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Abstract

Using the concept of monotonization, families of two step and k-step finite volume schemes for scalar hyperbolic conservation
laws are constructed and analyzed. These families contain the FORCE scheme and give an alternative to the MUSTA scheme.
These schemes can be extended to systems of conservation law.
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1. Introduction

Let f : R → R be a Lipschitz continuous function and consider the scalar conservation law

ut + f (u)x = 0, t > 0, x ∈ R, (1.1)

u(x,0) = u0(x), x ∈ R, (1.2)

where u0 ∈ BV(R) ∩ L1
loc(R). This problem has been extensively studied in the last decade. In general problem (1.1)

and (1.2) does not admit regular solutions because of two reasons:

(i) The characteristics do not fill the entire space, giving raise to empty regions where the solutions cannot be deter-
mined by the initial data.

(ii) The characteristics intersect and lead to multivalued solutions.

In order to overcome these difficulties, the concept of weak solutions is introduced. To construct such solutions with
simple data, one faces difficulties (i) and (ii). In order to overcome (i), one make use of the invariance property
of Eq. (1.1), that is it is invariant under the transformation x → αx, t → αt for any α > 0. This leads to a self similar
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solution in the variable ξ = x/t is called the rarefaction wave. This solution is not determined by the initial data and
is used to determine the solution in the empty space.

In order to overcome (ii), discontinuities are introduced in the regions where the characteristics intersect. Now
using the definition of weak solutions, it is possible to determine the lines of discontinuity called shocks. Shocks
must satisfy the Rankine Hugoniot condition connecting the tangent to the line of discontinuity with the jumps of the
solution across it.

The next problem is the nonuniqueness of weak solutions. This nonuniqueness basically comes from the way one
fills the empty region by a solution. Now by looking at the underlying physical phenomena a concept of an “Entropy”
criterion is introduced which uniquely defines the solution in the empty region for simple data. Using the above
concepts, existence of a unique entropy solution is proved for arbitrary data.

There are three fundamental methods used to obtain the existence and uniqueness of an entropy solution.

(1) The Hamilton–Jacobi method. Here one assumes that the flux f is C2 and strictly convex and considers the
Hamilton–Jacobi equation:

vt + f (vx) = 0, x ∈ R, t > 0, (1.3)

v(x,0) = v0(x), x ∈ R, (1.4)

where v0(x) = ∫ x

0 u0(θ) dθ . This equation has a unique viscosity solution and an explicit formula was given by
Hopf [2]. Then letting u = ∂v

∂x
, Lax and Oleinik proved that u is the unique entropy solution of Eqs. (1.1), (1.2) [2].

(2) The vanishing viscosity method. Here one looks at the nonlinear parabolic equation

ut + f (u)x = εuxx, x ∈ R, t > 0, (1.5)

u(x,0) = u0(x), x ∈ R. (1.6)

Kruzkov [4] proves that there exists a unique solution uε of Eqs. (1.5), (1.6) converging in L1
loc to a unique entropy

solution of Eqs. (1.1), (1.2) as ε → 0.
(3) Numerical schemes. In this method numerical schemes are derived using space and time discretizations of

Eqs. (1.1), (1.2). These scheme calculate an approximation solution which converges to the unique entropy solution.
Lax and Friedrichs, Godunov, Enquist and Osher, Roe and others contributed to this approach.

In this paper we concentrate on numerical schemes to solve Eqs. (1.1), (1.2) and we will construct schemes whose
numerical fluxes can be evaluated by point evaluations of the flux function f contrarily to many numerical schemes
in which numerical flux evaluations involve calculations of integrals, maxima or minima of f . This property of using
only point evaluations of the numerical flux is crucial for extending without too much complexity a numerical scheme
to systems.

In Section 2 we introduce the concept of monotonization which leads us to a new definition of entropy solution. This
approach can lead to the concept of entropy for systems. In Section 3 we construct a first two step monotonization
scheme which is actually the Force scheme [5,6]. In Section 4 this scheme is generalized to a family of two step
monotonization schemes and analyzed. In Section 5 these numerical schemes are extended to a family of k-step
monotonization schemes which gives an alternative to the MUSTA scheme [7]. These schemes are easy to extend to
systems (Section 6).

2. Monotonization and entropy

A basic ingredient in studying a numerical scheme is the study of the Riemann problem. Let a, b, x0 ∈ R and let

u0(x) =
{

a if x < x0,

b if x � x0,
(2.1)

and the solution set R(a, b, x0) associated to (2.1) is given by

R(a, b, x0) = {
u; u is a weak solution of Eqs. (1.1), (2.1)

}
.
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In general R(a, b, x0) can have more than one solution. This set R(a, b, x0) turns out to be an important tool in
deriving finite volume schemes. This is a well studied method (for details see [3]).

Let h > 0, �t > 0, λ = �t/h and discretize the domain into disjoint rectangles Rin with length h and breadth �t .
That is for i ∈ Z, x � 0 let Rin = Ii × Jn where

xi+1/2 = ih, tn = n�t, Ii = [xi+1/2, xi+3/2), Jn = [
n�t, (n + 1)�t

)
.

λ must satisfy the CFL condition: let

λ sup
θ∈[−M,M]

∣∣f ′(θ)
∣∣ � 1, (2.2)

where M = ‖u0‖∞.
We discretize u0 by {u0

i }i∈Z defined as

u0
i = 1

h

∫
Ii

u0(x) dx

and we assume that for 0 � j � n, {uj
i }i∈Z are known. In order to define {un+1

i }i∈Z, we choose a solution wn
i ∈

R(un
i , u

n
i+1, xi+3/2) for each i ∈ Z and define

w(x, t) = wn
i (x, t) for (x, t) ∈ Rin.

Then from the CFL condition, w is well defined and is a solution of Eq. (1.1) for x ∈ R, n�t < t < (n + 1)�t with
initial condition w(x, tn) = un

i for x ∈ Ii . Now we define {un+1
i }i∈Z as

un+1
i = 1

h

∫
Ii

w(x, tn+1) dx.

Since w satisfies (1.1) in R × (n�t, (n + 1)�t) and hence integrating (1.1) over Rin to obtain the following formula

un+1
i = un

i − λ

(
1

�t

(n+1)�t∫
n�t

f
(
w(xi+3/2, t)

)
dt − 1

�t

(n+1)�t∫
n�t

f
(
w(xi+1/2, t)

)
dt

)
. (2.3)

The evaluation of un+1
i from (2.3) depends heavily on the choice of the Riemann problem solution {wn

i }. Hence in
general different choices of {wn

i } give raise to different sets of {un
i }.

In fact one can generate infinitely many L1-contractive convergent schemes provided f has both increasing as well
as decreasing parts [1].

If the flux f is strictly monotone then the characteristics of Eq. (1.1) do not intersect the lines x = xi+1/2 for
n�t � t < (n + 1)�t . Hence for any wn

i ∈ R(un
i , u

n
i+1, xi+3/2)

wn
i (xi+3/2, t) =

{
un

i if f ′ > 0,

un
i+1 if f ′ < 0,

and scheme (2.3) reduces to the standard upstream scheme

un+1
i =

{
un

i − λ(f (un
i+1) − f (un

i )) if f ′ < 0,

un
i − λ(f (un

i ) − f (un
i+1)) if f ′ > 0.

(2.4)

As a consequence of this, the scheme is independent of the choice of the Riemann data solution {wn
i } and converges

in L1
loc to the unique entropy solution.

If f is strictly convex and the {wn
i } are chosen so that they satisfy the Lax–Oleinik, Kruzkov entropy condition,

then scheme (2.3) reduces to the finite volume scheme

un+1
i = un

i − λ
(
FG

(
un

i , u
n
i+1

) − FG
(
un

i−1, u
n
i

))
(2.5)

where FG(a, b) is the Godunov flux defined by

FG(a, b) =
{

minθ∈(a,b) f (θ) if a � b,

max f (θ) if a � b.
(2.6)
θ∈(a,b)
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In fact from a theorem of Oleinik (see [3]), even if f is not convex, the Godunov scheme (2.5), (2.6) converges in L1
loc

to the unique entropy solution of problem (1.1), (1.2).
Besides its optimal properties in terms of numerical diffusion, a drawback of the Godunov scheme is that its

numerical flux (2.6) cannot be written in terms of point values of the function f , a point which becomes critical when
extending the method to systems.

On the other hand we notice from scheme (2.4) that if the flux is monotone, then the choice of the Riemann problem
solution is irrelevant and the flux can be calculated in terms of point values of f . Therefore we convert problem (1.1)
to a problem having a monotone flux function. This procedure is called monotonization.

Given M > 0, α ∈ R, denote fα(u) by fα(u) = f (u) − u/α and choose α such that

sup
u∈[−M,M]

∣∣f ′(u)
∣∣ < |α|. (2.7)

Let u be a solution of Eqs. (1.1), (1.2) with ‖u0‖∞ � M , and consider the change of variables

x = X + ατ, t = τ, u(x, t) = v(X, τ).

Then v satisfies

vτ + f1/α(v)X = 0 for X ∈ R, τ > 0, (2.8)

v(X,0) = u0(X) for X ∈ R. (2.9)

Furthermore |v(x,0)| = |u0(x)| � M and from (2.7), f 1
α
(v) = f (v) − αv is a strictly monotone function

for v ∈ [−M,M]. Hence the finite volume scheme for Eqs. (2.8), (2.9) does not depend on the choice of the Rie-
mann data solution. Furthermore it produces a solution vh which converges in L1

loc to the unique entropy solution v

of problem (2.8), (2.9). Therefore u(x, t) = v(x − αt, t) is the unique entropy solution for problem (1.1), (1.2).
Consequently we can state the following alternative definition of the entropy solution.

Definition (Entropy solution). Let u ∈ L1
loc ∩ L∞ be a weak solution of problem (1.1), (1.2). Then u is said to

be an entropy solution to this problem, if u(x, t) = v(x − αt, t) for all α such that f1/α is strictly monotone in
[−‖u0‖∞,‖u0‖∞] and v is the unique solution of problem (2.8), (2.9) obtained after convergence of the solution of
the upstream finite volume scheme (2.4) applied to problem (2.8), (2.9).

In the above analysis we change the variables so that in the new variables, the flux function becomes strictly
monotone. This allows us to reduce the finite volume scheme on rectangular space-time meshes to a simple upstream
numerical scheme. Now in the next section we reverse the order, namely we keep the equation as it is but change
the rectangular mesh to parallelogram meshes to obtain a numerical scheme which lies between Godunov and Lax–
Friedrichs schemes in terms of numerical viscosity.

3. A first two step monotonization scheme

3.1. Formulation of the two step monotonization scheme

We assume again that the initial data satisfies u0
i ∈ [−M,M] for some M > 0 and we introduce some more notation

xi = (i + 1/2)h, tn+1/2 = (n + 1/2)�t,

pn
i = (xi+1/2, n�t), p

n+1/2
i = (

xi, (n + 1/2)�t
)
,

P
n+1/2
i = parallelogram with vertices pn

i , pn
i+1, p

n+1/2
i+1 , p

n+1/2
i ,

P n
i = parallelogram with vertices p

n+1/2
i , pn+1

i+1 , pn+1
i , p

n+1/2
i−1 ,

as shown in Fig. 3.1.
We assume that all the characteristics emanating from pn

i (respectively p
n+1/2
i ) do not intersect the line segments

[pn
i ,p

n+1/2
i ], [pn

i−1,p
n+1/2
i−1 ] (respectively [pn+1/2

i , pn+1
i+1 ], [pn+1/2

i−1 ,pn+1
i ]). This implies the following condition

λ sup
∣∣f ′(u)

∣∣ � 1. (3.1)

u∈[−M,M]
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Fig. 3.1. Notation for the two step monotonization scheme.

With the above notation and assumption, we can now derive the two step monotonization scheme.
Assume that {uk

i }i∈Z for 0 � k � n, are given with uk
i ∈ [−M,M]. As in Section 2 let wn

i ∈ R(un
i , u

n
i+1, xi+3/2)

(which need not be an entropy solution) be any solution and define

w(x, t) = wn
i (x, t) for (x, t) ∈ P

n+1/2
i .

Then from condition (3.1), w is a well-defined weak solution and let

u
n+1/2
i = 1

h

xi+1∫
xi

w
(
x, (n + 1/2)�t

)
dx.

Mass conservation in the cells gives

0 =
∫

P
n+1/2
i

(
wt + f (w)x

)
dx dt =

∫
∂P

n+1/2
i

(
wνt + f (w)νx

)
ds.

Evaluating the integral on the boundary of P
n+1/2
i and using the CFL condition (3.1) (characteristics do not intersect

the line segments, see Fig. 3.1) we obtain

u
n+1/2
i = un

i − λ

2

[
1

�t

p
n+1/2
i+1∫

pn
i+1

(
f (w) − 1

λ
w

)
dt − 1

�t

p
n+1/2
i∫
pn

i

(
f (w) − 1

λ
w

)
dt

]

= un
i − λ

2

[(
f

(
un

i+1

) − 1

λ
un

i+1

)
−

(
f

(
un

i

) − 1

λ
un

i

)]

= un
i + un

i+1

2
− λ

2

[
f

(
un

i+1

) − f
(
un

i

)]
.
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Now repeating the argument with data {un+1/2
i } at tn+1/2 and un+1

i = 1
h

∫ xi+3/2
xi+1/2

w(x, (n + 1)�t) dx we have

un+1
i = u

n+1/2
i−1 − λ

2

[(
f

(
u

n+1/2
i

) − u
n+1/2
i

λ

)
−

(
f

(
u

n+1/2
i−1

) − u
n+1/2
i−1

λ

)]

= u
n+1/2
i−1 + u

n+1/2
i

2
− λ

2

[
f

(
u

n+1/2
i

) − f
(
u

n+1/2
i−1

)]
.

Thus the two step monotonization scheme reads

u
n+1/2
i = un

i + un
i+1

2
− λ

2

[
f

(
un

i+1

) − f
(
un

i

)]
,

un+1
i = u

n+1/2
i−1 + u

n+1/2
i

2
− λ

2

[
f

(
u

n+1/2
i

) − f
(
u

n+1/2
i−1

)]
. (3.2)

Observe that there is a backward shift in evaluating un+1
i and that it needs only point evaluations of the flux function f .

The two step scheme (3.2) was already introduced and analyzed in [5,6] and it can be written in a compact form as
follows.

For a, b in R let

H(a,b) = a − λ

2

(
fλ(b) − fλ(a)

) = a + b

2
− λ

2

(
f (b) − f (a)

)
. (3.3)

Then scheme (3.2) can be rewritten as

u
n+1/2
i = un

i − λ

2

[
fλ

(
un

i+1

) − fλ

(
un

i

)]
,

un+1
i = u

n+1/2
i−1 − λ

2

[
fλ

(
u

n+1/2
i

) − fλ

(
u

n+1/2
i−1

)]
, (3.4)

or

u
n+1/2
i = H

(
un

i , u
n
i+1

)
, un+1

i = H
(
u

n+1/2
i−1 , u

n+1/2
i

)
,

so we formulate the two step monotonization scheme in the compact form

un+1
i = H

(
H

(
un

i−1, u
n
i

)
,H

(
un

i , u
n
i+1

))
. (3.5)

3.2. Convergence of the two step monotonization scheme

Concerning convergence we have the main result.

Theorem 3.1. Let u0 ∈ BV(R) and ‖u‖∞ � M . Then under the CFL condition (3.1) the two step finite volume scheme
{un

i } given in (3.5) converges to the unique entropy solution.

Proof. Let a, b ∈ [−M,M], then from (3.1) we have

∂H

∂a
(a, b) = 1

2

(
1 + λf ′(a)

)
� 0,

∂H

∂b
(a, b) = 1

2

(
1 − λf ′(b)

)
� 0 (3.6)

and hence H is a nondecreasing function in each of its argument. Therefore from (3.5) the scheme is a three point
monotone scheme. Let g(X,Y,Z) = H(H(X,Y ),H(Y,Z)), then

g(X,X,X) = H
(
H(X,X),H(X,X)

) = H(X,X) = X. (3.7)

The scheme is L∞-stable, since, when assuming un
i ∈ [−M,M] for all i ∈ Z, from (3.6) we can write

−M = g(−M,−M,−M) � g
(
un

i−1, u
n
i , u

n
i+1

) = un+1
i � g(M,M,M) = M.
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Finally let us write the scheme in conservative form. Expanding (3.5) we obtain

un+1
i = H

(
un

i−1, u
n
i

) − λ

2

(
fλ

(
H

(
un

i , u
n
i+1

)) − fλ

(
H

(
un

i−1, u
n
i

)))
= un

i−1 − λ

2

[
fλ

(
un

i

) + fλ

(
H

(
un

i , u
n
i+1

)) − fλ

(
un

i−1

) − fλ

(
H

(
un

i−1, u
n
i

))]
= un

i − λ

2

[
fλ

(
un

i

) + fλ

(
H

(
un

i , u
n
i+1

)) + 2un
i

λ
− fλ

(
un

i−1

) − fλ

(
H

(
un

i−1, u
n
i

)) − 2un
i−1

λ

]
.

Therefore

un+1
i = un

i − λ
[
Fλ

(
un

i , u
n
i+1

) − Fλ

(
un

i−1, u
n
i

)]
(3.8)

where the numerical flux Fλ(a, b) is given by

Fλ(a, b) = 1

2

[
fλ(a) + fλ

(
H(a,b)

) + 2a

λ

]

= 1

2

[
f (a) + f

(
H(a,b)

) − H(a,b)

λ
+ a

λ

]

= 1

2

[
f (a) + f

(
H(a,b)

) − b − a

2λ
+ 1

2

(
f (b) − f (a)

)]
,

or

Fλ(a, b) = 1

4

[
f (a) + f (b) + 2f

(
H(a,b)

) + a − b

λ

]
. (3.9)

From (3.7) Fλ(a, a) = f (a) so the flux is consistent and consequently the solution of the two step monotonization
scheme (3.2) (which can be written alternatively as (3.3), (3.5) or (3.8), (3.9)) converges to the unique entropy solution
of problem (1.1), (1.2). This proves the theorem. �
3.3. Comparison with the Lax–Friedrichs (LF) and the two step Lax–Wendroff–Richtnzer (LWR) scheme

On one hand the two step monotonization scheme (3.8), (3.9) gives

un+1
i = un

i−1 + 2un
i + un

i+1

4
− λ

4

[
f

(
un

i+1

) + 2f
(
H

(
un

i , u
n
i+1

)) − f
(
un

i−1

) − 2f
(
H

(
un

i−1, u
n
i

))]
. (3.10)

On the other hand the two step LWR scheme (put α = β = 1/2 in Eq. (2.19) of [3]) is given by

wn+1
i = un

i − λ
(
f

(
H

(
un

i , u
n
i+1

)) − f
(
H

(
un

i−1, u
n
i

)))
,

while the LF scheme reads

vn+1
i = un

i−1 + un
i+1

2
− λ

2

(
f

(
un

i+1

) − f
(
un

i−1

))
.

It follows that

un+1
i = wn+1

i + vn+1
i

2
.

Hence the solution given by scheme (3.8), (3.9) is the average of that given by the LF and LWR schemes. This remark
was already made by Toro [5]. Therefore even though the LWR scheme is not L∞-stable, by taking its average with
the L∞-stable LF scheme we obtain a L∞-stable convergent scheme.

In terms of numerical viscosity, the numerical viscosity coefficient Qi+1/2 of the two step monotonization scheme
(3.8), (3.9) is determined by

Fλ(a, b) = 1

2

(
f (a) + f (b) − Qi+1/2

λ
(b − a)

)
.

Hence
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Fig. 3.2. Comparison of the Godunov, Lax–Friedrich and the two step monotonization scheme for f (u) = u2/2 with initial condition u(x,0) = 2
if x < 0 and 1 if x > 0. The solution is shown at t = 1 and was calculated with h = 2/100, �t = 2/300.

(b − a)

λ
Qi+1/2 = f (a) + f (b) − 2Fλ(a, b)

= f (a) + f (b) − 1

2

(
f (a) + f (b) + 2f

(
H(a,b)

) + a − b

λ

)

= 1

2

(
f (a) + f (b)

) − f
(
H(a,b)

) − a − b

2λ

= 1

2

(
f (a) + f (b)

) − f

(
a − λ

2

(
fλ(b) − fλ(a)

)) − a − b

2λ

= 1

2

(
f (a) + f (b)

) − f (a) + λ

2
f ′(ξ)

(
fλ(b) − fλ(a)

) − a − b

2λ

= 1

2

(
f (b) − f (a)

) + λ

2
f ′(ξ)

(
f (b) − f (a)

) − b − a

2
f ′(ξ) + b − a

2λ

= 1

2

(
1 + λf ′(ξ)

)(
f (b) − f (a)

) + 1

2λ

(
1 − λf ′(ξ)

)
(b − a).

Therefore

Qi+1/2 = λ

2

(
1 + λf ′(ξ)

)f (b) − f (a)

b − a
+ 1

2

(
1 − λf ′(ξ)

)
.

Let f (u) = u and denote by QG
i+1/2 and QLF

i+1/2 the numerical viscosity coefficient of the Godunov and the Lax–
Friedrichs schemes respectively. Then we have

QG
i+1/2 = λ � 1 + λ2

2
= Qi+1/2 � 1 = QLF

i+1/2.

This shows that the performance of scheme (3.8), (3.9) is better than the Lax–Friedrichs scheme in terms of numerical
viscosity as can be observed on Fig. 3.2.

4. Generalized two step monotonization schemes

There are many ways to generalize the two step monotonization presented in the previous section. In this section
we generalize it to a family of two step schemes.

Let γ1, γ2 ∈ [0,1] satisfying γ1 + γ2 = 1 and β1, β2 ∈ [−1,1]. Given the discretization steps h,�t of space and
time, we further discretize time by dividing the time step into two substeps γ1�t,γ2�t , and we move the space
discretization point pn

i to p
n+1/2
i by length β1h at time tn + γ1�t and further move p

n+1/2
i by length β2h back to

one of the discretization points at time tn + (γ1 + γ2)�t = tn+1. See Fig. 4.1 for γ1 = 1/3, γ2 = 2/3, β1 = 1/2,
β2 = −1/2 and Fig. 3.1 for γ1 = γ2 = 1/2, β1 = β2 = 1/2. In this way we build line segments which, in addition of
the lines t = tn, t = γ1�t , t = tn+1 will form the boundaries of the control volumes for the two step finite volume
sheme.
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Fig. 4.1. Control volumes for a generalized two step monotonization scheme with γ1 = 1/3, γ2 = 2/3, β1 = 1/2, β2 = −1/2.

γl, βl , l = 1,2, are chosen also in order to satisfy the CFL condition

γlλ sup
u∈[−M,M]

∣∣f ′(u)
∣∣ � min(|βl |,

(
1 − |βl |

)
, l = 1,2, (4.1)

in order to ensure that, for l = 1, the characteristics leaving pn
i , and for l = 2, that leaving p

n+1/2
i do not intersect the

line segments.
For l = 1,2, let δl = γlλ

βl
. δ1 is the slope of the segment [pn

i ,p
n+1/2
i ] and δ2 is the slope of the segment connecting

p
n+1/2
i to one of the discretization points at time tn+1.

For a, b ∈ R define

Hδl
(a, b) =

{
a − γlλ(fδl

(b) − fδl
(a)) if δl > 0,

b − γlλ(fδl
(b) − fδl

(a)) if δl < 0,
l = 1,2. (4.2)

We can generate four different families of convergent schemes, depending on the signs of the β’s.

Scheme 1. β1 � 0, β2 � 0, β1 + β2 = 1.

If |un
i | � M , from the CFL condition (4.1), Scheme 1 reads

u
n+1/2
i = Hδ1

(
un

i , u
n
i+1

) = un
i − γ1λ

(
fδ1

(
un

i+1

) − fδ1

(
un

i

))
,

un+1
i = Hδ2

(
u

n+1/2
i−1 , u

n+1/2
i

) = u
n+1/2
i−1 − γ2λ

(
fδ2

(
u

n+1/2
i

) − fδ2

(
u

n+1/2
i−1

))
.

Note that the case βl = γl = 1/2, l = 1,2, corresponds to the two step scheme presented in the previous section.

Scheme 2. β1 > 0, β2 < 0 with β1 = |β2|.
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If |un
i | � M , under the CFL condition (4.1), Scheme 2 reads

u
n+1/2
i = Hδ1

(
un

i , u
n
i+1

) = un
i − γ1λ

(
fδ1

(
un

i+1

) − fδ1

(
un

i

))
,

un+1
i = Hδ2

(
u

n+1/2
i−1 , u

n+1/2
i

) = u
n+1/2
i − γ2λ

(
fδ2

(
u

n+1/2
i

) − fδ2

(
u

n+1/2
i−1

))
.

This case corresponds to the situation shown in Fig. 4.1.
The other two cases are β1 � 0, β2 � 0, β1 + β2 = −1 and β1 < 0, β2 > 0, β2 = |β1| and they can be dealt exactly

as above.

5. Generalized k-step monotonization schemes

We now generalize the method to k steps.
Let k � 1 be an integer and for l = 1, . . . , k, let 0 � γl � 1 satisfying

∑k
l=1 γl = 1. We introduce subintervals of

tn, tn+1 denoted by [t
n+ l

k
, t

n+ l+1
k

], l = 0, . . . , k − 1, with t
n+ l

k
= tn + ∑l

�=1 γ��t , l = 1, . . . , k − 1.

Let X1 < X2 < X3 be any three consecutive space discretization points. Thus they satisfy X3 −X2 = X2 −X1 = h.
We now introduce admissible curves. ρ : [tn, tn+1] → R is said to be an admissible curve if

(1) ρ is continuous and ρ(tn) = X2,
(2) ρ|[tn+ l

k
,tn+ l+1

k
] is a line segment for 0 � l � k − 1,

(3) ρ(tn+1) ∈ {X1,X2,X3}.

Examples of admissible curves are shown in Figs. 3.1, 4.1, 5.1, 5.2.
Denote

Γ (X1,X2,X3, γ1, . . . , γk, λ) = {
ρ : [tn, tn+1, ] → [X1,X3]; ρ is admissible

}
,

Γ +(X1,X2,X3, γ1, . . . , γk, λ) = {
ρ ∈ Γ (X1,X2,X3, γ1, . . . , γk, λ); ρ(tn+1) = X3

}
,

Γ 0(X1,X2,X3, γ1, . . . , γk, λ) = {
ρ ∈ Γ (X1,X2,X3, γ1, . . . , γk, λ); ρ(tn+1) = X2

}
,

Γ −(X1,X2,X3, γ1, . . . , γk, λ) = {
ρ ∈ Γ (X1,X2,X3, γ1, . . . , γk, λ); ρ(tn+1) = X1

}
.

For ρ ∈ Γ (X1,X2,X3, γ1, . . . , γk, λ) we denote by δl, l = 1, . . . , k the slopes of the line segments of ρ on the interval
[t

n+ l
k
, t

n+ l+1
k

], l = 0, . . . , k − 1, and the associated βl are defined by βl = λγl

δl
.

For each i ∈ Z let ρi ∈ Γ (xi−1/2, xi+1/2, xi+3/2, γ1, . . . , γk, λ) satisfying

(i) ∃j ∈ {−,0,+} such that ρi ∈ Γ j (xi−1/2, xi+1/2, xi+3/2, γ1, . . . , γk, λ) ∀i ∈ Z.
(ii) The slopes of the ρi ’s are the same for all i’s and are denoted by δ1, . . . , δk .

The ρi ’s will be the lateral boundaries of the control volumes used to define the finite volume scheme.
We assume that {ρi}i∈Z satisfy the CFL condition

γl sup
u∈[−M,M]

∣∣f ′(u)
∣∣ � min

(|βl |, (1 − |βl |)
)

for 1 � l � k. (5.1)

With the notations as in (4.2) we can now define the k-step scheme as follows. Given {un
i } with |un

i | � M , define
inductively for 1 � l � k − 1,

u
n+ l

k

i =
⎧⎨
⎩Hδl

(u
n+ l−1

k

i , u
n+ l−1

k

i+1 ) if δl > 0,

H (u
n+ l−1

k , u
n+ l−1

k ) if δ < 0,

l = 1, . . . , k − 1. (5.2)
δl i−1 i l
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Fig. 5.1. Control volumes for a 3-step monotonization scheme, γ1 = γ2 = γ3 = 1
3 , β1 = 1

3 , β2 = − 5
6 , β3 = − 1

2 . ρi ∈
Γ −(xi−1/2, xi+1/2, xi+3/2, γ1, γ2, γ3, λ).

Fig. 5.2. Control volumes for a 3-step monotonization scheme, γ1 = γ2 = γ3 = 1
3 , β1 = 1

2 , β2 = − 1
3 , β3 = 5

6 . ρi ∈
Γ +(xi−1/2, xi+1/2, xi+3/2, γ1, γ2, γ3, λ).
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Then

un+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hδk
(u

n+ k−1
k

i−1 , u
n+ k−1

k

i ) if ρi(tn+1) = xi+3/2,

Hδk
(u

n+ k−1
k

i , u
n+ k−1

k

i+1 ) if ρi(tn+1) = xi−1/2,

Hδk
(u

n+ k−1
k

i−1 , u
n+ k−1

k

i ) if ρi(tn+1) = xi+1/2 and δk < 0,

Hδk
(u

n+ k−1
k

i , u
n+ k−1

k

i+1 ) if ρi(tn+1) = xi+1/2 and δk > 0.

(5.3)

As in Theorem 3.1, under the CFL condition (5.1), it follows easily that Hδl
(a, b) is monotone in each of its variable

and Hδl
(a, a) = a. Hence the scheme (5.2) and (5.3) converges to a unique entropy solution of problem (1.1), (1.2) if

‖u0‖ � M and u0 ∈ BV(R).

Example. 1. If δl � 0, l = 1, . . . , k, then scheme (5.2), (5.3) can be written as follows.
Define for l � 3,

H 2(X1,X2,X3) = Hδ2

(
Hδ1(X1,X2),Hδ1(X2,X3)

)
,

H l(X1,X2, . . . ,Xl+1) = Hδl

(
Hl−1(X1, . . . ,Xl),H l−1(X2, . . . ,Xl+1)

)
,

and

F(X1, . . . ,Xk) = γ1fδ1(X1) + γ2fδ2

(
H1(X1,X2)

) − X1

λ
+

k−1∑
l=2

γl+1fδl+1

(
Hl(X1, . . . ,Xl+1)

)
. (5.4)

Then

un+1
i = un

i − λ
(
F

(
un

i , u
n
i+1, . . . u

n
i+k−1

) − F
(
un

i−1, . . . u
n
i+k−2

))
. (5.5)

If k = 2, βl = γl = 1
2 then scheme (5.5) coincides with scheme (3.8), (3.9).

If βl = γl = 1
k

for 1 � l � k, then the CFL condition (5.1) gives

λ

k
sup

u∈[−M,M]
∣∣f ′(u)

∣∣ � min

(
1

k
,

(
1 − 1

k

))
= 1

k
.

Hence the CFL condition reads now λ supu∈[−M,M] |f ′(u)| � 1.
If k = 2, δl > 0, l = 1,2, then scheme (5.5) can be written as

u
n+1/2
i = Hδ1

(
un

i , u
n
i+1

) = un
i − γ1λ

(
fδ1

(
un

i+1

) − fδ1

(
un

i

))
= (1 − β1)u

n
i + β1u

n
i+1 − γ1λ

(
f

(
un

i+1

) − f
(
un

i

))
,

un+1
i = (1 − β2)u

n+1/2
i−1 + β2u

n+1/2
i − γ2λ

(
f

(
u

n+1/2
i

) − f
(
u

n+1/2
i−1

))
.

Furthermore if we let β1 = β2 = 1
2 , γ1 = 3

4 , γ2 = 1
4 , then the CFL condition (5.1) becomes

λ sup
u∈[−M,M]

∣∣f ′(u)
∣∣ � 2/3.

2. We consider now the case when the slopes δl’s change sign. Let k = 3, γ1 + γ2 + γ3 = 1, β1 = |β2| + |β3| with
β2 � 0, β3 �� 0, then

u
n+1/3
i = un

i − γ1λ
(
fδ1

(
un

i+1

) − fδ1

(
un

i

))
,

u
n+2/3
i = u

n+1/3
i − γ2λ

(
fδ2

(
u

n+1/3
i

) − fδ2

(
u

n+1/3
i−1

))
,

un+1
i = u

n+2/3
i − γ3λ

(
fδ3

(
u

n+2/3
i

) − fδ3

(
u

n+2/3
i−1

))
.

Let

F(X1,X2,X3) = γ1fδ1(X3) + γ2fδ2

(
Hδ1(X2,X3)

) + γ3fδ3

(
Hδ2

(
Hδ1(X1,X2),Hδ1(X2,X3)

))
,

then the scheme reads

un+1
i = un

i − λ
(
F

(
un

i−1, u
n
i , u

n
i+1

) − F
(
un

i−2, u
n
i−1, u

n
i

))
.
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6. Extension to systems

Consider a hyperbolic system of conservation laws

Ut + F(U)x = 0, x ∈ R, t > 0, (6.1)

U(x,0) = U0, x ∈ R, (6.2)

where U is a n-vector and F : R
n → R

n a C1-map.
For α ∈ R let X = x + αt , τ = t , V (X, τ) = U(x, t). Then V satisfies

Vτ + (F (V ) − αV )X = 0, X ∈ R, τ > 0, (6.3)

V (X,0) = U0(X), X ∈ R. (6.4)

If λ(U) is an eigenvalue of F ′(U), then (λ(U) − α) is an eigenvalue of F ′(U) − αI . Hence if the eigenvalues of
F ′(U) are bounded, then we can choose |α| large enough such that all the eigenvalues corresponding to (6.3) are
positive. Therefore, if we have an L∞-bound for a solution of (6.1), (6.2) then we can convert it to a solution of (6.3),
(6.4) with all eigenvalues positive.

Furthermore if we define Fα(U) = F(U) − U
α

for α �= 0, then we can define the scheme (3.4) for the system (6.1),
(6.2) provided that all the waves are trapped as before. In the same way k-step schemes can be defined for systems.
Their advantage is that they are point evaluation schemes. One can expect a better accuracy by going to k-step schemes
and choosing proper γl’s and δl’s.

This may also extend to the multidimensional case and with a diffusion term on the right-hand side.

7. Conclusion

Using the technique of monotonization we showed how to construct a family of multistep schemes with only
point value evaluations of the flux function. This family includes the Force and proposes an alternative for the Musta
schemes. For all these schemes we proved convergence of the approximate solution to the entropy solution of the con-
tinuous problem. We also gave hints on how to extend them to systems and high resolution schemes. In forthcoming
papers we will extend these schemes to higher resolution schemes and to the discontinuous flux case. We will also
give an example of application to a 2 × 2 system of conservation laws representing a problem of polymer flooding.
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