
J. Math. Anal. Appl. 366 (2010) 128–136
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Formal first integrals for periodic systems ✩

Jia Jiao a,b,∗, Shaoyun Shi a,c, Zhiguo Xu a

a Institute of Mathematics, Jilin University, Changchun 130012, PR China
b College of Science, Dalian Nationalities University, Dalian 116600, PR China
c Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2009
Available online 4 January 2010
Submitted by J. Mawhin

Keywords:
Formal first integral
Periodic systems
Floquet’s theory
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solution. Moreover, we present a criterion about partial existence of formal first integrals
for the periodic system, by using the Floquet’s theory.
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1. Introduction

Early in the 19th century, Poincaré [10] presented a simple criterion on nonexistence of analytic first integral for au-
tonomous differential equations

dx

dt
= f (x), x ∈ C

n, (1)

where f (x) is a vector-valued analytic function satisfying f (0) = 0. He showed that if the eigenvalues λ1, . . . , λn of the
Jacobi matrix A = D f (0) are non-resonant, i.e., they do not satisfy any condition of the form

n∑
j=1

k jλ j = 0, k j ∈ Z
+,

n∑
j=1

k j �= 0,

then system (1) does not have any nontrivial analytic first integral in a neighborhood of x = 0.
Along Poincaré’s idea, many works have been done in this field. In 1983, based on the monodromy properties around

particular solutions, Ziglin [16] studied the nonexistence of first integrals for Hamiltonian systems. Yoshida [13] derived
some necessary conditions for quasihomogeneous systems to have first integrals. In 1996, Furta [3] provided an elementary
proof of Poincaré’s result, and furthermore, he studied the nonexistence and partial existence of analytic first integrals for
semi-quasihomogeneous systems. Recently, the authors in [5] extended the Furta’s result. Li et al. [6] generalized Poincaré’s
result to the case that an eigenvalue of the matrix A is zero and the other eigenvalues are non-resonant. In [4], Goriely
investigated the partial integrability, i.e., the existence of a certain number of first integrals less than the number required
for the complete integration. More concrete relation between the number of first integrals of a given differential system and

✩ This work is supported by NSFC grant (10771083), National 973 project of China (2006CD805903), SRFDP grant (20060183017), Program for New
Century Excellent Talents in University and 985 project of Jilin University.

* Corresponding author at: College of Science, Dalian Nationalities University, Dalian 116600, PR China.
E-mail addresses: jiaolinrui@sina.com (J. Jiao), shisy@jlu.edu.cn (S. Shi), zhiguo@email.jlu.edu.cn (Z. Xu).
0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.12.049

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jiaolinrui@sina.com
mailto:shisy@jlu.edu.cn
mailto:zhiguo@email.jlu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2009.12.049


J. Jiao et al. / J. Math. Anal. Appl. 366 (2010) 128–136 129
its corresponding linear system was given by Zhang [15]. And in [2], the relation between resonance and the number of first
integrals for quasi-periodic differential systems was also considered. More related works can be found in [7–9,11,12,14].

In this paper, we will present some criteria about nonexistence and partial existence of first integrals for the periodic
differential system

ẋ = f (t, x), (2)

where (t, x) ∈ S1 × C
n with S1 = R/(NT ), f (t, x) is Cr in S1 × C

n with r � 1 and f (t + T , x) = f (t, x). Here, a non-constant
function Φ(t, x) defined on S1 × U, with U an open subset of C

n , is called a first integral of system (2) if it is T -periodic
with respect to t and constant along every flow defined in U. If Φ(t, x) is differentiable, then this definition can be written
as the condition

∂Φ(t, x)

∂t
+

〈
∂Φ(t, x)

∂x
, f (t, x)

〉
≡ 0. (3)

If Φ(t, x) is a formal series in x and satisfies equality (3), then Φ(t, x) is called a formal first integral of system (2).
Suppose that x = 0 is a constant solution of system (2), i.e., f (t,0) ≡ 0, then system (2) can be rewritten as

ẋ = A(t)x + g(t, x) (4)

near some neighborhood of x = 0, where A(t) = ∂ f
∂x (t,0), A(t + T , x) = A(t, x), and g(t, x) = O (‖x‖2) is T -periodic in t .

By Floquet’s theory [1], there exists a T -periodic function Q (t) such that under the transformation

x = Q (t)y, (5)

system (4) is transformed to

ẏ = B y + h(t, y), (6)

where B is a constant matrix, and h(t, y) = O (‖y‖2) is T -periodic in t . The eigenvalues λ1, . . . , λn of B are called the
characteristic exponents (or Floquet exponents) of system

ẋ = A(t)x (7)

and the eigenvalues of eT B , i.e., μ1 = exp (λ1T ), . . . ,μn = exp (λn T ), are called the characteristic multipliers of the sys-
tem (7).

In 2003, by using the theory of linear operators and normal forms, Li et al. [6] obtained the following result.

Theorem 1. Assume that x = 0 is a constant solution of system (4). If the characteristic multipliers of system (7) do not satisfy any
resonant equality of the type

n∏
i=1

μ
ki
i = 1, ki ∈ Z

+,

n∑
i=1

ki � 1, (8)

then system (4) does not have any nontrivial formal first integral in a neighborhood of x = 0.

In this paper, firstly, we give an elementary proof for Theorem 1. Secondly, we present a criterion about partial existence
of formal integrals for periodic differential system. Finally, we give some examples to illustrate our results.

2. An elementary proof of Theorem 1

Suppose that system (4) has a nontrivial formal first integral Φ(t, x) in a neighborhood of x = 0. Evidently, we know that
Ψ (t, y) = Φ(t, Q (t)y) is a formal first integral of system (6) and Ψ (t + T , y) = Ψ (t, y), from the definition of first integral,
it requires that

∂Ψ (t, y)

∂t
+

〈
∂Ψ (t, y)

∂ y
, B y + h(t, y)

〉
≡ 0. (9)

Expanding the considered function Ψ (t, y) in the formal power series with respect to y, we get

Ψ (t, y) = Ψ0(t) + Ψl(t, y) + Ψl+1(t, y) + · · · , (10)

where l ∈ N and Ψi(t, y) is a homogeneous polynomial of degree i in y with T -periodic coefficients in t . Substitute (10)
into (9) and equate all the terms in (9) of the same order with respect to y zero. For y0, we get

∂Ψ0(t) ≡ 0,

∂t
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that is to say, Ψ0(t) ≡ Ψ0(0). Without any loss of generality, we set Ψ0(t) = 0. Equating the terms of yl we obtain

∂Ψl(t, y)

∂t
+

〈
∂Ψl(t, y)

∂ y
, B y

〉
≡ 0, (11)

this implies that Ψl(t, y) is an integral of the linear system

ẏ = B y. (12)

Since matrix B can be changed to a Jordan canonical form under a nonsingular linear transformation, for simplicity, we
assume that B has been a Jordan canonical form, i.e.,

B =

⎛
⎜⎜⎝

J1
J2

. . .

Jm̄

⎞
⎟⎟⎠ , Jr =

⎛
⎜⎜⎜⎝

λr 1
. . .

. . .

. . . 1
λr

⎞
⎟⎟⎟⎠ ,

where Jr is a Jordan block with degree equal to ir , i1 + · · · + im̄ = n.
Make the following transformation of variables

y = C z, (13)

where

C =

⎛
⎜⎜⎝

C1
C2

. . .

Cm

⎞
⎟⎟⎠ , Cr =

⎛
⎜⎜⎝

1
ε

. . .

εir−1

⎞
⎟⎟⎠ ,

Cr is a Jordan block with degree equal to ir , i1 + · · · + im = n, and ε > 0 is a constant.
Under the transformation (13), system (12) can be rewritten as

ż = (D + ε D̃)z, (14)

where

D =

⎛
⎜⎜⎝

D1
D2

. . .

Dm

⎞
⎟⎟⎠ , Dr =

⎛
⎜⎜⎝

λr

λr
. . .

λr

⎞
⎟⎟⎠ ,

D̃ =

⎛
⎜⎜⎝

D̃1
D̃2

. . .

D̃m

⎞
⎟⎟⎠ , D̃r =

⎛
⎜⎜⎜⎝

0 1
. . .

. . .

. . . 1
0

⎞
⎟⎟⎟⎠ .

Obviously, Ψ̄ (t, z, ε) = Ψl(t, C z) is an integral of the linear system (14). Thus

∂Ψ̄

∂t
(t, z, ε) +

〈
∂Ψ̄

∂z
(t, z, ε), (D + ε D̃)z

〉
≡ 0. (15)

Since

Ψl(t, y) =
∑

k1+···+kn=l

Ψk1···kn (t)yk1
1 yk2

2 · · · ykn
n ,

Ψ̄ (t, z, ε) has the form

Ψ̄ (t, z, ε) = Ψl(t, C z)

=
∑

k1+···+kn=l

Ψk1···kn (t)(z1)
k1(εz2)

k2 · · · (εi1−1zir

)ki1 (zi1+1)
ki1+1(εzi1+2)

ki1+2 · · · (εi2−1zi1+i2

)ki1+i2 · · ·

(zi1+···+im−1+1)
ki1+···+im−1+1(εzi1+···+im−1+2)

ki1+···+im−1+1 · · · (εim−1zn
)kn

= Ψ 0(t, z) + εΨ 1(t, z) + · · · + εl∗Ψ l∗(t, z), (16)
l l l
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where

Ψ
j

l (t, z) =
∑

k1+···+kn=l

Ψ
j

k1···kn
(t)zk1

1 · · · zkn
n , 0 � j � l∗, (17)

l∗ ∈ Z
+ is a certain constant and Ψ

j
k1···kn

(t + T ) = Ψ
j

k1···kn
(t).

Now substitute (16) into (15) and equate all the same order with respect to ε zero. Suppose Ψ 0
l (t, z) = Ψ 1

l (t, z) = · · · =
Ψ M−1

l (t, z) ≡ 0,Ψ M
l (t, z) �≡ 0 (0 � M � l∗). Then Ψ M

l (t, z) has to satisfy the following equation

∂Ψ M
l (t, z)

∂t
+

〈
∂Ψ M

l (t, z)

∂z
, Dz

〉
≡ 0. (18)

Substituting (17) into (18), we obtain

∑
k1+···+kn=l

[dΨ M
k1···kn

(t)

dt
+ 〈Λ,k〉Ψ M

k1···kn
(t)

]
zk1

1 · · · zkn
n ≡ 0,

where Λ = (λ1, . . . , λn) and k = (k1, . . . ,kn). For any monomial zk1
1 · · · zkn

n , we have

dΨ M
k1···kn

(t)

dt
+ 〈Λ,k〉Ψ M

k1···kn
(t) ≡ 0.

From the above equation,

Ψ M
k1···kn

(t) = Ψ M
k1···kn

(0)e−〈Λ,k〉t . (19)

Since the coefficient Ψ M
k1···kn

(t) is a T -periodic function in t , we get

e−〈Λ,k〉T = 1.

Then
n∏

i=1

μ
ki
i =

n∏
i=1

(
eλi T )ki =

n∏
i=1

eλiki T = e〈Λ,k〉T = 1.

Thus, a resonant condition of (8) type has to be fulfilled for any nonzero coefficient Ψ M
k1···kn

(t), which contradicts the condi-
tions of Theorem 1. The theorem is proved.

By the above proof, we can obtain the following result.

Corollary 1. If system (2) has a nontrivial formal first integral Φ(t, x) in a neighborhood of the constant solution x = 0, then Ψ (t, y) =
Φ(t, Q (t)y) is a formal integral of (6) in the vicinity of y = 0. Moreover, there exists a homogeneous function Ψl(t, y) of degree l with
respect to y which is an integral of system (12) in a neighborhood of y = 0. In fact, it is the leading term of the formal power series of
Ψ (t, y) with respect to y.

3. Partial existence of formal first integrals

In this section, we are concerned with the partial integrability of periodic system (2). According to the proof of Theo-
rem 1, we know that if system (2) has a nontrivial formal first integral Φ(t, x), then there exists a nonzero vector k ∈ Z

n+
such that

Θ =
{

k = (k1, . . . ,kn):
n∏

i=1

μ
ki
i = 1, ki ∈ Z

+
}

(20)

is a nonempty subset of Z
n+ . We say κ1, . . . , κs ∈ Θ are the least generating elements of Θ if both of the following conditions

hold:

(1) For any κ ∈ Θ , there exist a1, . . . ,as ∈ Z
+ such that κ = ∑s

i aiκi .
(2) s ∈ N is the minimal number satisfying the first condition.

Suppose that system (2) admits s nontrivial formal integrals Φ1(t, y), . . . ,Φs(t, y), then according to Corollary 1, linear
system (12) has s nontrivial homogeneous formal first integrals Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y) with respect to y. Here, we assume

that B is diagonalizable, just for simplicity, B has already been a diagonal form.
Now, we can state our main result of this paper.
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Theorem 2. Assume system (2) has a constant solution x = 0 and admits s (1 � s < n) nontrivial formal integrals Φ1(t, x), . . . ,
Φs(t, x). If Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y) are functionally independent in y and the number of the least generating elements of set Θ is s,

then any other nontrivial formal integral Φ(t, x) of system (2) must be a function of Φ1(t, x), . . . ,Φs(t, x), i.e.,

Φ(t, x) = D
(
Φ1(t, x), . . . ,Φs(t, x)

)
,

where D is a formal series.

We remark that Theorem 2 is, in some sense, a generalization of Theorem 3 of [6].
In order to prove Theorem 2, we will get the help of the following two lemmas.

Lemma 1. Suppose that the number of the least generating elements of set Θ is s (1 � s < n), and let κ1 = (κ11, . . . , κ1n), . . . , κs =
(κs1, . . . , κsn) be the least generating elements of set Θ . Then the following statements hold:

(a) ρ i(t, y) = e−〈Λ,κi〉t yκi1
1 · · · yκin

n for i = 1, . . . , s are s first integrals of the linear system (12).
(b) Any nontrivial homogeneous formal first integral Ψl(t, y) of (12) is a polynomial function of ρ1(t, y), . . . , ρs(t, y).

Proof. (a) It follows easily by a direct calculation.
(b) If

Ψl(t, y) =
∑

k1+···+kn=l

Ψk1···kn (t)yk1
1 · · · ykn

n

is a nontrivial homogeneous integral of linear system (12), from the definition of first integral, it requires that

∂Ψl(t, y)

∂t
+

〈
∂Ψl(t, y)

∂ y
, B y

〉
=

∑
k1+···+kn=l

[
∂Ψk1···kn(t)

∂t
+ 〈Λ,k〉Ψk1···kn(t)

]
yk1

1 · · · ykn
n ≡ 0. (21)

Therefore, any nonzero coefficient Ψk1···kn (t) should satisfy

∂Ψk1···kn (t)

∂t
+ 〈Λ,k〉Ψk1···kn (t) ≡ 0,

so

Ψk1···kn(t) = Ψk1···kn(0)e−〈Λ,k〉t . (22)

Since for any nonzero coefficient Ψk1···kn (t), geometric point k = (k1, . . . ,kn) ∈ Θ . Therefore there exist a1, . . . ,as ∈ Z
+

such that

k = a1κ1 + · · · + asκs,

or equivalently

ki = a1κ1i + · · · + asκsi, i = 1,2, . . . ,n.

Thus we have

e−〈Λ,k〉t yk1
1 · · · ykn

n = e−a1〈Λ,κ1〉 · · · e−as〈Λ,κs〉 ya1κ11+···+asκs1
1 · · · ya1κ1n+···+asκsn

n

= (
e−〈Λ,κ1〉t yκ11

1 · · · yκ1n
n

)a1 · · · (e−〈Λ,κs〉t yκs1
1 · · · yκsn

n
)as

= ρ1(t, y)a1 · · ·ρs(t, y)as . (23)

Clearly, we can conclude that Ψl(t, y) is a polynomial function of ρ1(t, y), . . . , ρs(t, y). The lemma is proved. �
Lemma 2. Assume system (6) has s (1 � s < n) nontrivial formal integrals Ψ 1(t, y), . . . ,Ψ s(t, y) which are functionally independent
in y. If any nontrivial homogeneous integral Ψq(t, y) of the system (12) is an analytic function of Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y), then any

other nontrivial formal integral Ψ (t, y) of system (6) must be a function of Ψ 1(t, y), . . . ,Ψ s(t, y), i.e.,

Ψ (t, y) = H
(
Ψ 1(t, y), . . . ,Ψ s(t, y)

)
,

where H is a formal series.
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Proof. System (6) is transformed to

u̇ = Bu + εh̃(t, u, ε), (24)

under the transformation

y = εu, (25)

where h̃(t, u, ε) = O (‖u‖2) and h̃(t + T , u, ε) = h̃(t, u, ε).
The integral Ψ i(t, y) (i = 1, . . . , s) of system (6) can be rewritten as follows

Ψ̃ i(t, u, ε) = Ψ i(t, εu) = Ψ i
li
(t, εu) +

∞∑
j=1

Ψ i
li+ j(t, εu)

= εli

(
Ψ i

li
(t, u) +

∞∑
j=1

ε jΨ i
li+ j(t, u)

)
, (26)

where Ψ i
li+ j(t, u) is a homogeneous function of degree li + j in u with T -periodic function in t as coefficients.

Similarly, other nontrivial formal integral Ψ (t, y) of system (6) reads

Ψ̃ (t, u, ε) = Ψ (t, εu) = Ψq(t, εu) +
∞∑
j=1

Ψq+ j(t, εu)

= εq

(
Ψq(t, u) +

∞∑
j=1

ε jΨq+ j(t, u)

)
, (27)

where Ψq+ j(t, u) is a homogeneous function of degree q + j in u with T -periodic function in t as coefficients.
Evidently, Ψ̃ 1(t, u, ε), . . . , Ψ̃ s(t, u, ε) and Ψ̃ (t, u, ε) are integrals of the system (24), therefore Ψ 1

l1
(t, u), . . . ,Ψ s

ls
(t, u) and

Ψq(t, u) are homogeneous integrals of linear system

u̇ = Bu. (28)

By the assumption of the lemma, there exists an analytic function G such that

Ψq(t, y) = G
(
Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y)

)
, (29)

under the transformation (25), we have

εqΨq(t, u) = Ψq(t, εu)

= G
(
Ψ 1

l1
(t, εu), . . . ,Ψ s

ls
(t, εu)

)
= G

(
εl1Ψ 1

l1
(t, u), . . . , εlsΨ s

ls
(t, u)

)
. (30)

By (29) and (30), we obtain

G
(
εl1Ψ 1

l1
(t, u), . . . , εlsΨ s

ls
(t, u)

) = εq G
(
Ψ 1

l1
(t, u), . . . ,Ψ s

ls
(t, u)

)
. (31)

Let G(0) = G . Then the function

Ψ̃ (1)(t, u, ε) = Ψ̃ (t, u, ε) − G(0)
(
Ψ̃ 1(t, u, ε), . . . , Ψ̃ s(t, u, ε)

)
is obviously an integral of system (24).

By (26), (27), (29) and (31), it is easy to see that the function Ψ̃ (1)(t, u, ε) is at least of q + 1 order with respect to ε,
and it can be rewritten as

Ψ̃ (1)(t, u, ε) = εq1

(
Ψ

(1)
q1 (t, u) +

∞∑
j=1

ε jΨ
(1)

q1+ j(t, u)

)
,

where q1 � q + 1 is an integer, Ψ
(1)

(t, u) is a homogeneous form of degree q1 + j in u with T -periodic coefficients in t .
q1+ j
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It is not difficult to prove that Ψ
(1)

q1 (t, u) is a homogeneous integral of the system (28). According to the assumptions of

the lemma and by a direct computation, we have Ψ
(1)

q1 (t, u) = G(1)(Ψ 1
l1
(t, u), . . . ,Ψ s

ls
(t, u)). So the function

Ψ̃ (2)(t, u, ε) = Ψ̃ (1)(t, u, ε) − G(1)
(
Ψ̃ 1(t, u, ε), . . . , Ψ̃ s(t, u, ε)

)
is also an integral of the system (24) which is at least of q1 + 1 degree with respect to ε.

By repeating infinitely this process, we obtain

Ψ̃ (t, u, ε) =
∞∑
j=0

G( j)(Ψ̃ 1(t, u, ε), . . . , Ψ̃ s(t, u, ε)
)
,

which is equivalent to the fact that

Ψ (t, y) =
∞∑
j=0

G( j)(Ψ 1(t, y), . . . ,Ψ s(t, y)
) = H

(
Ψ 1(t, y), . . . ,Ψ s(t, y)

)
,

for a certain formal series H(Ψ 1(t, y), . . . ,Ψ (t, y)). This completes the proof. �
With the help of Lemmas 1 and 2, we give the following proof of Theorem 2.

Proof of Theorem 2. According to Corollary 1, if system (2) has s (1 � s < n) nontrivial formal integrals Φ1(t, x), . . . ,Φs(t, x)
in a neighborhood of a constant solution, then system (6) admits s nontrivial formal integrals Ψ 1(t, y), . . . ,Ψ s(t, y) in a
neighborhood of y = 0. In order to obtain the result, we just need to prove that for any nontrivial formal integral Φ(t, x)
of system (2), integral Ψ (t, y) = Φ(t, Q (t)y) of system (6) is a formal series of Ψ 1(t, y), . . . ,Ψ s(t, y). From Lemma 2, if
we already have that any nontrivial homogeneous integral Ψq(t, y) of the linear system (12) is an analytic function of the
integrals Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y), then the proof of the theorem is completed.

By Lemma 1, any nontrivial homogeneous integral of the linear system (12) is a polynomial function of ρ1(t, y), . . . ,

ρs(t, y), so there exist polynomial function T and Fi such that

Ψq(t, y) = T
(
ρ1(t, y), . . . , ρs(t, y)

)
,

Ψ i
li
(t, y) = Fi

(
ρ1(t, y), . . . , ρs(t, y)

)
, i = 1,2, . . . , s. (32)

Since Ψ 1
l1
(t, y), . . . ,Ψ s

ls
(t, y) are functionally independent in y, the matrix

∂(Ψ 1
l1
, . . . ,Ψ s

ls
)

∂(y1, . . . , yn)
= ∂(F1, . . . , Fs)

∂(ρ1, . . . , ρs)
· ∂(ρ1, . . . , ρs)

∂(y1, . . . , yn)

is full-ranked, therefore, the matrices

∂(ρ1, . . . , ρs)

∂(y1, . . . , yn)
,

∂(F1, . . . , Fs)

∂(ρ1, . . . , ρs)

are full-ranked (nondegenerated). By the Inverse Function Theorem we get from (32) that

ρ i(t, y) = Ti
(
Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y)

)
, i = 1,2, . . . , s,

where Ti is indeed an analytic function. So we have

Ψq(t, y) = T
(
ρ1(t, y), . . . , ρs(t, y)

)
= T

(
T1

(
Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y)

)
, . . . , Ts

(
Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y)

))
= G

(
Ψ 1

l1
(t, y), . . . ,Ψ s

ls
(t, y)

)
.

The theorem is proved. �
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4. Examples

Example 1. Consider the following periodic system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 =
(

−1 + 3

2
cos t

)
x1 + f1(t, x),

ẋ2 =
(

−1 − 3

2
sin t

)
x2 + f2(t, x),

ẋ3 = √
2x3 + f3(t, x),

(33)

where x = (x1, x2, x3) ∈ C
3, f i(t, x) (for i = 1,2,3) are 2π -periodic functions in t and f i(t, x) = O (‖x‖2).

We obtain easily that the characteristic multipliers of system (33) are

μ1 = e−2π , μ2 = e−2π , μ3 = e2
√

2π .

Since there is no resonant condition of the type

e(−k1−k2+√
2k3)2π = 1, k1,k2,k3 ∈ Z

+, |k1| + |k2| + |k3| �= 0

is fulfilled, according to Theorem 1, then periodic system (33) does not have any nontrivial formal first integral in a neigh-
borhood of x = 0.

Example 2. To illustrate Theorem 2, we consider the following periodic system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = (α + 3 sin t)x1 + f (t, x),

ẋ2 = (β − 2 cos t)x2 + g(t, x),

ẋ3 = (1 + sin t)x3,

ẋ4 = (−1 − cos t)x4,

ẋ5 = (−1 + 2 sin t)x5,

(34)

where x = (x1, x2, x3, x4, x5) ∈ C
5, f (t, x) and g(t, x) are 2π -periodic functions in t and f (t, x) = O (‖x‖2), g(t, x) = O (‖x‖2).

It is not difficult to know that the characteristic multipliers of system (34) are

μ1 = e2απ , μ2 = e2βπ , μ3 = e2π , μ4 = e−2π , μ5 = e−2π ,

and Φ1 = ecos t+sin t x3x4 and Φ2 = e3 cos t x3x5 are two nontrivial formal integrals of system (34) and they are functionally
independent. According to Theorem 2, we can conclude that any other nontrivial formal first integral of system (34) is a
smooth function of Φ1 and Φ2 if the rank of the set

Θ = {
k = (k1,k2,k3,k4,k5) ∈ Z

5+: μ
k1
1 μ

k2
2 · · ·μk5

5 = 1
}

is equal to 2. Obviously, this is equivalent to that for any k̃1, k̃2, k̃3 ∈ Z
+ ,

e2π(αk̃1+βk̃2±k̃3) �= 1,

since (0,0,1,1,0) and (0,0,1,0,1) are two generating elements of set Θ .
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