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1. Introduction

The work on attractivity and stability of dynamical systems by the Russian engineer and mathematician Aleksandr Lya-
punov at the end of the 19th century was fundamental for the initiation of the so-called Qualitative Theory of Dynamical
Systems and revolutionised the way scientists think about dynamical processes. This theory is based on asymptotic conver-
gence properties of solutions when time tends to infinity and is successfully applied to many real world applications which
are modelled by autonomous dynamical processes.

While the dynamical systems theory concentrates almost exclusively on autonomous dynamical systems, nonautonomous
dynamical systems have experienced a renewed and steadily growing interest in the last twenty years, stimulated also
by synergetic effects of disciplines which have developed relatively independent for some time (such as control the-
ory [10], random dynamics [2,21] and nonautonomous differential and difference equations [25,24]). The importance of
nonautonomous dynamical systems is illustrated by the fact that autonomous theory serves only as a theory with slowly
(adiabatically) time-varying parameters, where the convergence to the long-term asymptotic limit is very fast in comparison
to the timescale of the parameter variation. As a consequence, the classical theory is irrelevant for the huge class of real
world applications, where one typically observes rapid changes of parameters including economics (e.g., stock markets [19]),
environmental studies (e.g., climate change modelling [1]) or health care studies (e.g., seizure prediction [23]). In these
cases, the interesting dynamical behavior manifests itself on a finite time interval rather than on an unbounded interval
using asymptotic properties.

A mathematical theory for finite-time dynamics was fast-paced for applications in fluid dynamics and oceanography,
where a nonautonomous differential equation describes the time-dependent velocity field around an airfoil or of a stretch
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of ocean surface. In order to analyse patterns which influence transport phenomena in such systems, George Haller gave a
precise definition of a Lagrangian coherent structure [17], a concept which was frequently used before on a descriptive level.
Crucial for this definition is the concept of a finite-time Lyapunov exponent, which yields a notion of finite-time hyperbolicity.
Further studies concerned different aspects of the theory and extensions to higher dimensions [6,7,4,5,11,22,29,27].

The theory of finite-time Lyapunov exponents yields a corresponding theory of attractivity, where Lagrangian coherent
structures can serve as boundaries of attraction areas. While in this theory, attractivity is supposed to occur at every instance
within the time domain under consideration (leading to well-defined objects such as stable and unstable manifolds [5,7,17]),
we develop a concept of attraction in this paper, which allows that points near an attractive solution move away from it,
provided they return before the end of the time period. It is clear that this is weaker compared to the above strong concept
of attraction, but the main result of this paper relates these two different points of view: it implies that an area of (weak)
attraction can be characterised by (strong) attraction when changing the metric in time, with the additional condition that
the metrics at both initial and final time coincide.

We like to emphasise that an important difference to the classical Lyapunov theory for infinite time intervals is given
by the nonuniqueness of finite-time objects. This means in turn that single solutions (with a certain stability behavior) do
not play a special role any more. For this reason, we will mainly discuss areas of attraction consisting of attractive solutions
rather than single attractive solutions and their respective domain of attraction in this paper. One aim of this paper is to
compare areas of attraction with domains of attraction of solutions contained in it. These objects do not differ in the study
of infinite time intervals, but we illustrate that they are different in our situation. One of our results shows that the area
of attraction contains the domains of attraction of solutions within it, provided that the area of attraction is convex at the
initial time. We give an example of a non-convex area of attraction, where this property does not hold true.

Finally, we would like to remark that the study of domains of attraction in ordinary differential equations plays a funda-
mental role for the deep understanding of the global asymptotic behavior also in the infinite time context, and there have
been several approaches to compute such domains. One classical concept is Zubov’s method (see [30]), which is based on a
partial differential equation whose solution determines the entire domain of attraction of an attractive equilibrium. Another
concept was developed by Göran Borg in 1960 (see [8]). His approach admitted the determination of a subset of the domain
of attraction of a periodic orbit, and it is a main advantage that for the formulation of his criterion no special information
concerning the periodic orbit is needed. The criterion is local and makes only use of the fact that adjacent solutions ap-
proach each other in forward time. In Borg’s article, this approach has been formulated in terms of the standard Euclidean
metric. However, Borg’s criterion was extended already in the 1960s in [18] and [28] by employing a general Riemannian
metric, and moreover, [12] has shown that Borg’s criterion is both sufficient and necessary for the existence of an exponen-
tially stable periodic orbit; it is always possible to construct an appropriate Riemannian metric. The improvement of Borg’s
criterion became a subject of several studies. In particular, it was extended to periodic and almost periodic equations, as
well as to non-smooth systems (see [13,15,14]). In this article, we will provide an appropriate version of Borg’s criterion
for the study of nonautonomous differential equations on finite time intervals, which will give a characterisation of areas of
attraction.

This paper is organised as follows. After some notational preparations, the notion of finite-time attractivity is introduced
in Section 2. Section 3 is devoted to the definition of domains and areas of attraction. The finite-time analogue of Borg’s
criterion is then treated in the next two sections: First we prove that a certain condition is sufficient to determine the area
of attraction in Section 4, and then we show that this condition is also necessary in Section 5. In Section 6 we compare
areas of attractions with domains of attraction of solutions within, and we discuss examples including the relation of the
newly introduced finite-time definitions to the respective infinite-time ones and the nonautonomous logistic equation.

Notation and basic setup. We denote by R (or C, respectively) the set containing all real (or complex, respectively) numbers
and by Rn×n (or Cn×n , respectively) the set of all real (or complex, respectively) n × n matrices, and we write the symbol 1
for the unit matrix. For C ∈ Cn×n , the conjugate complex matrix is denoted by C , and C∗ = C T denotes the adjoint matrix.
The standard scalar product for v, w ∈ Cn is denoted by 〈v, w〉 = v T w and ‖v‖ := √〈v, v〉 denotes the Euclidean norm.

Denote by Bε(x0) = {x ∈ Rn: ‖x − x0‖ < ε} the ε-neighborhood of a point x0 ∈ Rn . For arbitrary nonempty sets A, B ⊂ Rn

and x ∈ Rn , let dist(x, A) := inf{‖x − y‖: y ∈ A} be the distance of x to A and dist(A, B) := sup{dist(x, B): x ∈ A} be the
Hausdorff semi-distance of A to B .

2. Finite-time attractivity

We consider the finite time interval I := [0, T ] of given length T > 0 and a nonautonomous differential equation

ẋ = f (t, x), (2.1)

where f : I × Rn → Rn is assumed to be continuously differentiable. The general solution of this equation is denoted by
ϕ : I × I × Rn → Rn , i.e., ϕ(·, τ , ξ) is the solution to the initial value problem (2.1), x(τ ) = ξ . We assume that ϕ(t, τ , ξ)

exists for all t ∈ I.
A subset M of I × Rn is called a nonautonomous set if for all t ∈ I, the so-called t-fibres M(t) := {x ∈ Rn: (t, x) ∈ M}

are nonempty. We call M connected, compact or open if all fibres are connected, compact or open, respectively. A nonau-



P. Giesl, M. Rasmussen / J. Math. Anal. Appl. 390 (2012) 27–46 29
tonomous set M is said to be positively invariant if ϕ(t, τ , M(τ )) ⊂ M(t) for all τ , t ∈ I with t � τ , and it is called invariant
if ϕ(t, τ , M(τ )) = M(t) for all τ , t ∈ I.

We make use of the following notions of finite-time attractivity from [26]. Note that in contrast to the infinite-time
dynamics the choice of the norm is crucial. In the following we choose ‖ · ‖ to be the Euclidean norm, although the
definition can be generalised to other norms.

Definition 2.1 (Finite-time attractivity). Let μ : I → Rn be a solution of (2.1).

(i) μ is called attractive on I if there exists an η > 0 such that∥∥ϕ(T ,0, x) − μ(T )
∥∥<

∥∥x − μ(0)
∥∥ for all x ∈ Bη

(
μ(0)

) \ {μ(0)
}
.

(ii) μ is called exponentially attractive on I if

lim sup
η↘0

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
< 1,

and the negative number

1

T
ln

(
lim sup

η↘0

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

}))
is called rate of exponential attraction.

The following two nonautonomous examples illustrate the notions of both attractivity and exponential attractivity.

Example 2.2. We consider the nonautonomous linear differential equation

ẋ = a(t)x, where x ∈ R,

and a : [0, T ] → R is a continuous function. If A := ∫ T
0 a(t)dt < 0, then the trivial solution x(t) = 0 is exponentially attractive

with rate of exponential attraction A
T . This follows from

lim sup
η↘0

1

η
dist
(
ϕ
(
T ,0, Bη(0)

)
, {0})= 1

η
ηe
∫ T

0 a(t) dt = e A < 1

and 1
T ln e A = A

T . Note also that due to the linearity of the equation, this does not only hold for the trivial solution but for
every solution.

It follows easily from the definitions that exponential attractivity implies attractivity. The following example shows that
the converse statement does not hold.

Example 2.3. Consider the differential equation

ẋ = a(t)x3

where a : [0, T ] → R is a continuous function. If A := ∫ T
0 a(t)dt < 0, then the trivial solution is attractive on [0, T ], but not

exponentially attractive. This follows basically from the representation

ϕ(T ,0, ξ) = ξ√
1 − 2Aξ2

.

The trivial solution is attractive, since
√

1 − 2Aξ2 > 1 for all ξ �= 0 as A < 0. However,

lim sup
η↘0

1

η
dist
(
ϕ
(
T ,0, Bη(0)

)
, {0})= lim sup

η↘0

1√
1 − 2Aη2

= 1,

which proves that we do not have exponential attractivity.

Remark 2.4. Consider the differential equation (2.1) on the infinite interval R+
0 , i.e., having a right-hand side f : R+

0 ×
Rn → Rn . If a solution μ : R+

0 → Rn is exponentially attractive on each interval [0, T ] for T > 0 and the corresponding rates
of exponential attraction are bounded away from 0, then it is easy to see that μ is exponentially attractive in the sense of
Lyapunov. If the rates of exponential attraction are not bounded away from zero, then even attractivity of μ in the sense
of Lyapunov cannot be concluded as the trivial solution of the example ẋ = min{−1 + t,0}x shows.
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On the other hand, if a solution is exponentially attractive in the sense of Lyapunov for infinite times, then in general,
there might be time intervals [0, T ] where the solution is not attractive. The example

ẋ =

⎧⎪⎨
⎪⎩

−x, (t, x) ∈ R × R with x � e−t or x � 0,

−e−t − 2(x − e−t), (t, x) ∈ R × R with 1
2 e−t � x � e−t,

0, (t, x) ∈ R × R with x � 1
2 e−t,

shows even that the trivial solution can be exponentially attractive for infinite times, but for each finite time interval, the
trivial solution is not attractive.

The following proposition characterises (exponential) attractivity by means of the time-T map.

Proposition 2.5. Denote by F T : Rn → Rn the time-T map of (2.1), which is defined by F T (x) := ϕ(T ,0, x). Moreover, let μ : I → Rn

be a solution of (2.1). Then the following statements hold.

(i) If μ is attractive on I, then λ � 1 holds for all eigenvalues λ of the matrix D F T (μ(0))T D F T (μ(0)),
(ii) μ is exponentially attractive on I if and only if λ < 1 holds for all eigenvalues λ of D F T (μ(0))T D F T (μ(0)). The rate of exponential

attraction is given by

1

2T
lnλmax,

where λmax is the largest eigenvalue of D F T (μ(0))T D F T (μ(0)).

Proof. (i) Let λ be an eigenvalue of D F T (μ(0))T D F T (μ(0)) with λ > 1, and let v be a corresponding eigenvector with
‖v‖ = 1. Thus, ‖D F T (μ(0))v‖2 = v T D F T (μ(0))T D F T (μ(0))v = λv T v = λ. We will show that μ is not attractive. Taylor’s
Theorem implies that

F T
(
μ(0) + εv

)− F T
(
μ(0)

)= εD F T
(
μ(0)

)
v + ψ(ε),

where limε→0
ψ(ε)

ε = 0. Choose ε0 > 0 so small that ‖ψ(ε)‖ � (
√

λ − 1)ε holds for all 0 < ε < ε0. Hence,∥∥ϕ(T ,0,μ(0) + εv
)− μ(T )

∥∥� ε
(∥∥D F T

(
μ(0)

)
v
∥∥− (

√
λ − 1)

)= ε = ∥∥(μ(0) + εv
)− μ(0)

∥∥.
This contradicts Definition 2.1 for all x = μ(0) + εv with ε ∈ (0, ε0) and thus shows that μ is not attractive.

(ii) We consider μ(t) and the solution starting in μ(0) + w . Using Taylor’s Theorem, we obtain

ϕ
(
T ,0,μ(0) + w

)− μ(T ) = F T
(
μ(0) + w

)− F T
(
μ(0)

)= D F T
(
μ(0)

)
w + ψ(w),

where lim‖w‖→0
ψ(w)
‖w‖ = 0. Thus,

lim sup
‖w‖→0

ϕ(T ,0,μ(0) + w) − μ(T )

‖w‖ = lim sup
‖w‖→0

D F T (μ(0))w

‖w‖
and

lim sup
‖w‖→0

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖ = lim sup

‖w‖→0

‖D F T (μ(0))w‖
‖w‖ =√λmax, (2.2)

where λmax is the largest eigenvalue of D F T (μ(0))T D F T (μ(0)), since D F T (μ(0))T D F T (μ(0)) is symmetric. Now

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})= sup
‖w‖<η

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖

‖w‖
η

. (2.3)

From (2.3) we can conclude

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
� sup

‖w‖<η

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖ ,

which implies with (2.2) that

lim sup
1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
� lim sup

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖ =√λmax.
η↘0 ‖w‖→0
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Furthermore, (2.3) and (2.2) yield for all θ ∈ (0,1)

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
� sup

‖w‖=θη

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖ θ

and

lim sup
η↘0

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
� lim sup

‖w‖→0

‖ϕ(T ,0,μ(0) + w) − μ(T )‖
‖w‖ θ = θ

√
λmax.

Since this inequality holds for all θ ∈ (0,1), we have

lim sup
η↘0

1

η
dist
(
ϕ
(
T ,0, Bη

(
μ(0)

))
,
{
μ(T )

})
�
√

λmax.

This finishes the proof of this proposition. �
Example 2.6. We consider again Example 2.2 and use Proposition 2.5 to determine the rate of exponential attraction. The
time-T map is given by F T (x) = e A x, where A = ∫ T

0 a(t)dt < 0. This gives D F T (x)T D F T (x) = e2A for all solutions starting at
μ(0) = x. The eigenvalue is λ = λmax = e2A , which fulfils λmax < 1 since A < 0. The rate of exponential attraction is given
by

1

2T
lnλmax = A

T
.

Furthermore, we consider also Example 2.3 where the time-T map is given by F T (ξ) = ξ√
1−2Aξ2

, where A = ∫ T
0 a(t)dt < 0.

This gives D F T (ξ) = 1
(1−2Aξ2)3/2 . For the trivial solution μ(t) = 0 this implies

D F T (0) = 1,

and thus the eigenvalue of D F T (0)T D F T (0) is 1. Hence, Proposition 2.5(ii) shows that the trivial solution is not exponentially
attractive.

Lyapunov functions are supposed to decrease along solutions. In our context of finite time intervals, however, we also
have to link the Lyapunov function to the Euclidean metric at the starting and end time of the finite time interval.

Definition 2.7. Let μ : I → Rn be a solution of (2.1). A continuously differentiable function V : I × Rn → R is called a strict
finite-time Lyapunov function for μ if

V (0, x) = ∥∥x − μ(0)
∥∥2

, V (T , x) = ∥∥x − μ(T )
∥∥2

for all x ∈ Rn (2.4)

and

V ′(t, x) := 〈∇x V (t, x), f (t, x)
〉+ ∂V

∂t
(t, x) < 0 for all (t, x) ∈ U \ {(t,μ(t)

)
: t ∈ I

}
,

where the nonautonomous set U is a neighborhood of {(t,μ(t)): t ∈ I} in I × Rn .

Attractive solutions on a finite time interval can be characterised by strict finite-time Lyapunov functions.

Theorem 2.8. The existence of a strict finite-time Lyapunov function for a solution μ implies that μ is attractive on I. Conversely, if a
solution μ is attractive on I, then there exists a strict finite-time Lyapunov function.

Proof. Let μ be a solution, V be a strict finite-time Lyapunov function for μ and U be a neighborhood as specified in
Definition 2.7. Because of the continuous dependence on initial conditions, there exists an invariant neighborhood U ′ ⊂ U
of μ, and there is a β > 0 such that (0, Bβ(μ(0))) ⊂ U ′ . Then for all x ∈ Bβ(μ(0)) \ {μ(0)}, we have

∥∥ϕ(T ,0, x) − μ(T )
∥∥2 = V

(
T ,ϕ(T ,0, x)

)= V (0, x) +
T∫

0

V ′(t,ϕ(t,0, x)
)

dt

< V (0, x) = ∥∥x − μ(0)
∥∥2

, (2.5)

which shows the first part of the theorem.
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Now assume conversely that the solution μ is attractive on I. We define the function V for t ∈ I by the linear interpola-
tion between the values at 0 and T of this trajectory, i.e.,

V (t, x) = ∥∥ϕ(0, t, x) − μ(0)
∥∥2 + (∥∥ϕ(T , t, x) − μ(T )

∥∥2 − ∥∥ϕ(0, t, x) − μ(0)
∥∥2) t

T
. (2.6)

The function V is obviously continuously differentiable and the property (2.4) of Definition 2.7 is satisfied. Since μ is
attractive, there exists a β > 0 such that∥∥ϕ(T ,0, x) − μ(T )

∥∥<
∥∥x − μ(0)

∥∥ for all x ∈ Bβ

(
μ(0)

) \ {μ(0)
}
. (2.7)

Define the invariant set U = {(t, x) ∈ I × Rn: ϕ(0, t, x) ∈ Bβ(μ(0))}. To calculate the orbital derivative V ′(t, x) note that the
orbital derivative of w(t, x) = ϕ(t0, t, x) for fixed t0 ∈ I is zero. Indeed, by the semiflow property we have

w ′(t, x) = d

dθ
w
(
t + θ,ϕ(t + θ, t, x)

)∣∣∣∣
θ=0

= d

dθ
ϕ
(
t0, t + θ,ϕ(t + θ, t, x)

)∣∣∣∣
θ=0

= d

dθ
ϕ(t0, t, x)

∣∣∣∣
θ=0

= 0.

Applying this with w(t, x) = ϕ(0, t, x) and w(t, x) = ϕ(T , t, x) to (2.6), the only non-zero contribution comes from the last
factor t

T in (2.6) and thus we obtain

V ′(t, x) = 1

T

(∥∥ϕ(T , t, x) − μ(T )
∥∥2 − ∥∥ϕ(0, t, x) − μ(0)

∥∥2)
< 0 by (2.7)

for all (t, x) ∈ U \ {(t,μ(t)): t ∈ I}. This finishes the proof of this theorem. �
3. Domains and areas of attraction

In this section, we introduce the notions of both a domain and an area of attraction. While an area of attraction does
not depend on a special solution, the concept of a domain of attraction relies on a given attractive solution.

Definition 3.1. Let μ : I → Rn be an attractive solution on I. Then a connected and invariant nonautonomous set Gμ ⊂ I×Rn

is called domain of attraction of μ if∥∥ϕ(T ,0, x) − μ(T )
∥∥<

∥∥x − μ(0)
∥∥ for all x ∈ Gμ(0) \ {μ(0)

}
,

Gμ is maximal (with respect to set inclusion) and contains the graph of μ.

Such a maximal set always exists and is uniquely determined. In fact, the connected component of the set {x ∈ Rn:
‖ϕ(T ,0, x)−μ(T )‖ < ‖x −μ(0)‖} which contains μ(0) is the 0-fibre of the domain of attraction of μ. Moreover, due to the
continuity of the general solution, the domain of attraction is an open nonautonomous set.

In addition to the domain of attraction of an attractive solution, we also consider so-called areas of attraction which are
not based on a special attractive solution.

Definition 3.2. A connected and invariant nonautonomous set G ⊂ I × Rn is called

(i) area of attraction if all solutions in G are attractive,
(ii) area of exponential attraction if all solutions in G are exponentially attractive.

Remark 3.3.

(i) An area of (exponential) attraction G is fully determined by its 0-fibre G(0), since it is invariant.
(ii) A connected component of the set of all (exponentially) attractive solutions is an area of (exponential) attraction. It is

a maximal area of attraction, i.e., there is no proper superset which is also an area of attraction.
(iii) The rate of exponential attraction depends continuously on the initial value of the solution at time 0. Indeed, by

Proposition 2.5(ii), the rate of exponential attraction can be characterised by the largest eigenvalue of the Jacobian of
the time-T map. Since the map and the eigenvalues vary continuously with respect to the initial value, the rate of
exponential attraction depends continuously on the initial value as well. Thus, for any compact subset of an area
of exponential attraction, the rate of exponential attraction is bounded away from 0.
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Fig. 1. The 0-fibre of the domain of attraction of ν(t) = ϕ(t,0, ( 1
2 ,0)) for T = 1 is the plane R

2 without the interior of the white ellipse-like set shown in
the figure. It includes the maximal area of exponential attraction.

The following example shows that the (maximal) area of attraction and the domain of attraction of solutions within it
are different sets in general. In the example, the area of attraction is a subset of the domains of attraction of two solutions
contained in it, more precisely the solutions starting in (0,0) and (1/2,0). We will later show that this holds in general,
provided that the 0-fibre of the (maximal) area of attraction is convex, cf. Theorem 6.1.

Example 3.4. Let c := 2π
1−e−2 , and consider the planar system

ẋ = −x − cy
(
x2 + y2),

ẏ = −y + cx
(
x2 + y2),

which can be represented in the polar coordinates x = r cosφ and y = r sinφ by

ṙ = −r,

φ̇ = cr2.

We show that

(i) for any T > 0 the domain of attraction of the trivial solution μ(t) = ϕ(t,0, (0,0)) is given by I × R2,
(ii) for any T > 0 the maximal area of exponential attraction G is determined by

G(0) = {(x, y) ∈ R2:
√

x2 + y2 <

√
eT /c

}
,

(iii) for T = 1, the maximal area of exponential attraction G is determined by

G(0) = {(x, y) ∈ R2:
√

x2 + y2 <
√

e/c ≈ 0.6116
}
,

and the domain of attraction of the solution starting in (1/2,0) is a proper superset of the maximal area of exponential
attraction, cf. Fig. 1.

To show (i), note that the solution flow for a given initial value (r0, φ0) in polar coordinates is given by

r(t) = e−tr0,

φ(t) = φ0 + c

t∫
0

e−2τ r2
0 dτ = φ0 − 1

2
cr2

0

(
e−2t − 1

)
,

which immediately implies that the trivial solution is exponentially attractive on any finite time interval with domain of
attraction I × R2, cf. (i).
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To show (ii) we now seek to determine the maximal area of exponential attraction including the trivial solution. The
time-T map F T , which maps an initial point (x, y) at time 0 to the point F T (x, y) at a given time T > 0, is given by

F T (x, y) = e−T
(

cos(ρr2) − sin(ρr2)

sin(ρr2) cos(ρr2)

)(
x
y

)
, (3.1)

where ρ = c
2 (1 − e−2T ) and r =√x2 + y2. We use Proposition 2.5(ii) to determine whether the solution starting in (x, y) is

exponentially attractive. It is sufficient to calculate D F T (x, y) only for the special case x = r and y = 0, since D F T does not
depend on the initial angle of (x, y). We obtain

D F T (r,0) = e−T
(

cos(ρr2) − 2ρr2 sin(ρr2) − sin(ρr2)

sin(ρr2) + 2ρr2 cos(ρr2) cos(ρr2)

)
,

which yields

D F T (r,0)T D F T (r,0) = e−2T
(

1 + 4ρ2r4 2ρr2

2ρr2 1

)
.

The eigenvalues λ1,2 of this matrix are given by

λ1,2 = e−2T (1 + 2ρ2r4 ± 2
√

ρ2r4 + ρ4r8
)
.

The second eigenvalue λ2 is less then 1 in all cases, since 0 < 1 + 2ρ2r4 − 2
√

ρ2r4 + ρ4r8 � 1. For λ1, one has

λ1 < 1 ⇔ e−2T (1 + 2ρ2r4 + 2
√

ρ2r4 + ρ4r8
)
< 1

⇔ 2
√

ρ2r4 + ρ4r8 < e2T − (1 + 2ρ2r4)
⇔ 4

(
ρ2r4 + ρ4r8)< e4T − 2e2T (1 + 2ρ2r4)+ 1 + 4ρ2r4 + 4ρ4r8

⇔ ρ2r4 <
(eT − e−T )2

4
= sinh2(T )

⇔ r2 <
sinh(T )

ρ
= eT

c
.

Note that r2 <
sinh(T )

ρ implies 4ρ2r4 < e2T − 2 + e−2T , and thus, e2T > 1 + 2ρ2r4 for T > 0. Hence, solutions starting in (x, y)

are exponentially attractive on I if and only if one has x2 + y2 < eT

c , which shows (ii).
For (iii) we assume that T = 1, e.g., I = [0,1]. In this case, (ii) shows that solutions starting in (x, y) are exponentially

attractive on I if one has x2 + y2 < e
c and the maximal area of exponential attraction G is given by the disk

G(0) = {(x, y) ∈ R2:
√

x2 + y2 <
√

e/c ≈ 0.6116
}
.

We consider now the domain of attraction of the solution ν(t) starting in ν(0) = ( 1
2 ,0). Since T = 1, we have ρ = π .

Due to (3.1), we have

F1(x, y) = e−1
(

cos(π(x2 + y2))x − sin(π(x2 + y2))y
sin(π(x2 + y2))x + cos(π(x2 + y2))y

)
.

In particular, F1(
1
2 ,0) = 1

4

√
2e−1(1,1). The 0-fibre of the domain of attraction is shown in Fig. 1.

This planar system will be discussed again in Example 4.4.

The situation is different in the case of infinite time intervals, where domain of attraction and area of attraction are
almost the same.

Remark 3.5. Consider the differential equation (2.1) on the infinite interval R+
0 , i.e., having a right-hand side f : R+

0 ×
Rn → Rn , and let μ : R+

0 → Rn be an attractive solution in the sense of Lyapunov. Then the domain of attraction of μ, given
by {(τ , ξ): limt→∞ ‖ϕ(t, τ , ξ) − μ(t)‖ = 0} does not necessarily coincide with a maximal area of attraction (consider any
negative solution of the example ẋ = |x|), but one can prove that the interior of the domain of attraction coincides with a
maximal area of attraction. For this, one needs to show that solutions lying in the boundary of the domain of attraction are
not attractive in the sense of Lyapunov.
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4. Sufficiency

In this section, we provide a sufficient condition for a nonautonomous set to be an area of attraction. We will see in the
next section, that this condition is also necessary. Crucial for what follows is the notion of a Riemannian metric.

Definition 4.1. A continuously differentiable function M : I×Rn → Rn×n is called Riemannian metric if M(t, x) is a symmetric
and positive definite matrix for each (t, x) ∈ I × Rn .

Note that 〈v, w〉M := v T M(t, x)w defines a scalar product for v, w ∈ Rn and each (t, x) ∈ I × Rn , if M is a Riemannian
metric.

Given a Riemannian metric M , we define

LM(t, x; w) := wT
(

M(t, x)Dx f (t, x) + 1

2
M ′(t, x)

)
w

and

LM(t, x) := max
w∈Rn,w T M(t,x)w=1

LM(t, x; w),

where M ′(t, x) denotes the matrix with entries

mij = ∂Mij(t, x)

∂t
+

n∑
k=1

∂Mij(t, x)

∂xk
fk(t, x).

Note that M ′ is the orbital derivative of M , i.e., M ′(t, x) = d
dτ M(τ ,ϕ(τ , t, x))|τ=t .

The quantity LM(t, x) measures the rate of approach of adjacent trajectories; if LM(t, x) < 0, then all trajectories adjacent
to the one passing through (t, x) approach the one passing through (t, x). This condition was first established by Borg [8]
and is known as Borg’s criterion.

Theorem 4.2. Consider the differential equation (2.1), let G ⊂ I × Rn be a nonempty, connected, compact and invariant nonau-
tonomous set and M be a Riemannian metric such that M(0, x) = M(T , x) = 1 for all x ∈ Rn. Assume that there exists a ν > 0 such
that

LM(t, x) � −ν for all (t, x) ∈ G.

Then G is an area of exponential attraction. In particular, for all γ < ν , there exists a δ > 0 such that for all x0 ∈ G(0), we have∥∥ϕ(T ,0, x0) − ϕ(T ,0, ξ)
∥∥� e−γ T ‖x0 − ξ‖ for all ξ ∈ Bδ(x0), (4.1)

i.e., all solutions lying in G are exponentially attractive such that the rate of exponential attraction is � −ν .

Proof. The proof is divided into three parts. First, we prove some technical inequalities, and in the second step, we introduce
a distance Γ with respect to a given reference solution. Finally, we show that this distance decreases exponentially.

Part 1. The matrix M(t, x) is symmetric and positive definite for all (t, x) ∈ G . Hence, the smallest eigenvalue λ(t, x) of
M(t, x) is positive, and since the eigenvalues depend continuously on (t, x), there are 0 < λ− � λ+ < ∞ such that

λ−‖y‖2 � yT M(t, x)y � λ+‖y‖2 (4.2)

and ∥∥M(t, x)y
∥∥� λ+‖y‖ (4.3)

hold for all y ∈ Rn and all (t, x) ∈ G; note that G is compact in R × Rn . Let γ < ν , and define k := 1 − γ
ν > 0. The derivative

Dx f (t, x) is continuous and thus uniformly continuous on G . Hence, there exists a δ̃ > 0 such that∥∥Dx f (t, x) − Dx f (t, ξ)
∥∥� kν

λ−
λ+

(4.4)

holds for all (t, x) ∈ G and ξ ∈ Rn with ‖ξ − x‖ � δ̃. We set δ := δ̃
2

√
λ−/λ+ .

Part 2. We fix x0 ∈ G(0) and ξ ∈ Rn with ‖ξ − x0‖ � δ. We denote by μ : I → Rn the solution starting in (0, x0), i.e.,
μ(t) = ϕ(t,0, x0) for all t ∈ I. We define the distance

Γ (t) :=
√(

ϕ(t,0, ξ) − μ(t)
)T

M
(
t,μ(t)

)(
ϕ(t,0, ξ) − μ(t)

)
for all t ∈ I.
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Note that by (4.2), we have√
λ−
∥∥ϕ(t,0, ξ) − μ(t)

∥∥� Γ (t) �
√

λ+
∥∥ϕ(t,0, ξ) − μ(t)

∥∥.
In the following, we only consider the nontrivial case ξ �= x0. Then we have Γ (t) �= 0 for all t ∈ I, and we set

v(t) := ϕ(t,0, ξ) − μ(t)

Γ (t)
for all t ∈ I.

In other words, ϕ(t,0, ξ) − μ(t) = Γ (t)v(t) holds. Note that v(t) is a vector with
√

v(t)T M(t,μ(t))v(t) = 1, and thus,
1√
λ+

� ‖v(t)‖ � 1√
λ−

holds by (4.2).

Part 3. We show that Γ (t) decreases exponentially, and we first calculate the temporal derivative of Γ 2; note also that
M(t, x) = M(t, x)T . We obtain

d

dt
Γ 2(t) = 2

(
ϕ(t,0, ξ) − μ(t)

)T
M
(
t,μ(t)

)(
f
(
t,ϕ(t,0, ξ)

)− f
(
t,μ(t)

))
+ (ϕ(t,0, ξ) − μ(t)

)T
M ′(t,μ(t)

)(
ϕ(t,0, ξ) − μ(t)

)
= 2Γ (t)v(t)T M

(
t,μ(t)

)(
f
(
t,μ(t) + Γ (t)v(t)

)− f
(
t,μ(t)

))
+ Γ 2(t)v(t)T M ′(t,μ(t)

)
v(t).

We have ‖Γ (0)v(0)‖ � δ. Since 2δ � δ̃, there is a maximal θ ∈ (0, T ] such that∥∥Γ (t)v(t)
∥∥= ∥∥ϕ(t,0, ξ) − μ(t)

∥∥� δ̃

for all t ∈ [0, θ]. We will later show that θ = T .
Now let t ∈ [0, θ] and use LM(t,μ(t)) � −ν , the invariance of G and the mean value theorem. Then we obtain

d

dt
Γ 2(t) = 2Γ 2(t)v(t)T M

(
t,μ(t)

)( 1∫
0

Dx f
(
t,μ(t) + λΓ (t)v(t)

)
dλ

)
v(t) + Γ 2(t)v(t)T M ′(t,μ(t)

)
v(t)

� 2Γ 2(t)

(
v(t)T

(
M
(
t,μ(t)

)
Dx f

(
t,μ(t)

)+ 1

2
M ′(t,μ(t)

))
v(t)︸ ︷︷ ︸

=LM (t,μ(t);v(t))

+ v(t)T M
(
t,μ(t)

)( 1∫
0

(
Dx f

(
t,μ(t) + λΓ (t)v(t)

)− Dx f
(
t,μ(t)

))
dλ

)
v(t)

)

� −2νΓ 2(t) + 2
Γ 2(t)λ+

λ−
kλ−
λ+

ν = −2(1 − k)νΓ 2(t).

The last inequality follows from (4.2), (4.3) and (4.4). Thus, we obtain with (1 − k)ν = γ that

Γ (t) � Γ (0)e−γ t for all t ∈ [0, θ]. (4.5)

The inequality (4.5) shows in particular that Γ (t) � Γ (0) � √
λ+‖ξ − x0‖ � 1

2 δ̃
√

λ− holds, and thus, we have ‖Γ (t)v(t)‖ �
1
2 δ̃ for all t ∈ [0, θ]. If θ < T , then this contradicts the maximality of θ . Thus, θ = T and (4.5) holds for all t ∈ I.

In particular for t = T , we obtain from (4.5) that

Γ (T ) � Γ (0)e−γ T , (4.6)

which means that with M(0, x) = M(T , x) = 1, we arrive at∥∥ϕ(T ,0, ξ) − μ(T )
∥∥� ‖ξ − x0‖e−γ T . �

The following corollary deals with the rate of attraction between any two solutions in G when G(0) is convex. In this
case, the local result (4.1) for solutions in a neighborhood of x0 can be extended to a global result for the distance between
any two solutions starting in G(0).
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Corollary 4.3. Consider the differential equation (2.1), let G ⊂ I × Rn be a nonempty, connected, compact and invariant nonau-
tonomous set and M be a Riemannian metric such that M(0, x) = M(T , x) = 1 for all x ∈ Rn. We assume that G(0) is convex and that
there exists a ν > 0 such that

LM(t, x) � −ν for all (t, x) ∈ G.

Then we have∥∥ϕ(T ,0, x) − ϕ(T ,0, y)
∥∥� e−νT ‖x − y‖ for all x, y ∈ G(0).

Proof. Let γ < ν and x, y ∈ G(0) be chosen arbitrarily. Theorem 4.2 implies the existence of a δ > 0 such that for all
x0 ∈ G(0), we have∥∥ϕ(T ,0, x0) − ϕ(T ,0, ξ)

∥∥� e−γ T ‖x0 − ξ‖ for all ξ ∈ Bδ(x0).

For given x, y ∈ G(0), there exist κ < δ and m ∈ N such that mκ = ‖y − x‖ and hence x+mκ y−x
‖y−x‖ = y. Since G(0) is convex,

x + iκ
y − x

‖y − x‖ ∈ G(0) for all i ∈ {0, . . . ,m}.

With x0 = x + iκ y−x
‖y−x‖ and ξ = x + (i + 1)κ y−x

‖y−x‖ for i ∈ {0, . . . ,m − 1}, repeated application of the above estimate implies∥∥ϕ(T ,0, x) − ϕ(T ,0, y)
∥∥� e−γ T ‖x − y‖.

Since γ < ν was chosen arbitrarily, the assertion follows. �
Example 4.4. Consider again the planar differential equation which was discussed in Example 3.4.

Part 1. Using the Euclidean metric, i.e., M(t, (x, y)) ≡ 1, we calculate L1(t, (x, y)) for this example. First observe that

L1
(
t, (x, y); w

)= wT D(x,y) f
(
t, (x, y)

)
w = wT

(−1 − 2cxy −3cy2 − cx2

3cx2 + cy2 −1 + 2cxy

)
w.

Then by [13, Corollary to Lemma 6.2], we have

L1
(
t, (x, y)

)= max
w∈R2,‖w‖=1

L1
(
t, (x, y); w

)
= 1

2

(−1 − 2cxy − 1 + 2cxy +
√(−3cy2 − cx2 + 3cx2 + cy2

)2 + (−1 − 2cxy − (−1 + 2cxy)
)2)

= 1

2

(−2 +
√

4c2
(
x2 − y2

)2 + 16c2x2 y2
)= −1 + c

(
x2 + y2).

This means that L1(t, (x, y)) < 0 for x2 + y2 < 1
c . Since for any R � 0 the set{

(t, x, y) ∈ I × R2
∣∣ x2 + y2 � R2}

is positively invariant due to ṙ = −r, the invariant set

G = {(t,ϕ(t,0, (x, y)
)) ∣∣ t ∈ I, x2 + y2 � R2}

with R < 1√
c

satisfies the assumptions of Theorem 4.2 and thus G is an area of exponential attraction.

Part 2. Using a different Riemannian metric, we seek to find a larger area of exponential attraction. Since Borg’s criterion
considers the worst direction in each point, we get a better estimate if we follow two solutions over a longer time interval.
In order to improve the estimate, we fix T = 1 and define

V
(
t, (x, y)

)= 2t(t − 1)
(
x2 + y2 + 0.3

)
and show that

M(t, r) := exp
(
2V (t, r)

)
1

and G = {(t, (x, y)):
√

x2 + y2 � 0.54 exp(−t)} fulfil the conditions of Theorem 4.2. Since V (0, (x, y)) = V (1, (x, y)) = 0, we
have M(0, (x, y)) = M(1, (x, y)) = 1. An easy calculation shows that

LM
(
t, (x, y)

)= L1
(
t, (x, y)

)+ V ′(t, (x, y)
)
.
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Since

V ′(t, r) = 2(2t − 1)
(
r2 + 0.3

)− 4t(t − 1)r2

we have

LM(t, r) = −1 + cr2 + 2(2t − 1)
(
r2 + 0.3

)− 4t(t − 1)r2.

We can check that

LM
(
t, (x, y)

)
< 0 for

(
t, (x, y)

) ∈ G ′ := {(t,ϕ(t,0, (ξ,η)
)) ∣∣ t ∈ I,

√
ξ2 + η2 � 0.54

}
,

using ‖ϕ(t,0, (x, y))‖ � 0.54e−t for all (t,ϕ(t,0, (x, y))) ∈ G ′ . Thus we have enlarged the radius of the set G(0) to G ′(0)

from
√

1/c ≈ 0.371 to 0.54. The bound for the domain of attraction is 0.6116, cf. Example 3.4.

5. Necessity

In this section, the necessity of the conditions of Theorem 4.2 is shown, which means that we construct a Riemannian
metric M in a given area of attraction.

Theorem 5.1. Consider the differential equation (2.1) and a compact nonautonomous set G ⊂ I × Rn which is an area of exponential
attraction. Let −ν < 0 be the maximal rate of exponential attraction of all solutions in G (see Remark 3.3(iii)). Then for every δ > 0,
there exists a Riemannian metric M : G → Rn×n in the sense of Definition 4.1 with M(0, x) = M(T , x) = 1 for all x ∈ Rn such that

LM(t, x) � −ν + δ for all (t, x) ∈ G.

Proof. The proof is divided into three parts. In Part 1 we construct M along a certain solution, and in Parts 2 and 3 we
extend the construction to G using a partition of unity.

Part 1. Fix ξ ∈ G(0), and consider the solution μ(t) = ϕ(t,0, ξ) on I. The invariance of G implies that (t,μ(t)) ∈ G for all
t ∈ I. We consider the variational equation along this solution given by

ẏ = Dx f
(
t,μ(t)

)
y. (5.1)

Denote by Φ : I → Rn×n the fundamental matrix solution of (5.1) with the initial condition Φ(0) = 1. Since C := Φ(T ) is
non-singular, there exists a matrix B ∈ Cn×n such that Φ(T ) = C = exp(BT ) (see, e.g., [9, Theorem 2.47]). We define

P (t) := Φ(t)e−Bt for all t ∈ I.

Obviously, we have P (0) = 1 and P (T ) = Φ(T )exp(−BT ) = 1. Since the rate of exponential attraction of μ(t) is bounded
from above by −ν , we have Reα � −ν for all eigenvalues α of B . Indeed, let αr + iαc be an eigenvalue of B , i.e. there is an
eigenvector v ∈ Cn with ‖v‖ = 1 such that B v = (αr + iαc)v . Hence,

C v = eBT v = e(αr+iαc)T v.

Note that C ∈ Rn×n . Hence,

v∗C T C v = ‖C v‖2 = e2αr T ‖v‖2 = e2αr T .

Note that C = D F T (μ(0)), where F T is the time-T map. By Proposition 2.5 we have

αr � 1

2T
lnλmax = −ν,

where λmax denotes the maximal eigenvalue of C T C .
Moreover, there exists an invertible matrix S ∈ Cn×n such that S−1 B S = A is in the special Jordan Normal Form, where

the numbers 1 on the side diagonal are replaced by ε := 2δ. More precisely, S is obtained by S = S1 S2, where S1 is the
matrix containing the (generalised) eigenvectors in the columns and

S2 = diag
(
1, ε, ε2, . . . , εm1−1,1, ε, ε2, . . . , εm2−1, . . . ,1, ε, ε2, . . . , εmc−1),

where m j is the dimension of the jth eigenspace. With Nξ (t) = P−1(t)∗(S−1)∗ S−1 P−1(t) for t ∈ I, we now define the
Riemannian metric independent of x by

Mξ (t, x) = Mξ (t) = 1 (
Nξ (t) + Nξ (t)

)
for all t ∈ I.
2



P. Giesl, M. Rasmussen / J. Math. Anal. Appl. 390 (2012) 27–46 39
Note that because of the form of Nξ (t) = Z(t)∗ Z(t) for Z(t) := S−1 P−1(t), the matrix Nξ (t) is Hermitian, i.e., Nξ (t) = Nξ (t)∗ .
Note also that v T Nξ (t)∗v = (v T Nξ (t)∗v)T = v T Nξ (t)v , and thus,

vT Mξ (t)v = 1

2

(
vT Nξ (t)v + vT Nξ (t)

∗v
)= vT Nξ (t)v for all v ∈ Rn. (5.2)

Hence, Mξ (t) is a real, symmetric and positive definite matrix, since Z(t) = S−1 P−1(t) is non-singular.
We will now show that LMξ (t,μ(t); v) � (−ν +ε)v T Mξ (t,μ(t))v for all v ∈ Rn . First, we have for the derivative of Nξ (t)

that

Ṅξ (t) = Ṗ−1(t)∗
(

S−1)∗ S−1 P−1(t) + P−1(t)∗
(

S−1)∗ S−1 Ṗ−1(t).

By using d
dt (P−1(t)P (t)) = 0, we obtain Ṗ−1(t) = −P−1(t) Ṗ (t)P−1(t). In addition, since t �→ P (t)eBt is a solution of (5.1),

we have Ṗ (t) = Dx f (t,μ(t))P (t) − P (t)B . Altogether, we get

Ṗ−1(t) = −P−1(t)Dx f
(
t,μ(t)

)+ B P−1(t).

Hence,

Ṅξ (t) = −Dx f
(
t,μ(t)

)T
P−1(t)∗

(
S−1)∗ S−1 P−1(t) + P−1(t)∗B∗(S−1)∗S−1 P−1(t)

− P−1(t)∗
(

S−1)∗ S−1 P−1(t)Dx f
(
t,μ(t)

)+ P−1(t)∗
(

S−1)∗ S−1 B P−1(t)

and

2Ṁξ (t) = −Dx f
(
t,μ(t)

)T
P−1(t)∗

(
S−1)∗ S−1 P−1(t) − Dx f

(
t,μ(t)

)T
P−1(t)T (S−1)T

S−1 P−1(t)

+ P−1(t)∗B∗(S−1)∗ S−1 P−1(t) + P−1(t)T BT (S−1)T
S−1 P−1(t)

− P−1(t)∗
(

S−1)∗ S−1 P−1(t)Dx f
(
t,μ(t)

)− P−1(t)T (S−1)T
S−1 P−1(t)Dx f

(
t,μ(t)

)
+ P−1(t)∗

(
S−1)∗ S−1 B P−1(t) + P−1(t)T (S−1)T

S−1 B P−1(t).

Thus, we obtain

4

(
Mξ (t)Dx f

(
t,μ(t)

)+ 1

2
Ṁξ (t)

)
= P−1(t)∗

(
S−1)∗ S−1 P−1(t)Dx f

(
t,μ(t)

)+ P−1(t)T (S−1)T
S−1 P−1(t)Dx f

(
t,μ(t)

)
− Dx f

(
t,μ(t)

)T
P−1(t)∗

(
S−1)∗ S−1 P−1(t) − Dx f

(
t,μ(t)

)T
P−1(t)T (S−1)T

S−1 P−1(t)

+ P−1(t)∗B∗(S−1)∗ S−1 P−1(t) + P−1(t)T BT (S−1)T
S−1 P−1(t)

+ P−1(t)∗
(

S−1)∗ S−1 B P−1(t) + P−1(t)T (S−1)T
S−1 B P−1(t).

Furthermore, we have for v ∈ Rn , using v T Z v = (v T Z v)T = v T Z T v repeatedly, that

vT
(

Mξ (t)Dx f
(
t,μ(t)

)+ 1

2
Ṁξ (t)

)
v

= 1

2
vT (P−1(t)∗B∗(S−1)∗ S−1 P−1(t) + P−1(t)∗

(
S−1)∗ S−1 B P−1(t)

)
v

= vT P−1(t)∗
(

S−1)∗(1

2

(
S∗B∗(S−1)∗ + S−1 B S

))
S−1 P−1(t)v

= w∗
(

1

2

(
A∗ + A

))
w,

where w := S−1 P−1(t)v ∈ Cn and A = S−1 B S was defined above as the special Jordan Normal Form of B . The matrix A is
block diagonal with A = blockdiag(M1, . . . , Mc), where the usual Jordan block is replaced by

M j :=

⎛
⎜⎜⎜⎝

α j ε 0
. . .

. . .

. . . ε
α j

⎞
⎟⎟⎟⎠ for all j ∈ {1, . . . , c}.

Here, α j are the (complex) eigenvalues of B . Thus,
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1

2

(
A∗ + A

)=
⎛
⎝ Z1 0

. . .

0 Zc

⎞
⎠ ,

where

Z j :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ j
1
2ε 0

1
2ε λ j

1
2ε

. . .

0
. . .

. . .
. . . 0

. . . 1
2ε λ j

1
2ε

0 1
2ε λ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and λ j := Reα j for all j ∈ {1, . . . , c}.

Next, w∗( 1
2 (A∗ + A))w is calculated. Let m j denote the size of Z j by, i.e., Z j ∈ Rm j×m j , and consider w ∈ Cm j . Then the

expression

w∗ Z j w = λ j
(|w1|2 + |w2|2 + · · · + |wm j |2

)
+ ε

2
(w1 w2 + w2 w1 + w2 w3 + w3 w2 + · · · + wm j−1 wm j + wm j wm j−1)

is a real number. Note that the Cauchy–Schwarz inequality implies R � wi wi+1 + wi+1 wi � |wi |2 + |wi+1|2, which yields
that

w∗ Z j w � λ j
(|w1|2 + |w2|2 + · · · + |wm j |2

)
+ ε

2

(|w1|2 + |w2|2 + |w2|2 + |w3|2 + · · · + |wm j−1|2 + |wm j |2
)

� (λ j + ε)
(|w1|2 + |w2|2 + · · · + |wm j |2

)
.

In addition, note that ‖w‖2 = w∗w = v T P−1(t)∗(S−1)∗ S−1 P−1(t)v = v T Nξ (t)v = v T Mξ (t)v by (5.2), so we get altogether
with Reα j � −ν for all j ∈ {1, . . . , c} that

LMξ

(
t,μ(t); v

)= w∗
(

1

2

(
A∗ + A

))
w � max

1� j�c
(Reα j + ε)‖w‖2 � (−ν + ε)vT Mξ (t)v. (5.3)

Moreover,

LMξ

(
t,μ(t)

)= max
v∈Rn,vT Mξ (t)v=1

LMξ

(
t,μ(t); v

)
� −ν + ε. (5.4)

Part 2. Since LMξ (t, x) is continuous with respect to (t, x), the representation (5.4) implies that there is an open neigh-
borhood Uξ of {(t,μ(t)): t ∈ I} in I × Rn such that

LMξ (t, x) � −ν + ε

2
= −ν + δ for all (t, x) ∈ Uξ . (5.5)

Note that this implies

LMξ (t, x; v) � (−ν + δ)vT Mξ (t)v for all v ∈ Rn and (t, x) ∈ Uξ . (5.6)

Indeed, assume that LMξ (t, x; v) > (−ν + δ)v T Mξ (t)v for some v ∈ Rn and (t, x) ∈ G . Since v �= 0, we can define w :=
v/
√

v T Mξ (t)v such that we have w T Mξ (t)w = 1. Then

LMξ (t, x) = max
w̃∈Rn,w̃ T Mξ (t)w̃=1

LMξ (t, x; w̃) � LMξ (t, x; w) = LMξ (t, x; v)

vT Mξ (t)v
> −ν + δ,

which is a contradiction to (5.5).
Note that Mξ as well as Uξ only depends on the solution μ, or in other words, on the point ξ = μ(0) ∈ G(0), but

Uξ ⊂ I × Rn . Moreover, we have
⋃

ξ∈G(0) Uξ ⊃ G , and since G is a compact set, there exist finitely many points ξ1, . . . , ξN

such that
⋃N

i=1 Uξi ⊃ G . In particular, we have

N⋃
Uξi (0) ⊃ G(0).
i=1
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Next we choose a partition of unity subordinate to Uξi (0), i.e., for i ∈ {1, . . . , N}, we choose C∞-functions g̃i : G(0) → [0,1]
such that supp g̃i ⊂ Uξi (0) and

∑N
i=1 g̃i(x) = 1 for all x ∈ G(0). We define gi by a prolongation of g̃i in a constant way along

solutions, i.e., gi : G → [0,1] is the C∞-function defined by gi(t, x) = g̃i(ϕ(0, t, x)).
Part 3. Define the Riemannian metric M : G → Rn×n by

M(t, x) =
N∑

i=1

gi(t, x)Mξi (t, x) for all (t, x) ∈ G.

Obviously, M(t, x) is a symmetric, positive definite matrix for all (t, x) ∈ G . Moreover, we have M(0, x) =∑N
i=1 gi(0, x)×

Mξi (0, x) =∑N
i=1 gi(0, x)1 = 1 and also M(T , x) = 1. We now show that LM(t, x) � −ν + δ. Note that we have g′

i(t, x) ≡ 0
for the orbital derivative, since gi is constant along solutions, and thus, the orbital derivative of the product gi(t, x)Mξi (t, x)
reads as(

gi(t, x)Mξi (t, x)
)′ = g′

i(t, x)Mξi (t, x) + gi(t, x)M ′
ξi
(t, x) = gi(t, x)M ′

ξi
(t, x).

Thus,

LM(t, x; v) =
N∑

i=1

gi(t, x)vT
(

Mξi (t, x)Dx f (t, x) + 1

2
M ′

ξi
(t, x)

)
v =

N∑
i=1

gi(t, x)LMξi
(t, x; v).

Since supp g̃i ⊂ Uξi (0) implies supp gi ⊂ Uξi and LMξi
(t, x; v) � (−ν + δ)v T Mξi (t, x)v by (5.6) for all (t, x) ∈ Uξi , we have

LM(t, x; v) � (−ν + δ)

N∑
i=1

gi(t, x)vT Mξi (t, x)v.

Finally, since v T M(t, x)v =∑N
i=1 gi(t, x)v T Mξi (t, x)v , we have

LM(t, x) = max
v∈Rn,vT M(t,x)v=1

LM(t, x; v) � −ν + δ for all (t, x) ∈ G.

This finishes the proof of this theorem. �
The sufficient and necessary conditions of Theorem 4.2 and Theorem 5.1 are summarised in the following corollary.

Corollary 5.2. Consider the nonautonomous differential equation (2.1). A nonempty, connected, compact and invariant nonau-
tonomous set G ⊂ I × Rn is an area of exponential attraction if and only if there exist a −ν < 0 and a Riemannian metric
M : G → Rn×n in the sense of Definition 4.1 with M(0, x) = M(T , x) = 1 for all x ∈ Rn such that

LM(t, x) � −ν for all (t, x) ∈ G.

6. Areas and domains of attraction

The results of the preceding sections enable us to prove the following inclusion of area and domains of attraction.

Theorem 6.1. Consider the nonautonomous differential equation (2.1), and let the nonempty, compact nonautonomous set G ⊂ I×Rn

be an area of exponential attraction, such that G(0) is convex. Let μ : I → Rn be a solution which lies in G. Then the domain of
attraction of μ, denoted by Gμ , satisfies

Gμ ⊃ G.

Proof. Theorem 5.1 implies the existence of γ > 0 and a Riemannian metric M with M(0, x) = M(T , x) = 1 for all x ∈ Rn

and LM(t, x) � −γ < 0 for all (t, x) ∈ G . We can now apply Corollary 4.3 and obtain∥∥ϕ(T ,0, x) − ϕ(T ,0, y)
∥∥� e−γ T ‖x − y‖ for all x, y ∈ G(0).

For x = μ(0) and y ∈ G(0), this shows that y ∈ Gμ(0). Since both G and Gμ are connected and invariant, the assertion of
the theorem is proved. �

Note, however, that it is essential that the area of exponential attraction is convex. The following example shows that
non-convex areas of exponential attraction are not subsets of the domains of attractions of points within in general.
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Example 6.2. For some parameter a < 0, we consider the system given in polar coordinates

ṙ = ar, φ̇ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
π φ − 1, φ ∈ [π

4 , π
2 ),

1, φ ∈ [π
2 ,5 π

4 ),

6 − 4
π φ, φ ∈ [5 π

4 ,3 π
2 ),

0, φ ∈ [3 π
2 ,2π) ∪ [0, π

4 ),

on the time interval I := [0, π
2 ], and let ϕ : I × I × R2 → R2 be the induced dynamical system on the plane. Note that the

right-hand side is not continuously differentiable, but one can easily smoothen this example.
Then it is easy to see that the compact and connected nonautonomous set

G := {(t,ϕ(t,0, (x, y)
)) ∈ I × R2: (x, y) ∈ B1(0) with x � 0 or y � 0

}
is an area of exponential attraction (note that the radial components of adjacent solutions are contracted; in addition, the
distance of the angular components of adjacent solutions are contracted for the angles φ ∈ (5 π

4 ,3 π
2 ), they stay constant

elsewhere in G). We compare now the time evolutions of ξ1 := (1,0) and ξ2 := (0,1), which are given by

ϕ

(
π

2
,0, ξ1

)
= (ea π

2 ,0
)

and ϕ

(
π

2
,0, ξ2

)
= (−ea π

2 ,0
)
.

This implies that for all parameters a ∈ (− 1
π ln 2,0), we have

‖ξ1 − ξ2‖ = √
2 < 2ea π

2 =
∥∥∥∥ϕ
(

π

2
,0, ξ1

)
− ϕ

(
π

2
,0, ξ2

)∥∥∥∥.
Hence, the domain of attraction of the solution starting in ξ1 or ξ2 does not contain G for such values of a.

We consider an example to illustrate the concepts introduced in this paper and to relate them to the infinite-time case.

Example 6.3. We consider the nonlinear example

ẋ = x(x − 1) =: f (x). (6.1)

In case of an infinite time interval, this system has an attractive equilibrium x0 = 0 and a repulsive equilibrium x1 = 1, and
the domain of attraction of x0 (in R) is given by (−∞,1). Moreover, the maximal area of exponential attraction consisting
of all exponentially attracting solutions (in R) is (−∞,1). The domain of attraction of every solution within the maximal
area of exponential attraction is also (−∞,1).

Now we consider (6.1) on a finite time interval I := [0, T ] for some T > 0. We will show that

1. The maximal area of exponential attraction G is defined by

G(0) = (−∞,b(T )
)

� (−∞,1),

cf. (6.3) for the definition of b(T ). We have limT →∞ b(T ) = 1.
2. The domain of attraction of a solution ϕ(t,0, ξ) with ξ ∈ G(0) is Gξ , defined by

Gξ (0) = (−∞, cξ (T )
)

� (−∞,1) for ξ < 0,

cf. (6.5) for the definition of cξ (T ). We have limT →∞ cξ (T ) = 1.

Part 1. Maximal area of exponential attraction. First we want to determine the maximal area of exponential attraction. Note
that the time-T map is given by

F T (x) = x

x − (x − 1)eT
for all x ∈

(
−∞,

eT

eT − 1

)
. (6.2)

For larger x, the solutions blow up in a time shorter than T , and thus, the time-T map is not defined for such points.
Motivated by Proposition 2.5, we calculate

D F T (x) = eT

T 2
(x − (x − 1)e )
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Fig. 2. The function b describing the boundary of the maximal area of exponential attraction, cf. (6.3).

and obtain

D F T (x)T D F T (x) < 1 ⇔ e2T <
(
x − (x − 1)eT )4

⇔ eT <
(
x
(
1 − eT )+ eT )2

⇔ x /∈
[

eT − eT /2

eT − 1
,

eT + eT /2

eT − 1

]
.

As remarked above, the calculation is not valid for x � eT /(eT − 1), which means that the 0-fibre of the maximal area of
exponential attraction is given as

G(0) =
{

x ∈ R: x < b(T ) := eT − eT /2

eT − 1

}
. (6.3)

Note that limT →0 b(T ) = 1
2 and limT →∞ b(T ) = 1. The function b(T ) is plotted in Fig. 2.

The rate of exponential attraction −νξ for the solution ϕ(t,0, ξ) is given by 1
2T ln λ, where λ = D F T (ξ)2, i.e.,

−νξ := 1 − 2

T
ln
(
ξ − (ξ − 1)eT ). (6.4)

For example, for ξ = 0 we obtain −ν0 = −1.
Part 2. Domain of attraction. Now we consider a solution μ(·) = ϕ(·,0, ξ) lying in G and thus satisfying ξ < eT

eT −1
. We seek

to calculate its domain of attraction Gμ . For x < eT

eT −1
we have x ∈ Gμ(0) \ {ξ} if and only if∣∣F T (x) − F T (ξ)

∣∣< |x − ξ |
⇔

∣∣∣∣ x

x − (x − 1)eT
− ξ

ξ − (ξ − 1)eT

∣∣∣∣< |x − ξ |, cf. (6.2)

⇔ ∣∣x(ξ − (ξ − 1)eT )− ξ
(
x − (x − 1)eT )∣∣< |x − ξ |(x − (x − 1)eT )(ξ − (ξ − 1)eT )

⇔ eT <
(
x − (x − 1)eT )(ξ − (ξ − 1)eT )

⇔ x < 1 − ξ

ξ − eT (ξ − 1)
.

We thus define

cξ (T ) := 1 − ξ

ξ − eT (ξ − 1)
(6.5)

and obtain Gξ (0) = (−∞, cξ (T )). Note that for fixed ξ , limT →∞ cξ (T ) = 1. For ξ = 0, we have c0(T ) = 1; here the domain
of attraction is the same as in the infinite-time case.

Note that for ξ < 0 we have cξ (T ) > 1. This means that for negative ξ , the domain of attraction contains also points
larger than 1, see also Fig. 3. The reason for this is that in the interval from 0 to T the solutions starting in ξ < 0 approach
0 faster than the solutions starting in points near, but larger than 1 tend away from 1.
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Fig. 3. The upper boundary of the domain of attraction for ξ between −1 and b(T ) is illustrated as blue curve, the thin black line represents x = ξ and the
thick black line is the upper boundary of the maximal area of exponential attraction. The three figures correspond to different lengths of the finite time
interval: T = 0.1, T = 1 and T = 5. The maximal area of exponential attraction is always a subset of the domain of attraction (since the first is convex).
For negative ξ , the domain of attraction contains even points bigger than 1. For T → ∞ both the area of attraction and the domains of attraction converge
towards (−∞,1) which is the corresponding set in the infinite-time case. (For interpretation of the references to colour in this figure, the reader is referred
to the web version of this article.)

In a final example, we consider a nonautonomous population model and calculate the area of exponential attraction.

Example 6.4. The exponential growth given by ẋ = rx for r > 0 is unrealistic in real-world applications. Hence, the logistic
equation has been introduced to model bounded growth

ẋ = rx

(
1 − x

K

)
,

where the positive parameters r and K denote the (maximal) rate of population growth and the carrying capacity, i.e. the
maximal population reached by growth from below, respectively.

Since the assumption that both parameters are constant is too restrictive in applications, the nonautonomous logistic
equation

ẋ = r(t)x

(
1 − x

K (t)

)
with time-varying parameters r(t) and K (t) has been considered, for example in applications to biological population mod-
els [16], specifically to bacterial populations [3]. We rename p(t) = r(t) and l(t) = r(t)

K (t) and consider the following more
general situation, where p(t) and l(t) are not restricted to positive values.

Proposition 6.5. We consider the nonautonomous logistic equation

ẋ = x
(

p(t) − l(t)x
)

(6.6)

with continuous functions p(t) and l(t) on I = [0, T ]. We define P := ∫ T p(t)dt and L := ∫ T exp(
∫ t p(s)ds)l(t)dt.
0 0 0
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Then the area of exponential attraction G is defined by

• G(0) = (−∞,− eP/2+1
L ) ∪ ( eP/2−1

L ,∞) if L > 0.

• G(0) = (−∞, eP/2−1
L ) ∪ (− eP/2+1

L ,∞) if L < 0.
• G = I × R if L = 0 and P < 0.
• G = ∅ if L = 0 and P � 0.

Proof. The time-T map is given by

F T (x) = ϕ(T ,0, x) = xeP

1 + xL
.

We have

D F T (x) = eP

(1 + xL)2
.

By Proposition 2.5 μ(t) = ϕ(t,0, x) is exponentially attractive on I if only if D F T (x) < 1, i.e.

eP/2 < |1 + xL|,
from which the proposition follows. �
Note added in proof

After final submission of this article, the authors became aware of the submitted paper [20], which contains an excellent
discussion of domains of attractions of linearized finite-time processes.
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