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1. Introduction

We use a complexity function to measure how complex a system is. Let T : X → X be a continuous map on
a compact metric space X and let U be an open cover of X . Set U n = ∨n

i=0 T −iU . We define the complexity func-
tion of (T ,U ) as the non-decreasing function c(U ,n, T ) = min{�C : C is a subcover of U n}. It is clear that h(T ) =
supU lim supn→∞ 1

n log c(U ,n, T ), where h(T ) denotes the topological entropy of T . For a continuous map with a posi-
tive topological entropy, the complexity function with a certain open cover must increase exponentially and thus tend to
infinity. But in a zero entropy system, all of them might be bounded. To classify the zero entropy systems, we use the
complexity function, which is finer than the entropy. By using time-1 map, we define the topological entropy and the com-
plexity function for flow. More precisely, for a flow φ : X × R → X we define h(φ) = h(φ1), and for an open cover U of X ,
we define c(U ,n, φ) = c(U ,n, φ1).

Two flows on compact spaces are equivalent if there exists a homeomorphism of the spaces that sends each orbit of one
flow onto an orbit of the other flow while preserving the time orientation. We construct two equivalent flows both with
the zero topological entropy, such that all the complexity functions of one flow are bounded while the other flow has an
unbounded complexity function. It is known that the zero and the infinite topological entropy are invariants for equivalent
flows without fixed points (see [3,4,7]), however, neither the zero topological entropy nor the infinite topological entropy
is invariant for equivalent flows with fixed points (see [3,5,6]). Thus, the fixed points are crucial for the entropy of a flow.
Nevertheless, the fixed points are not so crucial for the complexity functions of flows. We construct two pairs of equivalent
flows with the zero topological entropy, such that all the complexity functions of one flow are bounded while the other
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flow has an unbounded complexity function, what’s more, one pair has fixed points while the other does not. We state our
theorems as follows.

Theorem 1.1. There exists a compact metric space M and a pair of equivalent flows Φ,Ψ : M × R → M without fixed points on M,
such that the following properties hold:

1. For any open cover U on M, there exists K > 0 such that c(U ,n,Φ) < K for any n ∈ N.
2. There exists a finite open cover U0 on M, such that c(U0,n,Ψ ) → ∞ as n → ∞.

Let φ : X × R → X be a flow on a compact metric space X with fixed points. If {x ∈ X | x is not a fixed point} contains
a fixed point of φ, we call φ a flow with nontrivial fixed points. We call a flow point-wise periodic if every point is periodic.

Theorem 1.2. There exists a compact metric space M and a pair of equivalent point-wise periodic flows Φ : M × R → M and Ψ :
M × R → M with nontrivial fixed points, such that the following properties hold:

1. For any open cover U on M, there exists K > 0 such that c(U ,n,Φ) < K for any n ∈ N.
2. There exists a finite open cover U0 on M, such that c(U0,n,Ψ ) → ∞ as n → ∞.

Lemma 1.3. (See [1].) Let T : X → X be a homeomorphism on a compact metric space X. Then the following two statements are
equivalent:

1. (X, T ) is equicontinuous, that is, for any ε > 0 there is δ > 0 such that for any pair of points x, y ∈ X with d(x, y) < δ and any
n ∈ N, it holds that d(T n(x), T n(y)) < ε.

2. For any finite open cover U of X , c(U ,n, T ) is bounded.

According to this lemma, we will prove the two theorems by constructing a pair of equivalent flows, in which, the time-1
map of one flow is equicontinuous, while the other is not.

We will prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. In Section 4, we will refine the Bowen–Walters
metric [2] and construct a delicate example of a point-wise periodic suspension flow with an unbounded complexity func-
tion.

2. The proof of Theorem 1.1

2.1. The construction of two flows without fixed points

In this subsection, we construct two equivalent flows without fixed points. Let I = [0,1]. Let S
1 denote a circle with

circumference 1. We denote by M = I × S
1 = {(x, u) | x ∈ I, u ∈ S

1} the quotient space of {(x, u) | x ∈ I, u ∈ R} under the
equivalent relation (x, u) ∼ (x, u + 1). Under the Riemannian metric d, M is a compact metric space. On M , we define a
flow Φ by

Φ(x, u, t) = (
x, u + t (mod 1)

)
, for t ∈ R.

And we define another flow Ψ by

Ψ (x, u, t) =
(

x, u + t

1 + x
(mod 1)

)
, for t ∈ R.

Ψ is equivalent to Φ , since the transformation id : M → M , (x, u) �→ (x, u) maps each orbit of Ψ onto an orbit of Φ

preserving the time orientation.

2.2. The equicontinuity versus the non-equicontinuity

By Lemma 1.3, to prove Theorem 1.1, it suffices to show that one of the two flows constructed in Section 2.1 is equicon-
tinuous, while the other is not.

It is clear that Φ1 is equicontinuous. By Lemma 1.3, for any finite open cover U of M , c(U ,n,Φ) is bounded. It remains
to prove that (M,Ψ1) is not equicontinuous. Let ε0 = 1

3 . For any δ > 0, we take an irrational number y ∈ (0, δ). It is clear that
d((0,0), (y,0)) < δ. However, we will prove that there is u ∈ N such that d(Ψu(0,0),Ψu(y,0)) > ε0. Although (0,0) is not a
fixed point of Ψ , it is a fixed point under Ψ1. The orbit of (y,0) under Ψ1 is a rotation on S

1 with the rotation number 1
1+y ,

which is irrational as well as y. So this orbit is dense in S
1. Thus, there is u ∈ N such that Ψu(y,0) ∈ {y} × [ 3

8 , 5
8 ]. As a

result,

d
(
Ψu(0,0),Ψu(y,0)

)
�

(
y2 +

(
3
)2) 1

2

>
3

>
1
,

8 8 3
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which implies that (M,Ψ1) is non-equicontinuous. By Lemma 1.3, there exists a finite open cover U0 on M , such that
c(U0,n,Ψ1) → ∞ as n → ∞, which gives rise to Theorem 1.1. �
Remark 1. By adding some isolated fixed points to Φ and Ψ , respectively, one can extend Theorem 1.1 to the flows with
fixed points, but these fixed points are trivial.

Remark 2. There are some point-wise periodic flows without fixed points, such as the flows in the proof of Theorem 1.1.
By time reparameterization, one can decelerate a flow near a given point to get a nontrivial fixed point in order to extend
Theorem 1.1. However, the decelerated flows are not point-wise periodic, because the orbit of any other point on the original
orbit of the given point is no longer periodic.

3. The proof of Theorem 1.2

3.1. The construction of two flows with fixed points

In this subsection, we construct a pair of equivalent flows with fixed points on a disk D = {ρeiπθ | ρ ∈ [0,1], θ ∈ [0,2)}.
We define a flow Φ by

Φ(x, t) = ρeiπ(θ+t), ∀x = ρeiπθ ∈ D, t ∈ R.

And we define another flow Ψ by

Ψ (x, t) = ρeiπ(θ+ t
ρ )

, ∀x = ρeiπθ ∈ D, t ∈ R.

We note that 0 is the unique fixed point for both Φ and Ψ . Moreover, Ψ is equivalent to Φ , since the transformation
id : M → M , (x, u) �→ (x, u) maps each orbit of Ψ onto an orbit of Φ preserving the time orientation. We still use Riemann
metric in this example.

3.2. The equicontinuity versus the non-equicontinuity

By Lemma 1.3, to prove Theorem 1.2, it suffices to show that one of the two flows constructed in Section 3.1 is equicon-
tinuous, while the other is not.

Notice that for any x = ρxeiπθx , y = ρyeiπθy ∈ D and t ∈ N,

d
(
Φ(x, t),Φ(y, t)

) = ‖x − y‖ · ∥∥eiπt
∥∥ = ‖x − y‖ = d(x, y).

So Φ1 is equicontinuous. To get the non-equicontinuity of (D,Ψ1), it remains to prove that for any δ > 0 we can find
x, y ∈ D and u ∈ N such that d(x, y) < δ while d(Ψ (x, u),Ψ (y, u)) > 1. For a δ > 0 given arbitrarily, we take x = 1

2 and
y = p

q ∈ ( 1
2 , 1

2 + δ) such that p,q ∈ N and q is odd. Here, p and q are not necessarily coprime. Clearly, d(x, y) < δ. However,

if we take u = p, then it holds that Ψ (x, u) = xei2π p = x = 1
2 , while Ψ (y, u) = yeiπ q

p ·p = −y = − p
q . So d(Ψ (x, u),Ψ (y, u)) =

1
2 + p

q > 1. As a result, Ψ1 is not equicontinuous, which gives rise to Theorem 1.2. �
4. An example of a suspension flow with an unbounded complexity function

In this section, we construct a delicate example of a point-wise periodic suspension flow with an unbounded complexity
function.

4.1. The construction of the flow Ψ

In this subsection, we will construct a point-wise periodic suspension flow Ψ . Set Σ2 = {(· · · s−1 s̄0s1 · · ·) | si =
0 or 1, ∀i ∈ Z}. A point (· · · s−1 s̄0s1 · · ·) in Σ2 indicates a 2-sided infinite sequence, in which each position is assigned
a word 0 or 1 and the 0th position is marked with a bar. We use the metric topology in this space:

‖x − y‖ =
∞∑

n=−∞
|xn − yn|2−|n|, ∀x, y ∈ Σ2.

Clearly, (Σ2,‖ · ‖) is a compact metric space. Moreover, we set

σ : Σ2 → Σ2, σ (· · · s−1 s̄0s1 · · ·) = (· · · s−1s0 s̄1s2 · · ·).
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We choose a series of periodic points of σ as follows. Take x2 = (· · ·0110̄11011 · · ·), a 2-sided sequence repeating the
word 011. Take x3 = (· · ·01110̄1110111 · · ·), a 2-sided sequence repeating the word 0111. In general, we take

xn = (· · · 0 1 · · · 1︸ ︷︷ ︸
n

0̄ 1 · · · 1︸ ︷︷ ︸
n

0 1 · · ·1︸ ︷︷ ︸
n

0 1 · · ·1︸ ︷︷ ︸
n

· · ·),

a 2-sided sequence repeating the word 0 1 · · · 1︸ ︷︷ ︸
n

. We denote these periodic orbits by X2, . . . , Xn, . . . , that is, Xn = Orb(xn, σ ),

n � 2. We denote by X the disjoint union of all the Xi ’s (i � 2) together with a point x∞ . Moreover, we define on X a
metric dX as follows:

dX (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
n2 ‖x − y‖ for x, y ∈ Xn;
dX (y, x) = ∑p

i=n
3
i2 for x ∈ Xn, y ∈ Xp, n < p;∑∞

i=n
3
i2 for x = x∞, y ∈ Xn.

(4.1)

We claim that (X,dX ) is a compact metric space. Suppose there is an open cover U of X , in which an element U covers x∞ ,
what’s more, U also contains a small ball B(x∞,b) for some b > 0. Note that there exists n ∈ N such that

∑∞
i=n

3
i2 < b, then⋃∞

i=n Xi ⊂ B(x∞,b) ⊂ U . Since X2, . . . , Xn−1 are compact, so is their disjoint union, and then a subset U0 ⊂ U with only
finite element can cover

⋃n−1
i=2 Xi . As a result, U0 ∪ {U } can cover X , which implies that X is compact under dX . Moreover,

under this metric, it is clear that diam(Xi) < 1, i � 2.
On this compact metric space (X,dX ), we define T : X → X by taking T |Xi = σ for i ∈ N and T (x∞) = x∞ . Obviously,

h(T ) = supi h(T |Xi ) = 0. Now we construct our flows. Let ri be a positive continuous function on Xi . We define a quotient
space Xri

i = {(x, u) | 0 � u � ri(x), x ∈ Xi} by the equivalent relation (x, ri(x)) ∼ (T (x),0). We define a flow Ψi by

Ψi(x, u, t) = (x, u + t), ∀t ∈ [−u, ri(x) − u).

Then Xri
i is a compact metric space and Ψi is a flow on it. Set In = {x ∈ Σ2 | x(k) = 1, −n + 1 � k � n − 1}, n ∈ N. From now

on, we take

ri(x) =
{

in · n · 4 · 3n for x ∈ In \ In+1;
12i for x /∈ I1.

(4.2)

By the definition of Xi , In ∩ Xi = ∅, ∀n > i
2 . Let X∞ denote {x∞} × S

1, namely, the quotient space of {(x∞, u) | 0 � u � 1}
under the equivalent relation (x∞,0) ∼ (x∞,1). And let W denote the disjoint union of all the Xri

i ’s and X∞ . Then we can
define a flow Ψ on W as

Ψ |
X

ri
i

= Ψi and Ψ
(
(x∞, u), t

) = (x∞, u), ∀t ∈ R. (4.3)

Obviously, Ψ is a point-wise periodic flow. From now on, in the whole section, r(x) stands for ri(x) for x ∈ Xi , 2 � i < ∞.
We recall that r(x) � 1 for all x and r(x∞) = 1.

4.2. An adapted Bowen–Walters distance and its properties

In this subsection, we introduce a distance d on W , which is an adaption of Bowen–Walters distance (see [2]), and then
we give some delicate properties of d, see Proposition 4.1, Proposition 4.2 and Corollary 4.3.

For a point (x,h) ∈ W , we call h
r(x) its ratio. If two points (x,h) and (y, l) ∈ W have the same ratio, i.e. h

r(x) = l
r(y)

= t ∈
[0,1], then we say that there is a horizontal segment with ending points (x,h) and (y, l) (or a horizontal segment between
(x,h) and (y, l)) and call the common ratio t of (x,h) and (y, l) the ratio of the horizontal segment. We define the length
of the horizontal segment by

ρhor(x, y, t) = (1 − t)dX (x, y) + tdX
(
T (x), T (y)

)
. (4.4)

Clearly, ρhor(x, y,0) = dX (x, y) and ρhor(x, y,1) = dX (T (x), T (y)). If x ∈ Xi and y ∈ X j with 2 � i < j � ∞, then by (4.1), the
formula (4.4) can be simplified to

ρhor(x, y, t) = dX (x, y) = dX
(
T (x), T (y)

) =
j∑

l=i

3

l2
. (4.5)

Therefore, if x, y ∈ Xi and z ∈ X j with j �= i, then for (x, t · r(x)), (y, t · r(y)) and (z, t · r(z)), it holds that ρhor(x, y, t) �
ρhor(x, z, t).



S. Qian et al. / J. Math. Anal. Appl. 387 (2012) 755–764 759
For (x, t), (y, s), where x, y ∈ X \ {x∞} are in the same orbit of Ψ , we name the vertical segment with ending points
(x, t) and (y, s) (or between the two points) after the shortest orbit segment, and thus we define the length of the vertical
segment between (x, t) and (y, s) by

ρver
(
(x, t), (y, s)

) = inf
{|u| ∣∣ Ψu(x, t) = (y, s), u ∈ R

}
. (4.6)

For (x∞, s) and (x∞, t), the shortest arc in S
1 is called the vertical segment with ending points (x∞, t) and (x∞, s) (or be-

tween the two points), and thus the length of the vertical segment is defined by

ρver
(
(x∞, t), (x∞, s)

) = min
{|t − s|,1 − |t − s|}. (4.7)

We denote a path by a series of horizontal or vertical segments Γ1,Γ2, . . . , where one ending point of Γi coincides with
that of Γi+1, one by one.

Finally, for points (x,h), (y, l) ∈ W , the distance d((x,h), (y, l)) is defined as the infimum of the length of paths between
(x,h) and (y, l) composed of a finite number of horizontal and vertical segments. A path connecting two points (x,h) and
(y, l) ∈ W is called the shortest one if its length is d((x,h), (y, l)). Clearly, d is a metric on W , and W is compact under
this metric d. Actually, X∞ is also compact by the definition of d. For a given open cover U of W , there are finite many
elements U1, . . . , Un such that

⋃n
i=1 Ui ⊃ X∞. Thus, the union

⋃n
i=1 Ui covers a b-neighborhood of X∞ for some real b > 0.

It is clear that there are only finite Xrk
k ’s (k ∈ N) outside this b-neighborhood, whose union is compact and can be covered

by a finite subcover U ′ of U . Consequently, W can be covered by U ′ ∪ {U1, . . . , Un}, a finite subcover of U . So W is
compact.

Proposition 4.1 below shows that d((x,0), (y,0)) = dX (x, y) for any x, y ∈ X , meaning that d restricted on X coincides
with dX . Actually, d has more delicate properties as in the following propositions.

Proposition 4.1. For two points (x,h), (y, l) ∈ W with the common ratio h
r(x) = l

r(y)
∈ [0,1], the horizontal segment between them is

the shortest path.

Proof. To prove this proposition, we consider the following two cases.

Case 1. Suppose x ∈ Xi and y ∈ X j for i �= j, i, j = 2,3, . . . ,∞.
Without loss of generality, we assume i < j � +∞. For a given path Γ which consists of some horizontal segments

Γ1, . . . ,Γn and some vertical segments, we pick up such horizontal segments that the two ending points of each horizontal
segment are not in the same Xr

k . This can be done since i �= j. Without loss of generality, we suppose Γ1, . . . ,Γn are all such
horizontal segments, and suppose that Γ1 is between a point in Xr

i1
and a point in Xr

i2
, Γ2 is between a point in Xr

i2
and a

point in Xr
i3
, . . . ,Γn is between a point in Xr

in
and a point in Xr

in+1
, where i = i1 < i2 < · · · < in+1 = j. By (4.1) and (4.5), the

sum of the length of these horizontal segments,
∑n

p=1
∑ip+1

q=ip

3
q2 , is clearly bigger than or equal to

∑ j
l=i

3
l2

= dX (x, y), the

length of the unique horizontal segment between (x,h) and (y, l). So the proposition holds in Case 1.

Case 2. Suppose that x, y belongs to the same Xi , 2 � i � +∞.
We will prove that, between (x,h) and (y, l), there always exists a path shorter than a given path with more than one

horizontal segment. Let us consider a path Γ connecting (x,h) and (y, l) and consider the situation that there exists a
horizontal segment between certain (p,h′) and (q, l′) such that the ratio t′ = h′

r(p)
= l′

r(q)
is bigger than t = h

r(x) = l
r(y)

(the
situation t′ < t is similar). There are only finite many horizontal segments in Γ , among which we choose one horizontal
segment with the biggest ratio. Denote by (a,h2) and (b, l2), the two ending points of the chosen horizontal segment;
denote by (a,h1) and (a,h2) with h2 > h1, the two ending points of the leading vertical segment; denote by (b, l2) and
(b, l1) with l2 > l1, the two ending points of the trailing vertical segment. Without loss of generality, we suppose that

a,b ∈ Xi and h1
r(a)

� l1
r(b)

. Take l′2 = h1
r(a)

· r(b) and denote the ratios t1 = h2
r(a)

= l2
r(b)

, t2 = h1
r(a)

= l′2
r(b)

. Then we consider two
paths Γ1 and Γ2 between (a,h1) and (b, l1), see Fig. 1. Γ1 consists of three segments: a vertical segment between (a,h1)

and (a,h2), a horizontal segment between (a,h2) and (b, l2), a vertical segment between (b, l2) and (b, l1). Γ2 consists
of two segments: a horizontal segment between (a,h1) and (b, l′2), a vertical segment between (b, l′2) and (b, l1). By (4.4)
and (4.6), the length of the Γ1 is

L1 = h2 − h1 + (1 − t1)dX (a,b) + t1dX
(
T (a), T (b)

) + l2 − l1,

while the length of Γ2 is

L2 = (1 − t2)dX (a,b) + t2dX
(
T (a), T (b)

) + l′2 − l1.
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Fig. 1. Two paths connecting (a,h1) and (b, l1).

Thus,

L1 − L2 = (t1 − t2)
(
r(a) + r(b) + dX (a,b) − dX

(
T (a), T (b)

))
> (t1 − t2)(2 − diam Xi)

= (t1 − t2)

(
2 − 3

i2

)

> 0.

If Γ1 is replaced with Γ2 in Γ , then we get a new path between (x,h) and (y, l), which is clearly shorter than Γ . Therefore,
given a path connecting (x,h) and (y, l) with horizontal segments, there is an adapted shorter path such that all its hori-
zontal segments share the same ratio t . Now we consider a path whose horizontal segments share the ratio t = h

r(x) = l
r(y)

.

We note that between two points (p,h′), (q, l′) ∈ Xr
i with the ratio h′

r(p)
= l′

r(q)
= t the vertical segment is longer than the

horizontal segment, because

ρver
((

p,h′), (q, l′
))

� min
{
(1 − t)r(p) + t · r(q), (1 − t)r(q) + t · r(p)

}
� 1,

while

ρhor(p,q, t) = (1 − t)dX (p,q) + tdX
(
T (p), T (q)

)
� diam Xi � 3

i2
< 1,

see (4.1), (4.4), (4.6) and recall that i � 2. Therefore, given a path connecting (x,h) and (y, l), there is an adapted shorter
path consisting of horizontal segments with the same ratio t . Note that for three points (p1,k1), (p2,k2) and (p3,k3) ∈ Xr

i

with the same ratio k1
r(p1)

= k2
r(p2)

= k3
r(p3)

= t , the triangle inequality holds:

ρhor(p1, p2, t) + ρhor(p2, p3, t) − ρhor(p3, p1, t)

= (1 − t)
(
dX (p1, p2) + dX (p2, p3) − dX (p3, p1)

)
+ t

(
dX

(
T (p1), T (p2)

) + dX
(
T (p2), T (p3)

) − dX
(
T (p3), T (p1)

))
� 0.

Therefore, given a path connecting (x,h) and (y, l), there is an adapted shorter path consisting of exactly one horizontal
segment. We conclude by definition that the horizontal segment is the shortest path between (x,h) and (y, l) with h

r(x) =
l

r(y)
, which gives rise to Proposition 4.1. �

Proposition 4.2. Let (x,h), (y, l) be two points in W and suppose there is a path with exactly one horizontal segment such that the
length of this path coincides with d((x,h), (y, l)). Then among all such paths, there is a path whose horizontal segment has the ratio

h
r(x) or l

r(y)
.

Proof. Without loss of generality, we suppose t1 = h
r(x) � l

r(y)
= t3. For a given path Γ2 with exactly one horizontal segment

whose length is d((x,h), (y, l)), we denote by t2 the ratio of its horizontal segment. If t2 > t1, then between (x,h) and
(y, t1r(y)) we can replace the part of Γ2 with the unique horizontal segment, which is the shortest path between (x,h)

and (y, t1r(y)) by Proposition 4.1. Consequently, we can get a path between (x,h) and (y, l) strictly shorter than Γ2, which
contradicts the assumption of Γ2. So, t2 � t1. Similarly, we can prove t2 � t3. Then it follows that t1 � t2 � t3. By (4.4)
and (4.6), the length of Γ2 is

L2 = (1 − t2)dX (x, y) + t2dX
(
T (x), T (y)

) + (t1 − t2)r(x) + (t2 − t3)r(y).
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Fig. 2. The closed polygonal curves are 4 examples of the possible parts in non-typical paths.

We take two paths, one of which named Γ1 consists of a horizontal segment between (x,h) and (y, t1r(y)) and a
vertical segment between (y, t1r(y)) and (y, l), while the other named Γ3 consists of a vertical segment between (x,h) and
(x, t3r(x)) and a horizontal segment between (x, t3r(x)) and (y, l). The length of Γ1 is

L1 = (1 − t1)dX (x, y) + t1dX
(
T (x), T (y)

) + (t1 − t3)r(y),

while the length of Γ3 is

L3 = (1 − t3)dX (x, y) + t3dX
(
T (x), T (y)

) + (t1 − t3)r(x).

Thus, we have that

(L1 − L2)(L3 − L2) = [
(t1 − t2)

(
dX

(
T (x), T (y)

) − dX (x, y)
) + (t1 − t2)r(y) − (t1 − t2)r(x)

]
· [(t2 − t3)

(
dX (x, y) − dX

(
T (x), T (y)

)) − (t2 − t3)r(y) − (t2 − t3)r(x)
]

= −(t1 − t2)(t2 − t3)
(
dX

(
T (x), T (y)

) − dX (x, y) + r(y) + r(x)
)2

� 0.

On the other hand, since Γ2 is assumed to be the shortest path between (x,h) and (y, l), it holds that (L1 − L2)(L3 − L2) � 0.
As a result, (L1 − L2)(L3 − L2) = 0, i.e. either L1 or L3 is equal to L2 = d((x,h), (y, l)).

If L1 = L2, we take Γ1 as the shortest path, which contains a horizontal segment with the ratio h
r(x) . Otherwise, we

take Γ3 as the shortest path containing a horizontal segment with the ratio l
r(y)

, which completes the proof of Proposi-
tion 4.2. �

Recall that a path connecting two points (x,h) and (y, l) ∈ W is said to be a shortest one if its length is d((x,h), (y, l)),
then we have the following corollary.

Corollary 4.3. Suppose there is a shortest path Γ connecting (x,h) and (y, l) ∈ W . Then none of its parts consists of the three segments
together listed in (1) or (2), where, (a,h1), (a,h2), (b, l2), (b, l1) ∈ W (see (a) and (b) of Fig. 2).

(1) A vertical segment between (a,h1) and (a,h2), a horizontal segment between (a,h2) and (b, l2), and a vertical segment between
(b, l2) and (b, l1), where h2 > h1 , l2 > l1;

(2) a vertical segment between (a,h1) and (a,h2), a horizontal segment between (a,h2) and (b, l2), and a vertical segment between
(b, l2) and (b, l1), where h2 < h1 , l2 < l1 .

Moreover, there is such a shortest path, an adapted path of Γ , that none of its parts consists of the three segments together listed
in (3) or (4), where, (a,h1), (a,h2), (b, l2), (b, l1) ∈ W (see (c) and (d) of Fig. 2).

(3) A vertical segment between (a,h1) and (a,h2), a horizontal segment between (a,h2) and (b, l2), and a vertical segment between
(b, l2) and (b, l1), where h2 > h1 , l2 < l1;

(4) a vertical segment between (a,h1) and (a,h2), a horizontal segment between (a,h2) and (b, l2), and a vertical segment between
(b, l2) and (b, l1), where h2 < h1 , l2 > l1 .
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Proof. The closed polygonal curve, denoted by Γ1, between (a,h1) and (b, l1) in each plot of Fig. 2, consists of two vertical
segments and one horizontal segment. If the shortest path Γ contains Γ1, then Γ1 is clearly a shortest path between (a,h1)

and (b, l1). Otherwise we replace Γ1 with a shorter path between (a,h1) and (b, l1) and get a new path between (x,h) and
(y, l) shorter than Γ , which is a contradiction.

First, if Γ1 is the closed polygonal curve in (a) or (b) of Fig. 2, we can replace it with the open one as in the proof of
Proposition 4.1 and get a shorter path between (a,h1) and (b, l1). It contradicts the fact that Γ1 is the shortest path.

Second, if Γ1 is the closed polygonal curve in (c) or (d) of Fig. 2, then by Proposition 4.2, it is the shortest path between
(a,h1) and (b, l1) while the open polygonal curve with only one vertical segment in the same plot is also a shortest path
between (a,h1) and (b, l1). Replacing Γ1 by the open polygonal curve, we get a new shortest path. There are only finite
many segments in Γ , so we can repeat this process and get a shortest path between (x,h) and (y, l) containing no part as
in (c) or (d) of Fig. 2. �
Definition 4.4. If a path satisfies one of the three conditions below, then we call it a non-typical path, otherwise we call it
a typical one.

A. The path contains one of the closed polygonal curves in Fig. 2;
B. the path contains a part consisting of horizontal segments only, and the number of the segments is bigger than 1;
C. the path contains a part consisting of vertical segments only, and the number of the segments is bigger than 1.

Given two points (x,h), (y, l) ∈ W and a non-typical path Γ between them, if Γ contains a part as one of the closed
polygonal curves in Fig. 2, then we can replace the closed polygonal curve with the open one in the same plot and get a
new path such that its length does not exceed that of Γ . We note that the new path has one less vertical segment and one
less non-typical part than Γ . Inductively, Γ can be adjusted to a typical path whose length is less than or equal to that
of Γ . Therefore, for these two points, the distance d((x,h), (y, l)) is the infimum of the length of the typical paths between
(x,h) and (y, l) consisting of a finite number of horizontal and vertical segments. So, we will search for the shortest paths
only among the typical paths.

4.3. The non-equicontinuity of Ψ

We show in this subsection that the time-1 map of Ψ is not equicontinuous, i.e. there is an ε0 > 0, such that for any
δ > 0, there exist two points (x,h), (y, l) ∈ W and u ∈ N satisfying that d((x,h), (y, l)) < δ while d(Ψu(x,h),Ψu(y, l)) > ε0.
In the following, we take ε0 = 1

3 .
For any δ > 0, we take an integer i � 6 large enough such that the diameter d′

i of Xi under dX is less than δ. For
such an i, we choose x = (· · ·1 · · ·1︸ ︷︷ ︸

i

0 1̄ · · ·1︸ ︷︷ ︸
i

0 1 · · · 1︸ ︷︷ ︸
i

0 · · ·) ∈ Xi . When i is even, i = 2m for some m ∈ N, we denote y =

(· · ·0 1 · · · 1̄︸ ︷︷ ︸
m

1 · · ·1︸ ︷︷ ︸
m

0 · · ·) ∈ Xi . When i is odd, i = 2m + 1 for some m ∈ N, we denote y = (· · ·0 1 · · · 1︸ ︷︷ ︸
m

1̄ 1 · · · 1︸ ︷︷ ︸
m

0 · · ·) ∈ Xi . Recall

that r(z) stands for ri(z) for z ∈ Xi , i ∈ N, then by (4.2), it is clear that r(x) = minXi r and r(y) = maxXi r. We take an integer
u = 11i. Note that x ∈ I1 \ I2 and thus r(x) = i · 4 · 3 = 12i > u. We see that Ψu(x,0) = (x, u) and Ψu(y,0) = (y, u), because
r(y) > r(x) > 11i = u. The fact dX (x, y) < diam(Xi) < δ implies that d((x,0), (y,0)) < δ. Now we estimate the distance
between (x, u) and (y, u). Recall the distance d((x, u), (y, u)) is the infimum of the length of typical paths between (x, u)

and (y, u) composed of a finite number of horizontal and vertical segments, thus, from now on we consider the typical
paths between (x, u) and (y, u) only.

The situation that there is a shortest path between (x, u) and (y, u) with only one horizontal segment will be dealt
with in Case 1 below. For the other situation, that is, there is not a shortest path between (x, u) and (y, u) with only one
horizontal segment, we make the following claim.

Claim. There exists a shortest path Γ (z), between (x, u) and (y, u), consisting of a horizontal segment with ending points (x, u) and
(z, t1), a vertical segment with ending points (z, t1) and (z, t2), and another horizontal segment with ending points (z, t2) and (y, u),
where z ∈ Xi , t1 = u

r(x) > t2 = u
r(y)

(see Fig. 5).

Proof. For any path Γ between (x, u) and (y, u), we put the ratios of the horizontal segments in sequential order, from
(x, u) to (y, u). If they are not in descending order, i.e. there is a horizontal segment whose ratio is bigger (smaller) than the
ratios of the leading one and the trailing one, by Corollary 4.3(1) (Corollary 4.3(2)), Γ is non-typical. It is a contradiction.

Now we consider a path Γ between (x, u) and (y, u), the ratios of the horizontal segments are in descending order.
If there are more than two horizontal segments in Γ , then we take the horizontal segment, named Γ2, with the second
largest ratio, and denote the ending points of Γ2 by (a,h2) and (b, l2). Moreover, we take the leading vertical segment Γ1
with ending points (a,h1) and (a,h2), and the trailing vertical segment Γ3 with ending points (b, l2) and (b, l1), see Fig. 3.
It is clear that h1 > h2 and l2 > l1, because the ratios in Γ are in descending order. The subpath consisting of Γ1, Γ2 and
Γ3 is non-typical by Corollary 4.3(4). Thus Γ is non-typical. It is a contradiction.
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Fig. 3. A simple path of this form cannot be a part of any typical shortest path.

Fig. 4. The paths illustrating Case 1.1 and Case 1.2.

And then, we consider a path Γ from (x, u) to (y, u), with only two horizontal segments Γ1 and Γ2. If there is a leading
vertical segment between (x, u) and an ending point of Γ1 or a trailing vertical segment between an ending point of Γ2
and (y, u), then by Corollary 4.3(4), Γ is non-typical, which is also a contradiction.

So, we consider the paths between (x, u) and (y, u) consisting of two horizontal segments and one vertical segment. For
some z ∈ X , we take one such path Γ (z), which consists of a horizontal segment between (x, u) and (z, t1r(z)), a vertical
segment between (z, t1r(z)) and (z, t2r(z)) and a horizontal segment between (z, t2r(z)) and (y, u), see Fig. 5. By (4.4), the
length of the path is

ρhor(x, z, t1) + ρhor(y, z, t2) + (t1 − t2)r(z).

If z ∈ X j , j �= i (without loss of generality, we suppose i < j), we can easily get a point z′ ∈ Xi such that r(z′) � r(z) and

ρhor
(
x, z′, t1

) + ρhor
(

y, z′, t2
)
< 2

3

i2
< 2

j∑
k=i

3

k2
= ρhor(x, z, t1) + ρhor(y, z, t2).

This means that the path Γ (z′) for z′ ∈ Xi is shorter than Γ (z) for z /∈ Xi . Thus, we focus on the paths with all ending
points in Xr

i .
We note that �Xi = i + 1 and thus there are i − 1 different paths Γ (z), because each point in Xi determines one such

path. We choose the shortest one among them. The chosen one denoted still by Γ (z) is then a shortest path between (x, u)

and (y, u) with exactly two horizontal segments. We complete the proof of the claim. �
Now we continue to show the non-equicontinuity of Ψ . Obviously,

r(y)

r(x)
= in · n · 4 · 3n

12i
= in−1 · n · 3n−1 > 2 for n � 2.

Case 1. We deal with the distance between (x, u) and (y, u) in the case that the shortest path consists of exactly one
horizontal segment and one vertical segment. We discuss in two subcases, depending on the position of the horizontal
segments.

Case 1.1. (See (a) of Fig. 4.)
The horizontal segment is between (x, u) and (y, u + ay), where ay > 0. Then it holds that u

r(x) = u+ay
r(y)

, i.e. r(x)
r(y)

=
u

u+ay
= A. The choice of x and y together with the fact i > 6 gives that

d
(
(x, u), (y, u)

)
> ay = u

(
1

A
− 1

)
> 11i(2 − 1) > 11 · 6 = 66 >

1

3
= ε0.

Case 1.2. (See (b) of Fig. 4.)
The horizontal segment is between (x, u − ax) and (y, u), where ax > 0. Then it holds that u−ax

r(x) = u
r(y)

, i.e. r(x)
r(y)

=
u−ax

u = A. Consequently, we have

d
(
(x, u), (y, u)

)
> ax = u(1 − A) > 11i

(
1 − 1

2

)
> 11 · 6

(
1 − 1

2

)
= 33 >

1

3
= ε0.
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Fig. 5. The path illustrating Case 2.

Case 2. For the situation other than Case 1, by the claim, we estimate the distance between (x, u) and (y, u) using a shortest
path Γ (z) consisting of two horizontal segments and one vertical segment, see Fig. 5.

Since Γ (z) is the shortest path between (x, u) and (y, u), the length of Γ (z) is

ρhor(x, z, t1) + ρhor(y, z, t2) + (t1 − t2)r(z).

Therefore,

d
(
(x, u), (y, u)

)
> (t1 − t2)r(z) � t1 − t2 = 11i

r(x)
− 11i

r(y)
> 11i · 1

2
· 1

12i
= 11

24
>

1

3
= ε0.

In conclusion, (W ,Ψ1) is not an equicontinuous system. Applying Lemma 1.3, we complete the construction of the
suspension flow with an unbounded complexity function. �
5. Remarks

Remark 3. When we talk about how complex a flow is, we talk about, as usual, how complex its time-1 map is. The
topological entropy is an invariant for equivalent discrete systems. However, even the extreme entropies, 0 and ∞, are not
invariants for equivalent flows. Ohno gave a pair of equivalent topological flows with the zero entropy and a positive entropy
respectively [3], while Sun, Young and Zhou gave a pair of equivalent smooth flows with the zero entropy and a positive
entropy respectively [5]. What’s more, Sun and Zhang constructed a pair of equivalent flows with the zero entropy and the
infinite entropy respectively [6], reaching the two extremes of the entropy. The results in the present paper reach the two
extremes of the complexity functions.

Remark 4. Fixed points do not play important roles in the complexity functions of equivalent flows, unlike the case of
the topological entropy (recall that the zero entropy and the infinity topological entropy are invariants for equivalent flows
without fixed points, [4]).
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