the function under consideration is not convex, the
discrete method shall converge to a critical point, i.e., a solution to the inclusion T (x) � 0 where T is some subdifferential
that is not a maximal monotone operator. For this reason, it is worth studying discrete algorithms for solving T (x) � 0 when
T is a nonmonotone operator satisfying, for instance, some metric regularity properties (for developments on the metric
regularity of subdifferentials one could refer to [3,24]).

In this paper, we study the local convergence of the inertial proximal algorithm for solving the inclusion

T (x) � 0, (1.7)

where T is a set-valued mapping acting from a general Banach space X into itself. The method under consideration is the
following: given x0 and x1 in X find a sequence xn by applying the iteration

λn(xn+1 − xn − en) − λnμn(xn − xn−1) + T (xn+1 − en) � 0 for n = 1,2, . . . .

The sequence en is a so-called error sequence having to go to zero. In Section 3, we will discuss the very meaning of this
sequence and we will also make precise the properties of the sequences λn and μn .

In the sequel, we subsequently, investigate the case when the mapping T is metrically regular, strongly metrically regular
and strongly metrically subregular around an element (x̄,0) in the graph of T . Contrary to [2, Theorem 2.1] we obtain the
strong convergence of the sequence xn generated by the above iteration to a solution to the inclusion (1.7). Moreover, most
of our results are local since the initial guesses x0 and x1 must be sufficiently close to a solution to the problem.

Throughout, X and Y are Banach spaces. A set-valued mapping F from X into Y is denoted by F : X ⇒ Y . Its inverse F −1

is defined as x ∈ F −1(y) ⇔ y ∈ F (x). The set gph F = {(x, y) ∈ X × Y | y ∈ F (x)} stands for the graph of F and we denote by
d(x, C) the distance from a point x to a set C , that is, d(x, C) = infy∈C ‖x − y‖. The closed ball of radius r centered at a is
denoted by Br(a).

The rest of this paper consists of three sections. Section 2 is devoted to some basic definitions of metric regularity. The
third section, the main part of this work, deals with the convergence analysis of the inertial proximal method for mappings
enjoying metric regularity properties. Finally, we discuss the stability of the algorithm subjected to variational perturbations
in Section 4.

2. Metric regularity

The concept of metric regularity of set-valued mappings goes back to the end of the 1970s but it sources come from
some older classical theorems of differential calculus and linear analysis. The Banach open mapping theorem [6], the tangent
space theorem of Lyusternik [18] and the surjection theorem of Graves [14] are among them. The definition of the metric
regularity of a set-valued mapping reads as follows.
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Definition 2.1. A mapping F : X ⇒ Y is said to be metrically regular at x̄ for ȳ if F (x̄) � ȳ and there exist some positive
constants κ,a and b such that

d
(
x, F −1(y)

)
� κd

(
y, F (x)

)
for all x ∈ Ba(x̄), y ∈ Bb( ȳ). (2.1)

The infimum of κ for which (2.1) holds is the regularity modulus denoted reg F (x̄| ȳ); the case when F is not metrically
regular at x̄ for ȳ corresponds to reg F (x̄| ȳ) = ∞. Smaller values of κ correspond to more favorable behavior. The metric
regularity of a mapping F at x̄ for ȳ is known to be equivalent to the Aubin continuity of the inverse F −1 at ȳ for x̄ (see,
e.g., [21]). Recall that a set-valued map Γ : Y ⇒ X is Aubin continuous at ( ȳ, x̄) ∈ gphΓ (see [4]) if there exist positive
constants κ,a and b such that

e
(
Γ (y′) ∩ Ba(x̄),Γ (y)

)
� κ‖y′ − y‖ for all y, y′ ∈ Bb( ȳ), (2.2)

where e(A, B) denotes the excess from a set A to a set B and is defined as e(A, B) = supx∈A d(x, B).
A central result in the theory of metric regularity is the Lyusternik–Graves of which the Banach open mapping theorem is

an immediate consequence. It goes back to the works of Dmitruk et al. [8] who proved it in the single-valued framework. In
the general form of this theorem we present next, and which is from [12] (see also [15,16]), we use the following convention:
we say that a set is locally closed at one of its points if some neighborhood of that point has closed intersection with the
set.

Theorem 2.2 (Extended Lyusternik–Graves). Consider a mapping F : X ⇒ Y and any (x̄, ȳ) ∈ gph F at which gph F is locally closed.
Consider also a function g : X → Y which is Lipschitz continuous near x̄ with a Lipschitz constant δ. If reg F (x̄| ȳ) < κ < ∞ and
δ < κ−1 , then

reg(g + F )
(
x̄|g(x̄) + ȳ

)
�

(
κ−1 − δ

)−1
.

Now we introduce the next regularity property for set-valued mapping that we will need in the sequel, to this end, let
us recall the notion of graphical localization. A graphical localization of a mapping F : X ⇒ Y at (x̄, ȳ) ∈ gph F is a mapping
F̃ : X ⇒ Y such that gph F̃ = (U × V ) ∩ gph F for some neighborhood U × V of (x̄, ȳ).

Definition 2.3. A mapping F : X ⇒ Y is strongly metrically regular at x̄ for ȳ if the metric regularity condition in Defini-
tion 2.1 is satisfied by some κ and neighborhoods U of x̄ and V of ȳ and, in addition, the graphical localization of F −1 with
respect to U and V is single-valued. Equivalently, the graphical localization V � y 
→ F −1(y) ∩ U is a Lipschitz continuous
function whose Lipschitz constant is equal to κ .

Obviously, the strong regularity implies the metric regularity by definition. Nevertheless, in some cases, metric regularity
and strong regularity are equivalent. In particular, this equivalence holds for mappings of the form of the sum of a smooth
function and the normal cone mapping over a polyhedral convex set (see, e.g., [11]). Moreover, for any set-valued mapping
that is locally monotone near the reference point metric regularity at that point implies, and hence is equivalent to, strong
regularity. This is a consequence of a result established by Kenderov [17, Proposition 2.6] about the single-valuedness of
lower semicontinuous monotone mappings.

Furthermore, see [21, Proposition 12.54], any maximal monotone mapping T : R
n ⇒ R

n which is strongly monotone is
strongly regular at the unique solution of T (x) � 0.

Now we briefly present the strong subregularity which is the last regularity property we consider here.

Definition 2.4. A mapping F : X ⇒ Y is said to be strongly metrically subregular at x̄ for ȳ if (x̄, ȳ) ∈ gph F and there exists
a constant κ > 0 along with a neighborhood U of x̄ such that

‖x − x̄‖ � κd
(

ȳ, F (x)
)

for all x ∈ U .

This property is equivalent to the “local Lipschitz property at a point” of the inverse mapping, a property first formally
introduced in [10]. Note that Dontchev and Rockafellar [13, Definition 5.1] define a strongly subregular set-valued mapping
F : X ⇒ Y (at x̄ for ȳ) as a mapping satisfying

‖x − x̄‖ � κd
(

ȳ, F (x) ∩ V
)

for all x ∈ U

for some neighborhoods U of x̄ and V of ȳ. It turns out that this last definition is equivalent to Definition 2.4 (see [3,
Remark 3.4]).

For more details on metric regularity and applications to variational problems one can refer to [5,13,16] and the mono-
graphs [19,21].
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3. Convergence analysis

From now on, we assume that the solution set of the inclusion (1.7) is nonempty, i.e., there exists an element x̄ in T −1(0)

and we consider the following implicit scheme for solving this inclusion:

λn(xn+1 − xn − en) − λnμn(xn − xn−1) + T (xn+1 − en) � 0 for n = 1,2, . . . . (3.1)

In the above, λn is a non-increasing sequence of positive numbers bounded above by some λ̄ in (0,1) and such that λn ↘ 0
while μn stands for a sequence bounded above by some μ̄ ∈ (0,1).

The sequence en is a so-called error sequence having to go to zero. More precisely, a routine computation shows that
relation (3.1) is equivalent to

xn+1 ∈ (T + λn I)−1(λnxn + λnμn(xn − xn−1)
) + en for n = 1,2, . . . . (3.2)

Hence, en measures the error made in the computation of (T + λn I)−1(λnxn + λnμn(xn − xn−1)), incorporating such an error
provides a more realistic model from a practical point of view.

To prove some of our convergence results, we will employ the following set-valued generalization (established in [9]) of
a local version of Banach fixed point theorem.

Theorem 3.1. Let (X,d) be a complete metric space and consider a set-valued mapping Φ : X ⇒ X, a point x̄ ∈ X, and nonnegative
scalars α and θ such that 0 � θ < 1, the sets Φ(x) ∩ Bα(x̄) are closed for all x ∈ Bα(x̄) and the following conditions hold:

(i) d(x̄,Φ(x̄)) < α(1 − θ);
(ii) e(Φ(u) ∩ Bα(x̄),Φ(v)) � θd(u, v) for all u, v ∈ Bα(x̄).

Then Φ has a fixed point in Bα(x̄). That is, there exists x ∈ Bα(x̄) such that x ∈ Φ(x).

First, we investigate the case when the mapping T is strongly metrically subregular at x̄ for 0. This implies, in particular,
that the point x̄ is an isolated solution to the inclusion (1.7).

Proposition 3.2. Assume that the mapping T is strongly metrically subregular at x̄ for 0. Then there is a neighborhood Ω of x̄ such
that any sequence xn generated by (3.1) and whose elements are in Ω strongly converges to x̄.

Proof. Let a and κ be positive numbers such that the mapping T is strongly metrically subregular at x̄ for 0 with constant κ
and neighborhood Ba(x̄). Now, suppose that (3.1) generates a sequence xn such that xn ∈ Bα(x̄) for all n where α ∈ (0,a) is
such that xn+1 − en ∈ Ba(x̄) for n large enough. From the definition of the strong subregularity we have

‖x − x̄‖ � κd
(
0, T (x)

)
for all x ∈ Ba(x̄).

Then

‖xn+1 − en − x̄‖ � κ
∥∥λnμn(xn − xn−1) − λn(xn+1 − xn − en)

∥∥ � κλn
(
2μna + 2a + ‖en‖

)
.

Since both of the sequences λn and ‖en‖ go to zero we get the desired conclusion. �
The interest of Proposition 3.2 arises from the fact that any sequence (whose elements are close enough to the solution x̄)

strongly converges to x̄; nevertheless it is somewhat lessened by the fact that its statement does not guarantee that the
whole sequence xn stays close to x̄ whenever the initial guesses x0 and x1 are near x̄. It turns out that we are able to
avoid this drawback by strengthening the regularity property of the mapping T . Actually the strong metric subregularity of
T corresponds to a calmness-type property of its inverse T −1 (see, e.g., [13]); but if we assume that the set-valued mapping
T −1 is Lipschitz continuous then we can improve the conclusions of Proposition 3.2. Before stating explicitly this result we
have to collect some background material.

The Lipschitz continuity of a set-valued mapping can be formulated in terms of Pompeiu–Hausdorff distance between
sets, but it can also be expressed through the regular distance function as stated below.

Definition 3.3. Let X and Y be two Banach spaces. Consider a closed-valued mapping F : Y ⇒ X and a nonempty subset
D of the domain of F (recall that the domain of F is the set dom F = {y ∈ Y | F (y) �= ∅}). Then F is Lipschitz continuous
relative to D with constant κ if

d
(
x, F (y)

)
� κd

(
y, F −1(x) ∩ D

)
for all x ∈ X and y ∈ D. (3.3)
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An important class of Lipschitz continuous set-valued mappings is given by polyhedral convex mappings, i.e., mappings
whose graph is a polyhedral convex set. More precisely, Walkup and Wets [23] showed in 1969 that any polyhedral mapping
is Lipschitz continuous relative to its domain. Note that polyhedral mappings are a useful tool in linear programming and,
in particular, they may describe the solution set of a system of inequalities.

Lemma 3.4. Let S : X ⇒ X be a set-valued mapping, assume that its inverse S−1 is Lipschitz continuous relative to its domain dom S−1

with constant κ and such that S−1(0) = {x̄}. Let λn be the sequence defined at the very beginning of the present section. If, in addition,
the sequence λn is chosen such that κλ̄ < 1 then, for all positive integers n and all x ∈ X we have

‖x − x̄‖ � κ

1 − κλn
d
(
λnx̄, (S + λn I)(x)

)
, (3.4)

where I denotes the identity mapping on X.

Proof. We denote by D the domain of the set-valued mapping S−1. Since S−1(0) = {x̄}, the definition of the Lipschitz
continuity of S−1 yields

‖x − x̄‖ � κd
(
0, S(x) ∩ D

)
, ∀x ∈ X . (3.5)

Fix a positive integer n and let x ∈ X . If (S + λn I)(x) = ∅ then assertion (3.4) holds and there is nothing more to prove.
Otherwise pick z ∈ (S + λn I)(x); it follows that z − λnx ∈ S(x) ∩ D then using (3.5) we get ‖x − x̄‖ � k‖z − λnx‖. Hence,

‖x − x̄‖ � k
∥∥z − λnx̄ − λn(x − x̄)

∥∥.

Thus we have proved that, for any z ∈ (S + λn I)(x), one has

‖x − x̄‖ � κ

1 − κλn
‖z − λnx̄‖.

And it yields

‖x − x̄‖ � κ

1 − κλn
d
(
λnx̄, (S + λn I)(x)

)
,

that is, assertion (3.4) holds. �
We are now able to state a convergence result of our method in the case when the mapping T −1 is Lipschitz continuous.

Proposition 3.5. Assume that the mapping T −1 is Lipschitz continuous relative to its domain with constant κ and such that
T −1(0) = {x̄}. If, in addition, the sequence λn is chosen such that κλ̄ < 1 then, any bounded sequence xn satisfying (3.1) strongly
converges to x̄.

Proof. Let xn be a bounded sequence satisfying (3.1). Then one has

λnμn(xn − xn−1) + λnxn ∈ (T + λn I)(xn+1 − en) for n = 1,2, . . . . (3.6)

Moreover from Lemma 3.4 we get, for n = 1,2, . . .

‖xn+1 − en − x̄‖ � κ

1 − κλn
d
(
λnx̄, (T + λn I)(xn+1 − en)

)
.

Hence, thanks to relation (3.6), we infer

‖xn+1 − en − x̄‖ � κλn

1 − κλn

∥∥x̄ − xn − μn(xn − xn−1)
∥∥, for n = 1,2, . . .

which yields

‖xn+1 − x̄‖ � κλn

1 − κλn

∥∥x̄ − xn − μn(xn − xn−1)
∥∥ + ‖en‖, for n = 1,2, . . . (3.7)

that is, the sequence xn converges to x̄. �
Proposition 3.5 clearly improves the conclusions of Proposition 3.2 since the sequence xn does not need to be close to x̄.

Besides, thanks to relation (3.7), we know that whenever the initial guesses x0 and x1 are in a neighborhood Ω of x̄, the
whole sequence xn lies in Ω (under some suitable technical conditions on the sequences λn and μn).

Next comes a result regarding the convergence of the algorithm (3.1) for metrically regular mappings.
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Theorem 3.6. Assume that the mapping T is metrically regular at x̄ for 0 with neighborhoods Ba(x̄) and Bb(0) and is such that its
regularity modulus reg T (x̄|0) is less than 1/(1 + λ̄). In addition, we suppose that the graph of T is locally closed at (x̄,0) and that the
following conditions are both fulfilled:

(i) λ̄(2a(1 + μ̄) + ‖en‖) � b, for n = 1,2, . . . ,
(ii) λ̄(a(1 + 2μ̄) + ‖en‖) + ‖en‖/κ � a, for n = 1,2, . . . .

Then there is a neighborhood Ω of x̄ such that for any elements x0 and x1 in Ω there exists a sequence xn generated by (3.1), whose
elements are in Ω , and which is strongly convergent to x̄.

Proof. There is a positive constant κ such that the mapping T is metrically regular at x̄ for 0 with a constant reg T (x̄|0) <

κ < 1/(1 + λ̄) and neighborhoods Ba(x̄) and Bb(0). Now pick x0 and x1 in Ba(x̄), then for any x ∈ Ba(x̄) we have
∥∥−λ1(x − x1 − e1) + λ1μ1(x1 − x0)

∥∥ � λ1‖x − x1‖ + λ1‖e1‖ + λ1μ1‖x1 − x0‖
� λ1

(
2a(1 + μ1) + ‖e1‖

)
� λ̄

(
2a(1 + μ̄) + ‖e1‖

)
.

Thanks to condition (i) in Theorem 3.6 we have λ̄(2a(1 + μ̄) + ‖e1‖) � b. Hence,

−λ1(x − x1 − e1) + λ1μ1(x1 − x0) ∈ Bb(0). (3.8)

Now we consider the mapping Φ1 defined by

Φ1 : X � x 
−→ T −1(−λ1(x − x1 − e1) + λ1μ1(x1 − x0)
) + e1.

We intend to prove that Φ1 admits a fixed point x2 in some neighborhood of x̄. To this end, we show that the mapping
Φ1 satisfies the assumptions of the Banach fixed point theorem (cf. Theorem 3.1). Using (3.8) and the metric regularity of T
at x̄ for 0 we get

d
(
x̄,Φ1(x̄)

) = d
(
x̄, T −1(−λ1(x̄ − x1 − e1) + λ1μ1(x1 − x0)

) + e1
)

� d
(
x̄, T −1(−λ1(x̄ − x1 − e1) + λ1μ1(x1 − x0)

)) + ‖e1‖
� κd

(−λ1(x̄ − x1 − e1) + λ1μ1(x1 − x0), T (x̄)
) + ‖e1‖

� κ
∥∥−λ1(x̄ − x1 − e1) + λ1μ1(x1 − x0)

∥∥ + ‖e1‖
� κ

(
λ1‖x̄ − x1 − e1‖ + λ1μ1‖x1 − x0‖ + ‖e1‖

κ

)
.

Then, setting α1 := λ1‖x̄ − x1 − e1‖ + λ1μ1‖x1 − x0‖ + ‖e1‖/κ and keeping in mind that κ < 1/(1 + λ̄) � 1/(1 + λ1) we get

d
(
x̄,Φ1(x̄)

)
� α1(1 − κλ1). (3.9)

Moreover, we have α1 � λ̄(‖x̄ − x1 − e1‖ + μ̄‖x1 − x0‖) + ‖e1‖/κ . Then,

α1 � λ̄
(
a(1 + 2μ̄) + ‖e1‖

) + ‖e1‖/κ.

From assertion (ii) in Theorem 3.6 it follows that α1 � a.
Further, let u, v ∈ Bα1 (x̄) and remind that, from the very beginning of this proof, we have

∥∥−λ1(x − x1 − e1) + λ1μ1(x1 − x0)
∥∥ � b, for all x ∈ Ba(x̄).

Since α1 � a both u and v are in Ba(x̄) thus
∥∥−λ1(u − x1 − e1) + λ1μ1(x1 − x0)

∥∥ � b, (3.10)

and
∥∥−λ1(v − x1 − e1) + λ1μ1(x1 − x0)

∥∥ � b. (3.11)

Hence, from relations (3.10) and (3.11) together with the Aubin continuity of T −1 at (0, x̄) we have

e
(
Φ1(u) ∩ Bα1(x̄),Φ1(v)

)
� κλ1‖u − v‖. (3.12)

Therefore, from (3.9) and (3.12), there exists a fixed point x2 ∈ Φ1(x2) ∩ Bα1(x̄), i.e.,

x2 ∈ Bα1 (x̄) and λ1(x2 − x1 − e1) − λ1μ1(x1 − x0) + T (x2 − e1) � 0. (3.13)



M.H. Geoffroy / J. Math. Anal. Appl. 350 (2009) 147–156 153
If x2 = x̄ there is nothing more to prove. Otherwise, for any x ∈ Ba(x̄), we have
∥∥−λ2(x − x2 − e2) + λ2μ2(x2 − x1)

∥∥ � λ̄
(
2a(1 + μ̄) + ‖e2‖

)
� b.

Then consider the mapping Φ2 : x 
−→ T −1(−λ2(x − x2 − e2) + λ2μ2(x2 − x1)) + e2. By the metric regularity of T at x̄ for 0
one has

d
(
x̄,Φ2(x̄)

) = d
(
x̄, T −1(−λ2(x̄ − x2 − e2) + λ2μ2(x2 − x1)

) + e2
)

� κ

(
λ2‖x̄ − x2 − e2‖ + λ2μ2‖x2 − x1‖ + ‖e2‖

κ

)

� α2(1 − κλ2),

where α2 := λ2‖x̄ − x2 − e2‖ + λ2μ2‖x2 − x1‖ + ‖e2‖/κ .
Take u and v in Bα2(x̄). The Aubin continuity of T −1 at (0, x̄) yields

e
(
Φ2(u) ∩ Bα2(x̄),Φ1(v)

)
� κλ2‖u − v‖. (3.14)

Hence, by Theorem 3.1, there exists x3 ∈ Φ2(x3) ∩ Bα2(x̄) and we have

‖x3 − x̄‖ � λ2‖x̄ − x2 − e2‖ + λ2μ2‖x2 − x1‖ + ‖e2‖/κ.

The induction step is now clear. Starting with two iterates xn−1 and xn in Ba(x̄) we prove that the mapping

Φn : X � x 
−→ T −1(−λn(x − xn − en) + λnμn(xn − xn−1)
) + en

admits a fixed point xn+1 ∈ Bαn (x̄) where

αn := λn‖x̄ − xn − en‖ + λnμn‖xn − xn−1‖ + ‖en‖/κ � a,

that is, xn+1 is such that

λn(xn+1 − xn − en) − λnμn(xn − xn−1) + T (xn+1 − en) � 0 (3.15)

and

‖xn+1 − x̄‖ � λn‖x̄ − xn − en‖ + λnμn‖xn − xn−1‖ + ‖en‖/κ. (3.16)

Therefore we are able to construct a sequence xn satisfying conditions (3.15) and (3.16). Passing to the limit in (3.16)
when n goes to ∞ we obtain the strong convergence of the sequence xn to the solution x̄ to the inclusion (1.7). �

The following theorem is of interest since it asserts that, whenever the mapping T is strongly metrically regular at x̄
for 0, we are able to define explicitly the sequence xn , whose existence is ensured by Theorem 3.6.

Theorem 3.7. Assume that the mapping T is strongly metrically regular at x̄ for 0 with neighborhoods Ba(x̄) and Bb(0) and is such
that its regularity modulus reg T (x̄|0) is less than 1/(1 + λ̄). In addition, we suppose that the graph of T is locally closed at (x̄,0) and
that the following conditions are both fulfilled:

(i) λ̄(2a(1 + μ̄) + ‖en‖) � b, for n = 1,2, . . . ,
(ii) λ̄(a(1 + 2μ̄) + ‖en‖) + ‖en‖/κ � a, for n = 1,2, . . . .

Then the conclusion of Theorem 3.6 holds and the sequence xn is uniquely determined by the following equality

xn+1 = (T + λn I)−1(λnxn + λnμn(xn − xn−1)
) + en, eventually. (3.17)

Proof. By repeating the proof of the Theorem 3.6 we get the existence of a sequence xn whose elements are in some ball
centered at x̄ and satisfy (3.1) with the same properties as in Theorem 3.6. It remains to show that the sequence xn is
unique. To this end it suffices to prove that relation (3.17) holds. Since the sequence xn satisfies (3.1) we have

xn ∈ (T + λn I)−1(λnxn + λnμn(xn − xn−1)
) + en for all n.

Then, to complete the proof, we only need to show that the set-valued mapping (T + λn I)−1 has a single-valued graphical
localization in some suitable neighborhoods. For this purpose, we are going to use the same argument that has been used
in [13, Theorem 4.3] to study the stability of strong regularity with respect to single-valued perturbations. Since T is strongly
metrically regular at x̄ for 0, it has the single-valued Lipschitzian inverse property there, i.e., there exist positive constants α
and β such that the graphical localization
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y � Bβ(0) 
→ T −1(y) ∩ Bα(x̄) (3.18)

is Lipschitz continuous with some positive constant κ and single-valued on Bβ(0). In the sequel, for any y ∈ Bβ(0), we
denote by s(y) the unique element of T −1(y)∩Bα(0). Then we consider the following graphical localization of the mapping
(T + λn I)−1:

y � Bδ(0) 
→ (T + λn I)−1(y) ∩ Bδ(x̄), (3.19)

where δ is a positive number satisfying δ < min{β/3,α}. Now, it is our purpose to show that the mapping defined in (3.19)
is single-valued. To this end we assume that it is not single-valued, i.e., there is an element y ∈ Bδ(0) such that there exist
two distinct points x and x′ both of them in (T + λn I)−1(y) ∩ Bδ(x̄). Thus we have in particular x ∈ T −1(y − λnx) ∩ Bδ(x̄).
Moreover, since λn is a non-increasing sequence going to 0, for n large enough, we have

‖y − λnx‖ � ‖y‖ + λn‖x − x̄‖ + λn‖x̄‖ � (1 + λn)δ + λn‖x̄‖ � 3δ < β.

Hence, y − λnx ∈ Bβ(0); then observing that Bδ(x̄) ⊂ Bα(x̄) and using the single-valuedness of the graphical localization
given in (3.18) we obtain that x = s(y − λnx). A similar argument yields x′ = s(y − λnx′) and it follows

‖x − x′‖ = ∥∥s(y − λnx) − s(y − λnx′)
∥∥ � κ

∥∥(y − λnx) − (y − λnx′)
∥∥ � κλn‖x − x′‖ < ‖x − x′‖,

which is absurd then the graphical localization of (T + λn I)−1 in (3.19) is single-valued. To complete the proof it remains to
show that λnxn + λnμn(xn − xn−1) ∈ Bδ(0) for n large enough. This is a straightforward consequence of the convergence of
λn to zero and the boundedness of the sequence xn . �
4. The perturbed algorithm

In this section we shall show that the inertial proximal algorithm is stable with respect to certain variational perturbations
of the mappings T . By variational perturbations of T we mean a sequence Tn : X ⇒ X of set-valued mappings converging
to T in some sense. We are thus led to associate to the inclusion (1.7) the following inertial proximal method where the
mapping T has been replaced with Tn:

λn(xn+1 − xn − en) − λnμn(xn − xn−1) + Tn(xn+1 − en) � 0 for n = 1,2, . . . . (4.1)

Before stating our first result we briefly present the convergence notion we shall use in the sequel. The lower and upper
limits of a sequence An of subsets of a normed space, with unit ball B, are defined by:

lim inf
n

An =
{

x ∈ X
∣∣ lim sup

n→∞
d(x, An) = 0

}
= {x ∈ X | ∃xn ∈ An with xn → x};

lim sup
n

An =
{

x ∈ X
∣∣ lim inf

n→∞ d(x, An) = 0
}

= {x ∈ X | ∃n1 < n2 < · · · in N, ∃xnk ∈ Ank with xnk → x}.

Definition 4.1. A sequence of subsets An is said to set-converge to a subset A, written An → A, provided lim supn An ⊂ A ⊂
lim infn An .

Set convergence in this sense is known more specifically as Painlevé–Kuratowski convergence. A sequence An of subsets
of X is said to be lower set-convergent to A if A ⊂ lim infn An and upper set-convergent to A if lim supn An ⊂ A. Obviously,
a sequence An set-converges to A if and only if it is both lower and upper set-convergent to A.

The following statement asserts that, regardless of the regularity properties of the mapping T , any cluster point of an
arbitrary sequence satisfying (4.1) is a solution to the inclusion (1.7) whenever the sequence gph Tn upper-set converges to
gph T .

Proposition 4.2. Let Tn be a sequence of set-valued mappings such that gph Tn upper set-converges to gph T and let xn be a sequence
satisfying (4.1). Then any cluster point of xn is a solution to the inclusion (1.7).

Proof. Let x̂ be a cluster point of the sequence xn defined in Proposition 4.2. Then there is a subsequence xnk of xn converg-
ing to x̂ and satisfying

(
xnk+1 − enk , λnkμnk (xnk − xnk−1) − λnk (xnk+1 − xnk − enk )

) ∈ gph Tnk , for all k. (4.2)

Moreover, the sequence (xnk+1 − enk , λnkμnk (xnk − xnk−1) − λnk (xnk+1 − xnk − enk )) converges to (x̂,0), thus, (x̂,0) ∈
lim sup gph Tn . Keeping in mind that gph Tn upper set-converges to gph T we complete the proof. �
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To conclude, we show a result similar to Theorem 3.2, that is, a convergence result for the perturbed inertial proximal
method when the mapping T is strongly metrically subregular. To this end we assume that the sequence Tn converges to T
in the following sense:

sup
x∈U

∣∣d(
0, Tn(x)

) − d
(
0, T (x)

)∣∣ → 0, for some neighborhood U of x̄. (4.3)

Note that relation (4.3) can be seen as a uniform local Wijsman convergence of the sequence Tn(x) to T (x). We recall that
a sequence of subsets An is said to Wijsman-converge to a subset A if for every u ∈ X, limn→∞ d(u, An) = d(u, A) (for details
about the Wijsman convergence and variational convergences in general see, e.g., [7,22]).

Theorem 4.3. Let Tn be a sequence of set-valued mappings satisfying (4.3). If the mapping T is strongly metrically subregular at x̄ for
0 then there exists a neighborhood Ω of x̄ such that any sequence xn satisfying (4.1) and whose elements are in Ω eventually, strongly
converges to x̄.

Proof. Let T be strongly subregular at x̄ for 0 with constants κ and a, that is,

‖x − x̄‖ � κd
(
0, T (x)

)
, for all x ∈ Ba(x̄). (4.4)

Adjust a if necessary such that Ba(x̄) ⊂ U where U is the neighborhood of x̄ introduced in (4.3). Take a sequence xn

satisfying (4.1) and whose elements are in a ball Bα(x̄) where 0 < α < a. Since the sequence en goes to zero, for n large
enough, xn+1 − en ∈ Ba(x̄) and we have

‖xn+1 − en − x̄‖ � κd
(
0, T (xn+1 − en)

)
. (4.5)

From property (4.3), we have that for all ε > 0, there exists an integer N such that for all n � N one has

∣∣d(
0, Tn(xn+1 − en)

) − d
(
0, T (xn+1 − en)

)∣∣ < ε.

Hence for all ε > 0,

‖xn+1 − en − x̄‖ � κd
(
0, Tn(xn+1 − en)

) + ε, eventually.

Since −λn(xn+1 − xn − en) + λnμn(xn − xn−1) ∈ Tn(xn+1 − en) we get

‖xn+1 − en − x̄‖ � κλn
∥∥−(xn+1 − xn − en) + μn(xn − xn−1)

∥∥ + ε, eventually.

It follows that xn converges to x̄. �
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