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0. Introduction

We write Ĉ (or sometimes P
1) for the Riemann sphere C∪{∞}. Let R be a Riemann surface. Two meromorphic functions

f1, f2 : R → Ĉ are said to share the value a ∈ Ĉ if for every u ∈ R we have f1(u) = a ⇔ f2(u) = a. If moreover f1 takes the
value a at each u with the same multiplicity as f2, we say that f1 and f2 share the value a CM (counting multiplicities). If
we do not know the multiplicities or do not care, we say that a is shared IM (ignoring multiplicities).

In [12] Sauer proved among other results that if S is a compact Riemann surface of genus g > 0 then two different
non-constant meromorphic functions on S cannot share more than 2 + 2

√
g values. If moreover one of the shared values

is shared CM, the bound can be strengthened to 1
4 (9 + √

32g + 17 ). In [13] these bounds have been slightly improved, and
bounds in terms of other invariants of S have also been given.

In this paper we show that there do indeed exist compact Riemann surfaces that can carry two meromorphic functions
with many shared values and that one can even prescribe the shared values (Theorem 1). This question had been left open
in [12] and [13]. The best examples one can find in the literature have 4 shared values. We also investigate how many values
two functions that are meromorphic on a punctured compact Riemann surface can share (Section 3). In the last section we
use the concept of weighted sharing to refine some known results.

1. Basic facts

Recall that the gonality d of a compact Riemann surface S is defined to be the smallest integer m such that S can be
realized as an m-sheeted branched covering of the Riemann sphere. Equivalently, d is the smallest possible degree of a
non-constant meromorphic function on S .

Theorem A. (See [13].) Let S be a compact Riemann surface of genus g > 0 and gonality d. Let f1, f2 : S → Ĉ be two different
non-constant meromorphic functions sharing n values.
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(a) Then

n � min

{
2 + √

2g + 2,2d + 1,4 + 2(g − 1)

d

}
.

(b) If moreover one of these n values is shared CM, then we even have

n � min

{
1

2
(5 + √

4g + 5 − 2d),2d + 1,3 + 2(g − 1)

d

}
.

(c) If g = 0, i.e. S = P
1 , the optimal bound in both cases is known to be 3.

Actually, [3, Theorem 1] claims an inequality that is stronger than the key lemmas in [12] and [13] and that would
consequently imply stronger results than Theorem A. But trying to follow the proof in [3], I have not been able to obtain
the claimed inequality.

Besides the three articles already mentioned, the only other instance in the literature dealing with value-sharing of
meromorphic functions on a compact Riemann surface (other than the Riemann sphere) seems to be [2]. It investigates
functions sharing sets of values and is formulated in terms of functions on algebraic curves, which allows working over any
algebraically closed field of characteristic 0, not just over C. We point out that by the nature of their proofs the results in
[12,13] and some of the results we will obtain below (notably Theorem 1) also hold in such a general setting.

The most famous result on value-sharing is of course Rolf Nevanlinna’s theorem, that two meromorphic functions in
the complex plane that share 5 values must be equal. A true generalization of this result to Riemann surfaces would, for
example, be a statement about meromorphic functions on a punctured compact Riemann surface. I thank Jun-Muk Hwang
who pointed this out to me and thus triggered my interest in this problem. Obviously, this is more difficult than working
on a compact Riemann surface, as there are many more meromorphic functions, and algebraic arguments cannot suffice.
Luckily, the local result one would like to have has already been proved by R. Nevanlinna.

Theorem B. (See [9].) Let f1(z) and f2(z) be meromorphic functions in a neighbourhood of the point z = ∞, where they have an
essential singularity. If for five different values (finite or not) of w the equalities

f1(z) = w, f2(z) = w,

outside some circle |z| = r0 are satisfied for exactly the same values of z, then f1 and f2 are identical.

Of course one can transform this into a statement about meromorphic functions with an essential singularity in a punc-
tured disk.

Together with Theorem A(c), which is folklore, Theorem B implies Nevanlinna’s Five Value Theorem in the complex plane
in the same way as the Big Picard Theorem implies the Little Picard Theorem.

2. Compact Riemann surfaces

No example seems to be known of a compact Riemann surface S and two different non-constant meromorphic functions
f1, f2 : S → Ĉ that share more than 4 values. Moreover, [13] shows that “most” compact Riemann surfaces of a given genus
do not allow more than 7 shared values.

So it is legitimate to wonder whether in this case there is an absolute bound on the number of shared values, valid for
all compact Riemann surfaces. The final remarks of [13] advocate this point of view, suggesting that a possible approach
could be to prove the existence of a bound for the number of shared values of two different meromorphic functions on the
open unit disk. The logical connection is immediate by pulling back the functions from the Riemann surface to its universal
covering, which for g � 2 is the open unit disk.

I am grateful to Jörg Winkelmann who showed to me that one can construct different meromorphic functions on the
open unit disk with any finite number of shared values. Although his examples do not come from compact Riemann surfaces,
they convinced me that there probably is no uniform bound for all compact Riemann surfaces and that one should rather
try to find examples of compact Riemann surfaces that allow many shared values. By an algebraic argument we will now
construct such examples. In fact, one can even prescribe the shared values.

Theorem 1. Let a1,a2, . . . ,an ∈ Ĉ be n different values with n � 2.

(a) There exist a compact Riemann surface S of genus g � n2 and two different non-constant meromorphic functions f1 and f2 from
S to Ĉ that share the values a1, . . . ,an.

(b) There exist a compact Riemann surface S of genus g � 2n2 − 5n + 3 and two different non-constant meromorphic functions f1

and f2 from S to Ĉ that share the values a1, . . . ,an−1 IM and the value an CM.



222 A. Schweizer / J. Math. Anal. Appl. 365 (2010) 220–228
Proof. (a) After a Möbius transformation we can assume that all the values ai are finite and non-zero. We consider the
polynomial

F (X, Y ) = (X − Y )n+1 + Y
n∏

i=1

(Y − ai)

n∏
i=1

(X − ai).

As a polynomial in X the highest coefficient is 1, all other coefficients are divisible by Y , and the absolute term is not
divisible by Y 2. (Here we are using that the ai are non-zero.) So it is an Eisenstein polynomial in X with respect to Y . By
the Eisenstein criterion (see for example [15, Proposition III.1.14]) it is therefore irreducible in X . Since the highest term
is Xn+1, we also cannot factor out a polynomial that depends only on Y . So F (X, Y ) is irreducible.

Let S be the compact Riemann surface of the algebraic equation

F (X, Y ) = 0.

Then the field of meromorphic functions on S is C(X, Y ) where X and Y are related by F (X, Y ) = 0. In particular, X and
Y are functions of degree n + 1 from S to Ĉ. If X takes the value ai at some point of S , we see from the equation that Y
cannot have a pole at that point and that it must take the same value. And vice versa. Thus X and Y share the value ai .

To estimate the genus of S we apply the Castelnuovo inequality. See [15, Theorem III.10.3] for an algebraic proof or
[1, Theorem 3.5] for a proof that is more in the spirit of Riemann surfaces. The condition that the two maps do not factor
over another Riemann surface corresponds to the condition that X and Y generate the function field of S , which holds by
construction. From the Castelnuovo inequality we get

g �
(
deg(X) − 1

)(
deg(Y ) − 1

) = n2.

(b) We can suppose that an = ∞ and that a1, . . . ,an−1 are non-zero. This time we look at the Riemann surface corre-
sponding to F (X, Y ) = 0 where

F (X, Y ) = (X − Y )2n−1 + Y
n−1∏
i=1

(Y − ai)

n−1∏
i=1

(X − ai).

As above we see that F (X, Y ) is irreducible and that the functions X and Y share the values a1, . . . ,an−1. From the equation
we also see that if X or Y has a pole at some point, then the other function must also have a pole at that point with the
same multiplicity.

Finally, F (X, Y ) = 0 is a plane curve of degree d = 2n − 1. Using the formula for the genus of a plane curve ([1, p. 5] or
[15, Proposition III.10.5]), we get

g � (d − 1)(d − 2)

2
= (n − 1)(2n − 3). �

Remark 2. Together with the results from [12] (or Theorem A) this answers a question asked in [12]. In both cases (all
values shared IM, or one of the values shared CM) the order of magnitude of the optimal bound in terms of the genus
is

√
g .

There is still some room for further fine-tuning since the upper bounds from Theorem A grow asymptotically like
√

2g
resp.

√
g whereas the examples from Theorem 1 grow asymptotically like

√
g resp.

√
g/2.

Corollary 3. Let n ∈ N and a1,a2, . . . ,an ∈ Ĉ. Then for every k with 1 � k � n there exist two different meromorphic functions h1 and
h2 from the open unit disk D = {z ∈ C: |z| < 1} to Ĉ that

• omit the values a1, . . . ,ak−1;
• take every other value in Ĉ infinitely often;
• share the values ak, . . . ,an;
• even share the value an CM.

Proof. Take a compact Riemann surface S of genus g � 2 and two different functions f i : S → Ĉ sharing a1, . . . ,an as in
Theorem 1(b). Remove the inverse images of a1, . . . ,ak−1 from S , and restrict f i to functions f̃ i on the punctured Riemann
surface R . Now we simply have to take hi = f̃ i ◦ π where π : D → R is the universal covering. �

For a recent detailed study of value-sharing of meromorphic functions in the unit disk see [16].
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3. Punctured Riemann surfaces

Let P1 be a point of P
1. By Nevanlinna’s Five Value Theorem, the maximum number of values that two different non-

constant functions that are meromorphic on the punctured Riemann surface P
1 − {P1} can share is 4, realized for example

by ez and e−z on C.
The same bound holds for P

1 minus two points. After a Möbius transformation we can assume that f1 and f2 are
meromorphic on C − {0}. Then f1(ez) and f2(ez) are meromorphic on C and share the same values; so their number is
bounded by 4.

Examples 4.

(a) Let ζr = e
2π i

r be a primitive r-th root of unity with r � 2. Then the functions

f1(z) = z and f2(z) = ζr z

are obviously meromorphic on

P
1 − {

ζ k
r : k = 0, . . . , r − 1

}
and share the r + 2 values

∞, 0 and ζ k
r (k = 0, . . . , r − 1).

(b) For any fixed choice of three points P1, P2, P3 on P
1 we can always construct two meromorphic functions on P

1 −
{P1, P2, P3} that share 5 values. Let T (z) be the Möbius transformation that maps P1, P2, P3 to 1, ζ3, ζ

2
3 . Then T (z) and

ζ3T (z) share ∞,0,1, ζ3, ζ
2
3 , actually all CM.

(c) On any fixed Riemann surface P
1 − {P1, . . . , Pr} with r � 4 we can realize at least 6 shared values. Let T1(z) be the

Möbius transformation that maps P1, P2, P3 to ∞,0,1 and let c = T1(P4). Fix a square-root
√

c and set T2(z) = z+√
c

z−√
c

.

Then T2 maps ∞,0,1, c to 1,−1,a,−a. So the functions T2(T1(z)) and −T2(T1(z)) from P
1 − {P1, . . . , Pr} to Ĉ share

∞,0,1,−1,a,−a, actually all CM.
(d) If g � 2 and R1, . . . , R2g+2 ∈ C are different, the compact Riemann surface S corresponding to

Y 2 =
2g+2∏
i=1

(X − Ri)

is hyperelliptic of genus g . Moreover, the hyperelliptic map κ : S → P
1, corresponding to (X, Y ) 	→ X , is ramified exactly

above the points Ri . If {R1, . . . , R2g+2} contains all r-th roots of unity and Pi = κ−1(ζ i
r ) for i = 1,2, . . . , r, then κ and

ζrκ share the r + 2 values ∞, 0, 1, ζr, . . . , ζ
r−1
r on S − {P1, . . . , Pr}.

In Examples 4(a), (b) and (d) we actually have constructed r different functions that all share the same r + 2 values CM.
Simple as these constructions may be, under certain conditions they will turn out to be essentially the only ones that realize
the maximal possible number of shared values.

Now we combine Theorem B and algebraic arguments to derive upper bounds. Recall that if S is a compact Riemann
surface and P1, . . . , Pr are r different points on S with 0 � r < ∞, then the Euler characteristic of the Riemann surface
R = S − {P1, . . . , Pr} is defined to be

χ(R) = 2 − 2g(S) − r.

If χ(R) < 0 then R is called hyperbolic. For r > 0 this only excludes the two cases g = 0, r � 2, which we have discussed at
the beginning of this section.

Theorem 5. Let S be a compact Riemann surface of genus g and gonality d. Let R = S − {P1, . . . , Pr} where P1, . . . , Pr are r different
points on S.

If R is hyperbolic, then two different non-constant meromorphic functions on R can share at most

4 + 2g − 2 + r

d
= 4 − χ(R)

d

values.
Moreover, if 4 − χ(R)

d is an integer and if f1 and f2 realize this bound, then f1 and f2 must both be meromorphic on the compact
Riemann surface S and deg( f1) = deg( f2) = d.
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Proof. First let us assume that one of the functions, say f1 has an essential singularity at one of the points Pi . By the
Big Picard Theorem, in every neighbourhood of Pi the function f1 can omit at most two of the shared values. Every other
shared value is a limit of f2(z) when z approaches Pi along the corresponding inverse images. So if there are 4 or more
shared values, then f2 also has an essential singularity at Pi . By Theorem B in this case f1 and f2 cannot share more than
4 values.

Now suppose that none of the points Pi is an essential singularity. Then f1 and f2 extend to meromorphic functions
on the compact Riemann surface S . Let di = deg( f i). Without loss of generality we can assume d1 � d2. After a Möbius
transformation we can also assume that all n shared values a1, . . . ,an lie in C. Let M consist of all u ∈ S with f2(u) ∈
{a1, . . . ,an}. Then

r2(M) :=
∑
u∈M

(
mult f2(u) − 1

)
measures the ramification of the covering f2 : S → Ĉ above these values. Applying the Hurwitz formula we get

r2(M) � r2(S) = 2g(S) − 2 − d2
(
2g(Ĉ) − 2

) = 2g − 2 + 2d2.

Also, every element of M ∩ R is a zero of f1 − f2, which is a function of degree � 2d2. Together we obtain

nd2 = |M ∩ R| + ∣∣M ∩ {P1, . . . , Pr}
∣∣ + r2(M) � 2d2 + r + 2g − 2 + 2d2,

and after division

n � 4 + 2g − 2 + r

d2
= 4 − χ(R)

d2
.

Since (by definition) d � d1 � d2, this establishes the bound, and it also shows that reaching the bound is only possible if
d2 = d. �
Corollary 6. Let P1, . . . , Pr be r different points on P

1 with r � 3. Then two different non-constant functions that are meromorphic
on P

1 − {P1, . . . , Pr} cannot share more than r + 2 values.
Moreover, this bound is optimal (at least for a suitable choice of P1, . . . , Pr ). If f1 and f2 attain this bound, they both must be

functions of degree 1 on P
1 , that is, they must be fractional linear transformations.

Proof. Specialize Theorem 5. The bound is sharp by Example 4(a). �
Note that if r > 4 we do not claim that the bound in Corollary 6 is sharp for every choice of P1, . . . , Pr .

Example 7. If the 5 points P1, . . . , P5 from P
1 are not all lying on one circle or on one straight line, then two different

non-constant meromorphic functions on R = P
1 − {P1, . . . , P5} cannot share more than 6 values.

Indeed, if f1 and f2 share 7 values, then by Corollary 6 they must be functions of degree 1 on P
1. Moreover, two of the

shared values must obviously be taken at points of R . Applying Möbius transformations to the values and to the arguments
we can assume that these two shared values are ∞ (taken at the point ∞) and 0 (taken at the point 0). Hence f i(z) = ci z
with ci ∈ C

∗ . Without loss of generality we can assume f1(z) = z. Then f2 must permute the 5 punctures. This is only
possible if f2 is a rotation around 0 and if the 5 punctures are lying on a circle around 0. Since Möbius transformations
respect circles on P

1, the 5 original points P1, . . . , P5 must lie on such a circle.

For r = 0 Theorem 5 gives one of the bounds from Theorem A. In view of the other bounds in Theorem A one might
think that in the case where d is small and g is large it should be possible to get stronger bounds than Theorem 5. But
even under this condition the bound in Theorem 5 is often sharp.

Proposition 8. For every compact Riemann surface S there are infinitely many r ∈ N for which the bound in Theorem 5 is sharp
(provided the points P1, . . . , Pr are suitably chosen), and the values are even shared CM.

Proof. Fix a covering π : S → P
1 of degree d. We can assume that all ramified values R1, . . . , Rm of π are in C

∗ .
If Q 1, . . . , Q s are s different points in C

∗ , containing all Ri , then by the Hurwitz formula there are exactly r = ds − (2d +
2g − 2) points Pi of S lying above Q 1, . . . , Q s .

If moreover the set {Q 1, . . . , Q s} is closed under Q i 	→ −Q i , then the functions π and −π from S − {P1, . . . , Pr} to Ĉ

share the 2 + s values ∞, 0, Q 1, . . . , Q s CM and 2 + s = 4 + 2g−2+r
d . �

However, for r in a certain range one can indeed improve on Theorem 5.



A. Schweizer / J. Math. Anal. Appl. 365 (2010) 220–228 225
Theorem 9. Let S be a compact Riemann surface of genus g and gonality d. Let R = S − {P1, . . . , Pr} where P1, . . . , Pr are r different
points on S.

If r � 2d, then two different non-constant meromorphic functions on R can share at most r + 2 values.
Moreover, if f1 and f2 realize this bound and r > 2d, then f1 and f2 must both be meromorphic on S with deg( f1) = deg( f2) = d,

and the coverings fi : S → P
1 are totally ramified at all points P1, . . . , Pr .

Proof. As explained at the beginning of the proof of Theorem 5, we can assume that f1 and f2 are meromorphic on S .
Without loss of generality deg( f1) = d1 � d2 = deg( f2).

If (d − 1)(d2 − 1) � g , i.e. d2 � g−1+d
d−1 , from the last inequality in the proof of Theorem 5 we get

n � 4 + 2g − 2 + r

d2
� 4 + (2g − 2 + r)(d − 1)

g − 1 + d
= 4 + 2(d − 1) + (r − 2d)(d − 1)

g − 1 + d
,

which is smaller than 2 + 2d + r − 2d = r + 2 if r > 2d and equal to r + 2 if r = 2d.
If (d − 1)(d2 − 1) < g , we proceed by induction on d, using Corollary 6 as induction basis.
If d > 1 let F be the function field of S . Fix a rational subfield R of index d in F . Let M be the compositum of R and

C( f2) and let c be the index of M in F . By Castelnuovo’s inequality we have

g(M) �
(

d

c
− 1

)(
d2

c
− 1

)
.

Now c = 1 would be equivalent to M = F and hence contradict the Castelnuovo inequality. So M is a proper subfield of F .
If the compositum of M and C( f1) were F , then again by Castelnuovo’s inequality we would obtain g � cg(M) + (c −

1)(d1 − 1), and hence

(d − 1)(d2 − 1) < g � c

(
d

c
− 1

)(
d2

c
− 1

)
+ (c − 1)(d2 − 1).

Subtracting (c − 1)(d2 − 1) we get the contradiction (d − c)(d2 − 1) < (d − c)( d2
c − 1). We conclude that R , C( f1) and C( f2)

are contained in a proper subfield L of F . Let δ = [F : L]. Then

f i = f̃ i ◦ κ

where f̃1 and f̃2 are meromorphic of degrees d1
δ

resp. d2
δ

on the compact Riemann surface S̃ corresponding to L and κ is
the covering map from S to S̃ .

Now the image of {P1, . . . , Pr} under κ is a subset of S̃ of cardinality r̃ where obviously

r

δ
� r̃ � r.

Moreover, r̃ � 2 d
δ

and d
δ

is the gonality of S̃ . By induction f̃1 and f̃2 can share at most r̃ + 2 values, and if they share r̃ + 2

values then deg( f̃ i) = d
δ

and f̃1 and f̃2 are totally ramified at all κ(Pi).
This proves the first statement of the theorem. It also shows that having r + 2 shared values is only possible if r̃ = r, i.e.

if κ is totally ramified at P1, . . . , Pr . �
Remarks 10.

(a) In the range 2d � r <
2g

d−1 + 2 the bound in Theorem 9 is better than Theorem 5 if d > 1. Of course, this range might
be empty if d is sufficiently big with respect to g .

(b) By Example 4(d), for each pair (g, r) with 4 � r � 2g +2 there exists a hyperelliptic Riemann surface S , points P1, . . . , Pr
on S , and meromorphic f1, f2 on S − {P1, . . . , Pr} sharing r + 2 values.
On the other hand, if S is the hyperelliptic surface corresponding to

Y 2 = (X − 1)(X − 2)(X − 3)(X − 1 − i)(X − 2 − i)(X − 3 − i),

then by Theorem 9 and Example 7 for every choice of five points P1, . . . , P5 on S we cannot get more than 6 shared
values.

(c) More generally, if d � 3 and g = 1
2 (d − 1)(md − 2) with m � 2, then for every r with 2d � r � md = 2g

d−1 + 2 there
exist a compact Riemann surface S of genus g and gonality d, points P1, . . . , Pr on S , and meromorphic f1 and f2 on
S − {P1, . . . , Pr} that share r + 2 values.
Explicitly, let S be the Riemann surface of the function field F = C(X, Y ) with Y d = f (X) where f (X) ∈ C[X] is square-
free, of degree md and divisible by Xr − 1. Using the Hurwitz formula one can calculate the genus of every intermediate
field between C(X) and F . Then the Castelnuovo inequality shows that F indeed has gonality d. Let π be the covering
map from S to P

1 corresponding to the extension F/C(X). Let Pi = π−1(ζ i
r ) for i = 1,2, . . . , r. Then π and ζrπ share

the values ∞, 0, 1, ζr, . . . , ζ
r−1
r on S − {P1, . . . , Pr}.
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We finish this section with another example of which one can easily construct many explicit instances.

Example 11. Let F be the compositum of two quadratic extensions of C(z). Then F is a Galois extension of C(z) with Galois
group Z/2Z ⊕ Z/2Z. Assume that F has genus g � 10 and that each of the three intermediate quadratic fields has genus at
least 2. Then the Castelnuovo inequality implies that the gonality of F is 4 and that C(z) is the only rational subfield over
which F has degree 4. Moreover, no place is totally ramified in F/C(z).

Let S be the compact Riemann surface of F . Then Theorem 9 implies that for any choice of r > 8 different points
P1, . . . , Pr on S two meromorphic functions on S − {P1, . . . , Pr} cannot share more than r + 1 values.

4. Weighted sharing

In order to refine the results we recall the concept of weighted sharing as introduced by Lahiri in [7]. A shared value a
is shared with weight m ∈ N0 ∪ {∞} if for all inverse images u of a we have

mult f1(u) = μ � m ⇔ mult f2(u) = μ � m

and

mult f1(u) > m ⇔ mult f2(u) > m.

In particular, f1 and f2 sharing the value a with weight one means that the simple a-points of f1 are exactly the simple a-
points of f2 and the multiple a-points of f1 are exactly the multiple a-points of f2, where in the latter case the multiplicities
are not necessarily the same.

Obviously, sharing with weight 0 simply means sharing IM, and sharing with weight ∞ is the same as sharing CM.
In the sequel we write (m1, . . . ,mn) to indicate that the value ai is shared with weight mi .
Since a meromorphic function on a compact Riemann surface S is determined up to a multiplicative constant by its

divisor, we cannot have two different non-constant meromorphic functions on S sharing 3 values with weights (∞,∞,0).
(Apply a Möbius transformation to move the two CM-shared values to 0 and ∞.) But for every m ∈ N sharing with weights
(∞,m,0) is possible on every S .

Example 12. From [10] we take the example of the functions

f1(z) = −4z3

(z − 1)3(z + 1)
and f2(z) = −4z

(z − 1)(z + 1)3

from Ĉ to Ĉ. They share the value 1 CM (taken with multiplicity 1 at the zeroes of (z2 + 1)(z2 + 2z − 1)), and the values 0
and ∞, both IM. Since the value 0 is taken exactly at the points 0 and ∞, the functions hi(z) = f i(zm+1) take this value at
these two points with multiplicity at least m + 1. So, somewhat trivially, they share the value 0 with weight m.

Finally, if S is any compact Riemann surface, there is a covering π : S → P
1. Then h1 ◦ π and h2 ◦ π are two mero-

morphic functions on S that share the values 1, 0 and ∞ with respective weights (∞,m,0). Applying a suitable Möbius
transformation, we can get any 3 values shared with these weights.

Remark 13. If a1,a2, . . . ,an ∈ Ĉ and m ∈ N, with the same trick we can even construct a compact Riemann surface R and
two functions h1, h2 from R to Ĉ that share the values a1, . . . ,an with respective weights (∞,m,m, . . . ,m). We only have to
take S and f1, f2 as in Theorem 1(b), take a finite covering π : R → S of compact Riemann surfaces that is totally ramified
above all inverse images of the shared values with ramification index at least m + 1, and set hi = f i ◦ π .

The same weighted sharing can then of course also be obtained in Corollary 3.

Admittedly, in the preceding examples the weight m of the sharing does not really tell much, as we simply have ar-
tificially increased the multiplicities. However, if one restricts the nature of the underlying Riemann surface, one can get
non-trivial information, as we will show now by improving a result from [13].

The following lemma can be easily obtained as a special case of known results on two meromorphic functions in the
complex plane that share 4 values (cf. [4,5,8,17]). We prefer to give a direct algebraic proof. Besides being conceptually
much simpler, it has the advantage to be valid for rational functions on an elliptic curve over any algebraically closed field
of characteristic 0.

Lemma 14. Let S be a compact Riemann surface of genus 1 and f1 , f2 two non-constant meromorphic functions from S to Ĉ that
share the 4 values a1,a2,a3,a4 ∈ Ĉ. Let M = f −1

i {a1,a2,a3,a4} ⊆ S. Then

(a) deg( f1) = deg( f2);
(b) |M| = 2 deg( f i);
(c) the map fi : S → Ĉ is unramified outside M;
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(d) f1(u) �= f2(u) for every u /∈ M;
(e) at each point u ∈ M at least one of the two functions takes the shared value a j = f i(u) with multiplicity 1.

Proof. Let di = deg( f i). Without loss of generality we can assume d1 � d2. Let

r2(M) :=
∑
u∈M

(
mult f2(u) − 1

)
.

Applying the Hurwitz formula to the covering f2 : S → Ĉ we get

r2(M) � r2(S) = 2g(S) − 2 − d2
(
2g(Ĉ) − 2

) = 2d2.

After a Möbius transformation we can assume a1, . . . ,a4 ∈ C. Since every u ∈ M is a zero of f1 − f2, we have

d1 + d2 � deg( f1 − f2) � |M| = 4d2 − r2(M) � 2d2.

This shows d1 = d2 and |M| = 2d2 and also r2(M) = 2d2, which means that f2 is unramified outside M . Since d1 = d2 we
can interchange f1 and f2, so f1 is also unramified outside M .

Moreover, we see deg( f1 − f2) = 2d2. This shows that f1 and f2 have no common poles. Finally, since f1 − f2 vanishes
at the 2d2 different points in M , it cannot vanish outside M (so claim (d) holds) and it cannot have a multiple zero, which
implies statement (e). �
Corollary 15. Let S be a compact Riemann surface of genus 1 and f1 , f2 two non-constant meromorphic functions from S to Ĉ that
share 4 values with respective weights (1,0,0,0). Then f1 = f2 .

Proof. By Lemma 14(e) the value that is shared with weight one is actually shared CM. By part (b) of Theorem A this
implies f1 = f2. �
Corollary 16. Let f1 and f2 be two non-constant elliptic functions on the complex plane (not necessarily with commensurable period
lattices). If f1 and f2 share 4 values, of which one is shared with weight one, then the functions f1 and f2 are equal.

Proof. Let Λi be the period lattice of f i . Translating the variable z we can assume that f1(0) is one of the shared values.
Then f1 (and also f2) takes this value at all points of the Z-module Λ1 + Λ2. Since f1 is not constant, Λ1 + Λ2 must be
discrete and hence a rank 2 lattice. Thus Λ1 and Λ2 are commensurable. Let Λ be the rank 2 lattice Λ1 ∩ Λ2. Then we can
consider f1 and f2 as meromorphic functions on the torus C/Λ and apply the previous corollary. �

This result, presumably well known to specialists, has inspired the following modification of a famous problem. Let f1
and f2 be two non-constant meromorphic functions in the complex plane sharing 4 values. Gundersen [4] has shown that if
2 of these 4 values are shared CM then all 4 values must be shared CM. He also asked whether one CM-shared value would
already be enough for the same conclusion. Although there are positive answers under different additional conditions (see
for example [8,5], [17, Chapter 4], [6]), this is still an open problem.

But the notion of weighted sharing opens up infinitely many more possibilities between weights (∞,0,0,0) and
(∞,∞,0,0). So one might ask: Does sharing with weights (∞,m,0,0) for some m ∈ N imply weights (∞,∞,∞,∞)?
It turns out that a much weaker condition, namely that the weights of sharing are (1,1,0,0), already suffices.

Theorem 17. Let f1 and f2 be two non-constant meromorphic functions in the complex plane sharing 4 values. If 2 of these values are
shared with weight one, then all 4 values are shared CM.

Proof. If f1 and f2 share 4 values, then by [8, Lemma 1] for each shared value a j the counting function of the points that
are multiple a j-points for both functions is S(r, f i). Thus a value that is shared with weight one is shared “CM” in the sense
of [8], that is, the counting function of the points where the value is taken with different multiplicities is S(r, f i). But by
[5, Theorem C∗], two “CM”-shared values imply that all four values are shared CM. �

Modifying the condition that one value is shared CM in the other direction by relaxing it, we obtain the following
problem.

Question. Given m ∈ N. If two non-constant meromorphic functions in the complex plane share 4 values with respective
weights (m,0,0,0), does this imply that all four values are shared CM?

This is presumably a very difficult question. A positive answer would settle the famous problem on 1 CM plus 3 IM
shared values. And a counterexample would be a new example of two meromorphic functions in the complex plane sharing
4 values not all of which are shared CM. There are essentially only 3 known examples of such functions, namely the ones
described in [4,14,11].
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