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1. Introduction

First we give an informal description of the subject of this paper. The second part of the present introduction contains
the technical details.

Several “controllability” results have been recently proved for the heat equation with memory, see for example
[2,12,16–18,20]. These papers study control problems for equations of the following form (here t > 0 and x ∈ (0,π), but
also the case x ∈ Rn has been considered):

θt = αθxx +
t∫

0

N(t − s)θxx(s)ds, θ(0) = ξ (1)

and θ is furthermore acted upon by a control so that θ(t) = θ(t; u).
Exact controllability has been studied in the references above, i.e. the question whether an arbitrary final target η(·) can

be hit by using a suitable control. In particular, the target can be 0. In this case we have a kind of null controllability which
however need not be controllability to rest, since even if the trajectory hits 0, the solution may leave 0 in the future (see
the comments below). Using a term which was once popular among specialists of systems with delays, this is a kind of
“relative controllability”, see [8]. In contrast with this, we say that the system is controllable to rest when for every initial
condition ξ we can find a control u with compact support and such that the corresponding solution θ(t; u) has compact
support too.

Controllability to rest is not impossible, see Section 1.1, but we shall prove that it is an exceptional property in the
presence of memory. This, may be, will not be a surprise but our point in this paper is that the obstacle to controllability
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is not so much the infinite memory of the equation but the joint facts that the equation has infinite memory and that θ(t)
takes values in an infinite-dimensional Hilbert space. We shall see (in Section 1.1) that if θ(t) takes values in Rn (and the
term θxx is replaced by Aθ , A a matrix), then controllability may well be possible also if the kernel N(t) has the properties
required by the negative results presented in Section 3. For simplicity, the examples are given in the scalar case, n = 1.

Our negative results cover in particular the cases that the kernel N(t) is a linear combination of exponentials or it is a
kernel of Abel type, as studied for example in [5,6]. The proofs use the Fourier methods and the Laplace transform in order
to reduce controllability to a moment/interpolation problem in a Paley–Wiener space, see [1,10]. This is done in Section 2
where all the relevant definitions are given.

Now we make precise the previous informal considerations. We study the following three control problems:

Problem (i). Boundary control.

θt = αθxx +
t∫

0

N(t − s)θxx(s)ds, x ∈ (0,π), t > 0,

θ(t,0) = u(t) ∈ L2
loc[0,∞), θ(t,π) = 0, θ(0, x) = ξ(x) ∈ L2(0,π). (2)

Problem (ii). Distributed control with a given profile.

θt = αθxx +
t∫

0

N(t − s)θxx(s)ds + b(x)u(t), x ∈ (0,π), t > 0,

θ(t,0) = θ(t,π) = 0, θ(0, x) = ξ(x) ∈ L2(0,π). (3)

Here b ∈ L2(0,π) is a given function and u ∈ L2
loc(0,+∞).

Problem (iii). Control distributed on a subdomain.

θt = αθxx +
t∫

0

N(t − s)θxx(s)ds + u(x, t), x ∈ (0,π), t > 0,

θ(t,0) = θ(t,π) = 0, θ(0, x) = ξ(x) ∈ L2(0,π). (4)

Here u ∈ L2
loc([0,+∞) × [0,π ]) is a control supported (in x) on an interval [β,γ ] properly contained in [0,π ].

Now we give the following definition which apply to each one of the cases above. Solutions will be rigorously defined
later on.

Definition 1. The initial vector ξ ∈ L2(0,π) is controllable to rest if we can find a time T > 0 and a control u(t) such that
u(t) = 0 and θ(t; u) = 0 for t > T .

The system is controllable to rest if for every initial vector ξ ∈ L2(0,π) we can find a time T > 0 and a control u(t) such
that u(t) = 0 for t > T and the corresponding solution θ(t) satisfies θ(t) = 0 for t > T ; if the controllability time T can be
chosen independent of ξ then we say that the system is controllable to rest in time T .

Controllability to rest is not a kind of “null controllability”, in the sense used for systems with finite delays, see for
example [13,14]. In fact, let us consider the following simple example of system with finite delay h:

θ̇ (t) = A0θ(t) + A1θ(t − h) + Bu(t),

where now θ ∈ Rn , u ∈ Rm and A0, A1, B are matrices of suitable dimensions. The initial condition is θ(s) = ξ(s), s ∈ [−h,0].
According to the general definition of state, see [9], the function s → θ(t + s), s ∈ [−h,0] can be chosen as the state of the
system at time t . The system is “null controllable” at time T when there exists a control u(t), 0 � t � T such that the state at
time T is zero; i.e. θ(T + s) = 0 for every s ∈ [−h,0] (note that if we extend u(t) with u(t) = 0 for t > T then also the state
is zero for t > T ). In general, the state of Eq. (1) at time t is θ(s), s � t (see [7]) and “null controllability” at time T would
imply θ(t) = 0 for every t � 0. This is impossible, unless the initial condition is ξ = 0. So, we study the weaker condition
that θ(t) and the control u(t) are zero for t > T > 0. To avoid any risk of confusion, we use the term “controllability to rest”
for this property. It is clear that null controllability and controllability to rest are equivalent for systems with finite memory.
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1.1. Preliminary examples

We first consider two control problems, with θ(t) ∈ R. Controllability to rest holds in these examples, in spite of the fact
that the kernels N(t) fulfill the assumptions of the negative results given in Section 3.

We introduce the notation

G(λ) = α + N̂(λ) = α +
+∞∫
0

e−λt N(t)dt

(i.e. ˆ denotes Laplace transform). The negative results in Section 3 are expressed using this function.
We are interested in the first example since in this case G(λ) admits zeros.

Example 1. The first example is

θ̇ = 3θ − 2

t∫
0

θ(s)ds + u(t), θ(0) = ξ. (5)

Here θ ∈ R. Note that G(λ) = 3 − 2/λ so that G(2/3) = 0.
We introduce

y(t) =
t∫

0

θ(s)ds

(so that y(0) = 0). System (5) can be controlled to rest provided that we can find T > 0 and a control u which is zero for
t > T and such that

θ(T ) = 0, y(T ) = 0. (6)

In fact let u(t) = 0 for t = T + τ . Then θ(T + τ ) solves

d

dt
θ(T + τ ) = 3θ(T + τ ) − 2

τ∫
0

θ(T + r)dr − 2y(T ).

The solution τ → θ(T + τ ) is identically zero if it happens that θ(T ) = 0, y(T ) = 0 and (and, in fact, solely in this case).
Now we observe that a state space realization of the map from u to θ is

θ ′ = 3θ − 2y + u, y′ = θ. (7)

This system is controllable since

rank

[[
1
0

]
,

[
3 −2
1 0

][
1
0

]]
= rank

[
1 3
0 1

]
= 2.

The function G(λ) in the second example has a double pole and no zero.

Example 2. Here again θ is scalar and

θ ′ =
t∫

0

(t − s)θ(s)ds + u(t), θ(0) = ξ,

i.e.

α = 0, N(t) = t so that G(λ) = N̂(λ) = 1

λ2
.

It is easy to see that controllability to rest holds if we can find T > 0 and u(t) such that hold:

⎧⎨
⎩

θ(T ) = 0,

y(T ) = 0,

ζ(T ) = 0

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y(t) =
t∫

0

(t − s)θ(s)ds,

ζ(t) =
t∫
θ(s)ds.
0
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So we have to study the controllability of the linear finite-dimensional system

θ̇ = y + u, ẏ = ζ, ζ̇ = θ.

We omit the simple verification that this system is controllable.

We consider now an example of a system of the form (1) which is controllable to rest. This is an integrated form of the
wave equation.

Example 3. We consider

θt =
t∫

0

θxx(s)ds, θ(0) = ξ, θ(t,0) = u(t), θ(t,π) = 0,

θ(t, ·) ∈ L2(0,π). We introduce

y(t) =
t∫

0

θxx(s)ds

so that we get the wave equation

θt = y, yt = θxx, θ(t,0) = u(t), θ(t,π) = 0,

i.e. the wave equation, which is controllable, see [1,10].

Our point in this paper is that every system of the form (1) which is controllable to rest and which has a “rational
kernel”, i.e. a kernel with rational Laplace transform, is a wave equation in disguise.

2. Controllability, interpolation and moment problems

We first outline the definition of solutions for Problems (i) and (ii). See Section 3.2 for Problem (iii). We consider the
formulation of Problem (i) but the arguments below are easily adapted to Problem (ii). See [4] for the use of similar ideas
in the non-delayed case.

We note the following equality which holds for every function ψ(x) ∈ H2(0,π) such that ψ(0) = κ , ψ(1) = 0 and for
every φ(x) ∈ H2(0,π) ∩ H1

0(0,π) (here 〈φ,ψ〉 is the inner product in L2(0,π)):

〈ψxx, φ〉 = φ′(0)κ + 〈
ψ(·),φxx(·)

〉 = φ′(0)κ + 〈ψ, Aφ〉, (8)

where A is the operator

dom A = H2(0,π) ∩ H1
0(0,π) ⊆ L2(0,π), (Aφ)(x) = φxx(x) ∈ L2(0,π). (9)

This formula replaces the boundary condition with an additive term, and suggests the following definition: the function
θ(t) = θ(t, x) ∈ L2

loc[0,+∞; L2(0,π)) solves Problem (i) when the following equality holds for every φ ∈ dom A:

d

dt

〈
θ(t),φ

〉 = α
[〈
θ(t), Aφ

〉 + φ′(0)u(t)
] +

t∫
0

N(t − s)
[〈
θ(s), Aφ

〉 + φ′(0)u(s)
]

ds, θ(0) = ξ. (10)

The normalized eigenvectors of A are the functions φn(x) =
√

2
π sin nx (the corresponding eigenvalue is −n2) and this is an

orthonormal basis in L2(0,π). Hence we can expand

θ(t) = θ(t, x) =
+∞∑
n=1

θn(t)φn(x). (11)

If in particular φ = φn in (10) we see that the nth component θn(t) = 〈θ(t),φn〉 satisfies

θ ′
n(t) = α

[−n2θn(t) + φ′
n(0)u(t)

] +
t∫

0

N(t − s)
[−n2θn(s) + φ′

n(0)u(s)
]

ds, θn(0) = ξn = 〈ξ,φn〉. (12)

The solution of Problem (ii) can be defined in an analogous way and we see that if θ(t) solves Problem (ii) then θn(t) =
〈θ(t),φn〉 solves

θ ′
n(t) = −αn2θn(t) − n2

t∫
N(t − s)θn(s)ds + bnu(t), θn(0) = ξn = 〈ξ,φn〉, (13)
0
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where

bn = 〈b, φn〉.
By definition, if the initial condition ξ can be controlled to rest, then we can find a control u with support in [0, T ]

such that each function θn(t) which solves (12), when studying Problem (i), or (13) when studying Problem (ii), must have
compact support too. We are going to prove that this is impossible for most of the kernels met in applications, relying on
frequency domain techniques.

As in Section 1.1, let

G(λ) = α + N̂(λ) = α +
+∞∫
0

e−λt N(t)dt.

We denote P W + the linear space of the Laplace transforms of square integrable functions on (0,+∞) with compact
support. The characterization of this space is known, φ̂(λ) ∈ P W + if it is an entire function such that

• there exist real numbers M and T (which depend on φ) such that |φ(λ)| � MeT |λ|;
• supx�0

∫ +∞
−∞ |φ(x + iy)|2 dy < +∞.

An important example is [1−exp(−λT )]/λ. In terms of complex analysis, an element of P W + is in a classical Paley–Wiener
space and it is bounded in the right half plane.

We now compute the Laplace transform of θn(t) in (12) or (13). Using φ′
n(0) =

√
2
π n, we get

Problem (i) θ̂n(λ) = 1

λ + n2G(λ)

(
ξn + n

√
2G(λ)√
π

û(λ)

)
, (14)

Problem (ii) θ̂n(λ) = 1

λ + n2G(λ)

(
bnû(λ) + ξn

)
, bn = 〈b, φn〉. (15)

Hence, if controllability to rest is possible then for any given initial condition ξ = θ(0) ∈ L2(0,π), we can find an input
û(λ) ∈ P W + such that for every n the component θ̂n(λ) belong to P W + . In particular, the functions θ̂n(λ) cannot have
singularities at the roots of the denominator λ + n2G(λ) of the expressions in (14)–(15), since the elements of P W + are
entire functions. Hence the control u must satisfy the following equalities:

Problem (i) û(λ) =
√

π

2

n

λ
ξn when λ + n2G(λ) = 0, (16)

Problem (ii) û(λ) = − 1

bn
ξn when λ + n2G(λ) = 0. (17)

(We may suppose bn �= 0 for every n since if bm = 0 for some m we cannot control the mth component θm(t).)
These problems are interpolation problems.
We sum up: controllability to rest implies that the previous interpolation problems are solvable for every {ξn} ∈ l2.
Now let the system be controllable to rest in time T . Using the definition of the Laplace transform, the interpolation

problems (17) can be written as

T∫
0

e−λt u(t)dt = − 1

bn
ξn when λ + n2G(λ) = 0. (18)

(It is possible that for a fixed n the equation λ + n2G(λ) = 0 has more than one root. In this case condition (18) must be
satisfied at each root.)

Problem (16) takes the form

T∫
0

e−λt u(t)dt =
√

π

2

n

λ
ξn when λ + n2G(λ) = 0. (19)

The interpolation problems (16) and (17), when written in the equivalent form (18), respectively (19), are called moment
problems (with respect to a family of exponentials), see [1,10,21].

Our negative results on the controllability to rest will be derived since, under appropriate conditions, we can see that
there are obstructions to the solution of the interpolation/moment problem. We list two of such obstructions, which will be
explicitly used. The first is trivial.
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Obstruction 1. We see directly from the definition that if there is a sequence λn of zeros of λ + n2G(λ) which converges
to μ, then the interpolation problems (16) and (17) are not generally solvable. To show this, we choose ξ2k+1 = 0 and we
note that û(λ) is an entire function so that the conditions u(λ2k+1) = 0 and λ2k+1 → μ imply that û(λ) has to be identically
zero and this forces every component ξ2k to be zero too: neither interpolation condition (16) nor (17) are possible unless
ξ = 0.

An informal interpretation of this negative result which suggests where to search for more powerful obstructions, is as
follows: a subfamily {eλnk t} of the family of the exponentials in (18), respectively (19), is “so rich” that the corresponding
equalities uniquely identify the input u(t). In this case, it will not be possible to solve the remaining equalities. This informal
argument suggest that results which concerns completeness of families of exponentials might be useful to prove negative
results for controllability to rest. In fact, as seen in Lemma 1 below, a powerful obstruction to interpolation follows from
the following completeness condition.

Obstruction 2. Let {λn} be a sequence of complex numbers with the following property: there exists a number γ > 1 such
that

+∞∑
n=1

1

|λn|γ = +∞. (20)

If (20) holds then the sequence of exponentials {eλnt} is complete in L2(0, T ) for every T > 0.
See [19, p. 105, “complement” to Remark 2] for an even more general formulation.
Note that the condition in Obstruction 1 implies condition (20).
We see in Lemma 1 below that when the condition in Obstruction 2 holds then our interpolation/moment problem

cannot be solved if ξ has to be an arbitrary initial condition in L2(0,π). In fact, Lemma 1 shows a stronger consequence,
that we shall use in Remark 4 and in Theorem 8:

Lemma 1. Let condition (20) be fulfilled. Let r be nonnegative and let us consider the moment problems (18) or (19) with ξn = 〈ξ,φn〉,
and ξ ∈ dom(−A)r . These moment problems cannot be solved.

Proof. We fix an index k and we consider the equalities required by the moment problems for every index n �= k. Condi-
tion (20) is satisfied by the numbers λn , n �= k so that exponential family {e−λnt , n �= k} is complete.

We consider the special initial condition ξ = cφk , where c is constant. Clearly, ξ ∈ dom(−A)r . The moment equalities for
n �= k are

T∫
0

e−λnt u(t)dt = 0, n �= k. (21)

Since the exponential family {e−λnt , n �= k} is complete, this implies u = 0. Then the value of
∫ T

0 e−λkt u(t)dt is zero too and
cannot be assigned at will. The moment problems (18) or (19) can only be solved if c = 0. �
3. Lack of controllability to rest

The negative results are proved in this section. It is convenient to consider first the case of boundary controls, and the
case of a distributed control with a profile, i.e. the cases in which the control takes values in R, first.

3.1. Problems (i) and (ii)

Example 3 shows that system (1) can be controllable to rest. However, our negative results show that this is an excep-
tional case. The first negative result is as follows:

Theorem 2. If there exists a zero λ0 of G(λ) = α + N̂(λ) then controllability to rest in the cases (i), i.e. Eq. (2), and (ii), Eq. (3), is
impossible.

Proof. We shall see the existence of a sequence {λn} of zeros of

λ + n2G(λ),

one λn for each n, which is convergent. Obstruction 1 then shows that interpolation is impossible.
The sequence {λn} exists, from Rouchè’s Theorem: let λ0 be a zero of G(λ). We consider a disk centered at λ0 in which

G(λ) has no singularity and such that on the boundary |G(λ)| > μ > 0. Let ν = max |λ| on the boundary of the disk. Clearly,
for n large enough we have n2μ > ν so that the function n2G(λ) + λ has a zero λn in this disk, for every large n, as was to
be proved. �
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In particular, if α > 0 and N(t) = eγ t , or if α = 0 and N(t) = eγ t + eσ t , then controllability to rest is impossible. This is
to be contrasted with Example 1.

An example of a function G(λ) without zeros is G(λ) = N̂(λ) = 1/λ2 (hence α = 0) as in Example 2 and this case is not
covered by Theorem 2. So, we prove the next negative result.

Theorem 3. Let

G(λ) = 1

λν + g(λ)
,

where ν � 2 and |g(λ)| < M|λ|ν−1 . The estimate for g(λ) is assumed in a sector S with the vertex at 0 and containing a ray arg z =
2πk+π
ν+1 .

Under this assumption, controllability to rest in the cases (i), i.e. Eq. (2), and (ii), Eq. (3), is impossible.

Proof. The proof depends on Obstruction 2.
The equation λ + n2G(λ) = 0 gives

0 = (
λν+1 + n2) + λg(λ). (22)

We compare λg(λ) and

fn(λ) = λν+1 + n2.

The zeros of fn(λ) are (−n2)1/(ν+1) and lie on the lines identified by the (ν +1)-roots of (−1), e(iπ+2kiπ)/(ν+1), 0 � k � ν .
By assumption, at least one of them belong to the sector S . Let this root be eiπ(2k0+1)/(ν+1) .

Consider the sequence of the roots

ζn = n2/(ν+1)eiπ(2k0+1)/(ν+1).

These belong to a straight line in the sector S . Moreover, there exists a number γ > 1 such that
∑

1/|ζn|γ = +∞, since
2/(ν + 1) < 1. Obstruction 2 implies that for the set of the zeros of the functions fn(λ) our interpolation problems cannot
be solved for general data.

We prove that this negative property is inherited by the zeros of λ + n2G(λ) as follows: using again Rouchè’s Theorem,
we prove that there exists a number σ > 0 and a number N0 such that for n > N0 the function λ + n2G(λ) has a zero μn

in a disk of radius σ centered at each zero of ζn . So, we have also
∑

1/|μn|γ = +∞ and interpolation is impossible.
Let Γn be the circle

Γn: λ = ζn + σ eiω, ω ∈ [0,2π ].
The number σ is still to be determined. We compare |λ|ν with fn(λ) = (λν+1 + n2) on this circle.

We obtain

|λ|ν = ∣∣ζn + σ eiω
∣∣ν � n2ν/(ν+1)

[
1 + σ

n2/(ν+1)

]ν

= n2ν/(ν+1)

[
1 +

ν∑
k=1

(
ν
k

)
σ k

n2k/(ν+1)

]
.

Hence, there exists a number M such that the following estimate holds on Γn:

∣∣λg(λ)
∣∣ � M|λ|ν � Mn2ν/(ν+1)

[
1 +

ν∑
k=1

(
ν
k

)
σ k

n2k/(ν+1)

]
. (23)

Note that the sum converges to zero for n → +∞. We now consider fn(λ) on Γn . We recall ζ
(ν+1)
n = −n2.

∣∣ fn(λ)
∣∣ = ∣∣[ζn + σ eiω]ν+1 + n2

∣∣ = n2
∣∣∣∣1 −

[
1 + σ eiω

ζn

]ν+1∣∣∣∣ = n2

∣∣∣∣∣
ν+1∑
k=1

(
ν + 1

k

) [σ eiω]k

ζ k
n

∣∣∣∣∣
� n2ν/(ν+1)σ (ν + 1)

[
1 −

∣∣∣∣∣
ν+1∑
k=2

(
ν + 1

k

) [σ eiω]k

σ(ν + 1)ζ k−1
n

∣∣∣∣∣
]
. (24)

The sum converges to 0 for n → +∞, uniformly for ω ∈ [0,2π ]. We compare with (23). We choose the number σ so to
have

σ >
4M

ν + 1
.

With this choice the following inequality holds for every n:

(ν + 1)σn2ν/(ν+1) > 4Mn2ν/(ν+1).

The value of σ is now fixed.



8 S. Ivanov, L. Pandolfi / J. Math. Anal. Appl. 355 (2009) 1–11
We observe that the disks are contained in S for every n which is large enough and that the sum in (23) tends to zero
so that there exists N ′ such that for every n > N ′ and λ ∈ Γn we have

(ν + 1)σn2ν/(ν+1) > 3Mn2ν/(ν+1)

{
1 +

ν∑
k=1

(
ν
k

)[
σ k

n2k/(ν+1)

]}
� 3

∣∣λg(λ)
∣∣. (25)

We consider (24). The fact that the sum converges to zero uniformly for ω ∈ [0,2π ] shows the existence of N0 > N ′ such
that, for n > N0 and λ ∈ Γn we have∣∣ f (λ)

∣∣ � 3

2

∣∣λg(λ)
∣∣. (26)

Rouchè’s Theorem shows that λ + n2G(λ) has a zero μn in every disk bounded by Γn provided that n > N0 and this implies∑
1/|μn|γ = +∞. Hence, interpolation is impossible. �

Remark 4. We observe:

• The previous results are in sharp contrast with the picture we have when θ ∈ Rn . Note that, in spite of the fact that
controllability to rest is impossible, control to rest of the projection on a finite-dimensional eigenspace of A might be
achievable.

• The assumption on the sector containing one of the rays arg z = 2πk+π
ν+1 is satisfied if it happens that the required

inequality on the function g(λ) holds in an angle larger than 2π/(ν + 1) radians, since 2π/(ν + 1) is the angle among
the rays.

• Theorem 3 can be applied in particular if α = 0 and N̂(λ) = 1/d(λ) where d(λ) is a polynomial of degree at least 2, as
in Example 2.

• When G(λ) has zeros or multiple poles, we proved the existence of chain of roots at which interpolation is impossible.
We do not exclude the existence of chain of roots at which interpolation is possible. Let us consider the following
example: the kernel is N(t) = 1 + t and α = 0. The equation to be solved in order to identify the interpolation points is

G(λ) = h(λ) = n2(λ + 1) + λ3 = 0.

For every number n this equation has one solution in the interval [−1,−1+1/n] since G(−1) = 0 while G(−1+1/n2) =
3

n2 − 3
n4 + 1

n6 > 0. So, there is a chain of roots {λ(1)
n } which accumulates to −1 and interpolation at these roots is

impossible, see Obstruction 1.
In fact, we have two more chains of roots:

λ
(2)
n = −in + χ

(n)
1 ,

∣∣χ(n)
1

∣∣ < 1, λ
(3)
n = in + χ

(n)
2 ,

∣∣χ(n)
2

∣∣ < 2.

This is easily seen using Rouchè’s Theorem. So, controllability to rest is equivalent to the following interpolation prob-
lem:

û
(
λ

(1)
n

) = −
√

π

n

[λ(1)
n ]2

1 + λ
(1)
n

ξn, û
(
λ

(2)
n

) = −
√

π

n

[λ(2)
n ]2

1 + λ
(2)
n

ξn, û
(
λ

(3)
n

) = −
√

π

n

[λ(3)
n ]2

1 + λ
(3)
n

ξn.

The interpolation problem for the chains {λ(2)
n } and {λ(3)

n } is solvable. The obstruction to controllability is due solely to
the chain {λ(1)

n }.
• Different “obstructions” to interpolation or moment problems can be used to prove the negative results above. For

example we mention Blaschke condition which, when written with respect to the right-hand plane, is

∞∑
n=1


eμn

1 + |μn|2 < +∞.

This is necessary and sufficient in order that for every n the interpolation problem

f̂ (μk) =
{

1, k = n,

0, else,

has a solution f̂ which is the Laplace transform of a square integrable function.

Abel kernels are often met in applications and are widely studied (see for example [5,6]). An Abel kernel has the form

N(t) = 1

Γ (1 − γ )
t−γ i.e. N̂(λ) = 1

λ1−γ
,

where 0 < γ < 1 and Γ (λ) is the Euler Γ -function.
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We have:

Theorem 5. If N̂(λ) = 1/λ1−γ , γ ∈ (0,1), then controllability to rest is impossible.

Proof. In fact, let u ∈ P W + and let θ(t) be the corresponding solution to Problem (i). Then we have

θ̂n(λ) = 1

λ + n2[α + 1/λσ ]
{
ξn + n√

π/2

(
α + 1

λσ

)
û(λ)

}
,

where σ = 1 − γ . We prove that if γ , i.e. σ is not an integer, and θ̂n(λ) is analytical at the origin, then û is singular there.
For this, we replace λ = ρeiω (ρ “small”). If θ̂ (λ) is regular at λ = 0 then we have limω→0 θ̂ (ρeiω) = limω→2π θ̂(ρeiω) and
the same for û(ρeiω). So, the following equality must hold:

1

ρ + n2[α + 1/ρσ ]
[
ξn + n

√
2√

π

(
α + 1

ρσ

)
û(ρ)

]
= 1

ρ + n2[α + 1/(ρσ e2πσ i)]
[
ξn + n

√
2√

π

(
α + 1

ρσ e2πσ i

)
û(ρ)

]
.

We reduce to the same denominator and we find the equality

n
(
1 − e−2πσ i) ξn

ρ
=

√
2

π

(
1 − e−2πσ i)û(ρ).

This equality must hold for every index n. If γ , i.e. σ , is not an integer then (1 − e2πσ i) �= 0 and we see that û(ρ) is
unbounded for ρ → 0+ if ξn �= 0 for one index n. This contradiction shows that controllability to rest can be achieved only
if the initial condition ξ is ξ = 0.

The case of Problem (ii) can be treated similarly. �
Remark 6. We note:

• The fact that θ evolves in an infinite-dimensional space has not been used in the proof of Theorem 5, which holds also
if θ = x ∈ Rn (and the control entering in the equation, of course). For example, controllability to rest is impossible even
for the system

ẋ(t) =
t∫

0

1

(t − s)γ
x(s)ds + u(t), x ∈ R.

• The results in this section have been stated for boundary control systems with Dirichlet control. If the control is in
the Neumann condition than we get similar interpolation problems and completely analogous negative results. The
difference is that for Neumann controls we obtain, instead of (14),

θ̂n(λ) = − 1

λ + n2G(λ)

(
ξn + φn(0)G(λ)û(λ)

)
.

Here φn(t) are the eigenfunctions of the Neumann problem, so that φn(0) �= 0.

3.2. Case (iii): Control distributed on a subdomain

In this section the system is acted upon by a distributed control which is supported in an interval [β,γ ] � [0,π ]. Hence,
there is an interval [a,a1] ⊆ [0,π ] which does not intersect [β,γ ]. Clearly, we can choose either a = 0 or a1 = π . We
consider the case a1 = π . The case a = 0 is treated analogously. We consider the restriction of the solution θ(t, ·) of Eq. (4)
to the interval (a,a1) = (a,π). This function solves the equation

θt = αθxx +
t∫

0

N(t − s)θxx(s)ds, x ∈ (a,π), t > 0, (27)

with initial condition θ(0, x) = ξ(x) for x ∈ (a,b) and boundary conditions

θ(t,π) = 0, θ(t,a+) = θ(t,a−),

provided that we can give a meaning to θ(t,a−).
In this case, θ(t,a−) = v(t) acts as a boundary control and, needless to say, the negative results we already proved for

the interval (0,π) hold also if the system is considered on the interval [a,π ]. Hence, if the kernel has the properties of the
previous section then controllability to rest of the restriction of θ(t, ·) to (a,π) is impossible. So, it is also impossible to
control the system to rest on the interval [0,π ].
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We are going to give conditions under which the v(t) = θ(t,a−) can be computed.
We consider the following equation in X = L2(0,π):

θt = αAθ +
t∫

0

N(t − s)Aθ(s)ds + Bu(t), θ(0) = ξ, (28)

where A is the operator in (9) and B ∈ L(R, X) is given by Bu = b(x)u.

Lemma 7. Let θ(t) solve (28) with u ∈ L2
loc([0,+∞); X) and let ξ ∈ H1

0(0,π) = dom(−A)1/2 . We have that θ(t, ·) ∈ H1
0(0,π) for

every t � 0, α > 0 and N(t) ∈ H1(0, T ) for every T > 0.

Proof. We fix any T > 0. We consider case (a) first. In this case α > 0 and we can assume α = 1 without restriction. Then
(see [3, Section 2]), θ(t) = θ(t, x) solves

θ(t) = e Atξ −
t∫

0

N(t − r)θ(r)dr +
t∫

0

e A(t−s)

[
N(0)θ(s) +

s∫
0

N ′(s − r)θ(r)dr

]
ds +

t∫
0

e A(t−s)Bu(s)ds. (29)

Here e At is the holomorphic semigroup generated by the operator A in (9).
We consider now the following Volterra integral equation:

y(t) = e At(−A)1/2ξ +
t∫

0

(−A)1/2e A(t−s)Bu(s)ds −
t∫

0

N(t − r)y(r)dr +
t∫

0

e A(t−s)

[
y(s) +

s∫
0

N ′(s − r)y(r)dr

]
ds.

It is known that the transformation

u →
t∫

0

(−A)1/2e A(t−s)Bu(s)ds

is continuous from L2(0, T ; L2(0,π)) to itself (see [11] for an even more general case). So, both this Volterra integral equa-
tion and Eq. (29) are solvable and have a unique solution. Hence it must be θ(t) = (−A)−1/2 y(t) ∈ dom(−A)1/2 = H1

0(0,π).
This shows that v(t) = θ(t,a−) can be computed, as we wanted to prove. �

In conclusion:

Theorem 8. Let the assumptions in Lemma 7 hold and let the kernel N(t) satisfies the assumptions of one of the theorems in Section 3.1.
Then, control system (4), with b(x) supported in [α,β] � [0,π ], is not controllable to rest.

Note that the initial conditions we considered in the proof of Theorem 8 belong to H1
0(0,π) but the obstructions to

interpolation applies to this set of initial conditions as well, see Lemma 1.

4. Conclusion

In this paper we presented negative results on the controllability to rest for the heat equation with memory, which show
that the cases in which controllability to rest is achievable must be very particular: cases in which the Laplace transform
of the kernel does not have neither branch points nor zeros or multiple poles. Even more, we proved that if N(t) has a
rational Laplace transform then N̂(λ) must have the form a/(λ + b). I.e., in this case the heat equation with memory must
be an “integrated” form of a wave type equation (the wave equation when b = 0 as in Example 3).

See [15] for a different kind of negative results due to the effect of infinite memory.
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