
J. Math. Anal. Appl. 391 (2012) 457–465
Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Graph C∗-algebras, branching systems and the Perron–Frobenius operator

Daniel Gonçalves, Danilo Royer ∗

Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2011
Available online 3 March 2012
Submitted by D. Blecher

Keywords:
Graph C∗-algebras
Branching systems
Perron–Frobenius operator
Representations

In this paper we show how to produce a large number of representations of a graph
C∗-algebra in the space of the bounded linear operators in L2(X,μ). These representa-
tions are very concrete and, in the case of graphs that satisfy condition (L), we use our
techniques to realize the associated graph C∗-algebra as a subalgebra of the bounded op-
erators in L2(R). We also show how to describe the Perron–Frobenius operator of ergodic
theory in terms of the representations we associate to a graph.
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1. Introduction

The theory of graph algebras has been explored extensively in recent years, both in pure algebra and in operator theory,
see e.g., [7,11,17,18]. Similarly branching systems arise in neighboring disciplines such as random walk, symbolic dynamics
and scientific computing, see e.g., [3,5,10,16,19].

Our aim in this paper is to explore the richness of the theories of graph C∗-algebras and branching systems and relate
then. The pillar of our work is the construction of representations of graph C∗-algebras from branching systems. As a
consequence of the study of these representations we obtain a concrete description of the Perron–Frobenius operator of
ergodic theory, as well as faithfull representations of many graph C∗-algebras (including the algebra of compact operators
in a separable Hilbert space).

We expect that our theory will have many more applications, much in the same manner as the theory of representations
of the Cuntz algebras is crucial to the understanding of representations of the fermion algebra, see [1], the classification
of theories of quantum string fields, see [2], and is also applied to dynamical systems, see [6,14,13], fractals see [15] and
the theory of wavelets, see [4]. We expect that many of the results in the literature above can be generalized to the graph
C∗-algebra setting. For example, we have already explored some of these possibilities in [8].

Given a graph E , in [17], the associated graph C∗-algebra is defined as a universal C∗-algebra generated by projections
and partial isometries satisfying given relations. Even though this definition is completely clear, the use of a universal object
brings a level of abstraction, which sometimes may elude the non-expert. As a consequence of our study we are able to give
a concrete characterization of graph C∗-algebras (for graphs that satisfy condition (L)) as subalgebras of the bounded oper-
ators in L2(R), B(L2(R)). This includes many know algebras, as for example the algebra of compact operators, and hence,
if the reader so desire, it could define the compact operators as a subalgebra generated by multiplication and composition
operators in B(L2(R)) (see Example 5.1). For graphs in general, we show how to obtain representations of the associated
graph C∗-algebra in B(L2(R)), but, without the presence of condition (L), we cannot guarantee that these representations
are faithful. Still, for any countable graph, we show how the representations mentioned above can be used to describe the
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Perron–Frobenius operator in L1(X,μ) (this is the analogue of what was done in [6] and [12] for the algebra O A ), and so
we establish a link between the operator theory of graph C∗-algebras and the ergodic theory of nonsingular maps.

The paper is divided in five sections. After this brief introduction, in Section 2, we introduce E-branching systems as-
sociated to a graph and show how they induce representations of the graph C∗-algebra. Next, in Section 3, we prove the
existence of E-branching systems in R for any graph with countable edges and vertices and show that, for graphs that
satisfy condition (L), the representations arising from these E-branching systems in R are faithful. In Section 4, we show
how the representations mentioned above relate with the Perron–Frobenius operator and we finish the paper in Section 5,
where we present two examples. Before we proceed, we recall the definition of graph C∗-algebras below.

Let E = (E0, E1, r, s) be a directed graph, that is, E0 is a set of vertices, E1 is a set of edges and r, s : E1 → E0 are
the range and source maps. Following [17], the C∗-algebra of the graph E is the universal C∗-algebra, C∗(E), generated by
projections {P v}v∈E0 and partial isometries {Se}e∈E1 with orthogonal ranges satisfying:

• the projections pv are mutually orthogonal,
• S∗

e Se = Pr(e) for each e ∈ E1,
• Se S∗

e � P s(e) for each e ∈ E1,
• P v = ∑

e: s(e)=v Se S∗
e for every vertex v with 0 < #{e: s(e) = v} < ∞.

2. E-branching system

In this section we will define the E-branching system associated to a directed graph E and we will show that each
E-branching system induces a representation of the graph algebra C∗(E). Before we proceed we would like to mention that
even though the definition of an E-branching system seems rather technical, it is nothing more than the translation of the
conditions in the definition of graph C∗-algebras to the measurable setting, as we shall see below.

Throughout the paper we will use some notation about operations over measurable sets and maps. For measurable

subsets A, B in a given measure space (X,μ), the notation B
μ-a.e.⊆ A means that μ(B \ A) = 0, and the notation A

μ-a.e.= B

means that μ(A \ B) = 0 and μ(B \ A) = 0. For two maps, f , g : A → X , the notation f
μ-a.e.= g means that μ(x ∈ A: f (x) �=

g(x)) = 0.

Definition 2.1. Let (X,μ) be a measure space and let {Re}e∈E1 , {D v}v∈E0 be families of measurable subsets of X such that:

1. Re ∩ Rd
μ-a.e.= ∅ for each d, e ∈ E1 with d �= e,

2. Du ∩ D v
μ-a.e.= ∅ for each u, v ∈ E0 with u �= v ,

3. Re

μ-a.e.⊆ Ds(e) for each e ∈ E1,

4. D v
μ-a.e.= ⋃

e: s(e)=v Re if 0 < #{e ∈ E1: s(e) = v} < ∞,

5. for each e ∈ E1, there exists a map fe : Dr(e) → Re such that fe(Dr(e))
μ-a.e.= Re and the Radon–Nikodym derivative Φ fe

of μ ◦ fe , with respect to μ (in Dr(e)), exists and Φ fe > 0 μ-a.e.,

6. for each fe as above there exists a map f −1
e : Re → Dr(e) such that fe ◦ f −1

e
μ-a.e.= IdRe and f −1

e ◦ fe
μ-a.e.= IdDr(e) , and for

each such f −1
e there exists the Radon–Nikodym derivative Φ f −1

e
of μ ◦ f −1

e with respect to μ (in Re).

A measurable space (X,μ), with families of measurable subsets {Re}e∈E1 and {D v }v∈E0 , and maps fe , f −1
e , Φ fe and Φ f −1

e

as above is called an E-branching system.

In the fifth item from the definition above, the domain of the measures μ◦ fe and μ are the measurable subsets of Dr(e) .
So the Radon–Nikodym derivative Φ fe is a measurable map with domain Dr(e) . We will consider Φ fe also as a measurable
map with domain X (defining it as being zero out of Dr(e)). The same holds for the map Φ f −1

e
, that is, Φ f −1

e
will be

considered as a measurable map with domain Re and X .
The next step is to show that each E-branching system induces a representation of the C∗-algebra C∗(E). So, let (X,μ)

be an E-branching system, as in the definition above. For each e ∈ E1, define the operator π(e) ∈ B(L2(X,μ)) (the bounded
linear operators in L2(X,μ)) as follows: for each φ ∈ L2(X,μ), and x ∈ Re , let

π(e)φ|x = Φ
1
2

f −1
e

(x)φ
(

f −1
e (x)

)
and if x /∈ Re , let π(e)φ|x = 0.

In order to simplify notation, in what follows we will make a small abuse of the characteristic function symbol and
denote the above operator as:

π(e)φ = χRe · Φ
1
2
−1 · φ ◦ f −1

e .

fe
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It is easy to show that π(e)φ ∈ L2(X,μ), for each φ ∈ L2(X,μ). Also, π(e) is linear and ‖π(e)φ‖ � ‖φ‖, and so π(e) lies in
fact in B(L2(X,μ)). The adjoint of π(e) is the operator defined as:

π(e)∗φ = χDr(e) · Φ
1
2
fe

· φ ◦ fe

(where we are using the characteristic function symbol with the same meaning as in the notation of π(e)).
For each v ∈ E0, define π(v) : L2(X,μ) → L2(X,μ) by

π(v)φ = χD v φ, for all φ ∈ L2(X,μ).

(That is, π(v) is the multiplication operator by χD v , the characteristic function of D v .)

Theorem 2.2. Let (X,μ) be an E-branching system. Then there exists a ∗-homomorphism π : C∗(E) → B(L2(X,μ)) such that

π(Se)φ = χRe · Φ
1
2

f −1
e

· φ ◦ f −1
e and π(P v)φ = χD v φ,

for each e ∈ E1 and v ∈ E0 .

Proof. For each e ∈ E1 and v ∈ E0 define π(Se) = π(e) and π(P v ) = π(v), where π(e),π(v) are as above. Note that
π(Se)

∗π(Se) = MDr(e) and π(Se)π(Se)
∗ = MRe . To obtain the desired *-homomorphism π : C∗(E) → B(L2(X,μ)) it is

enough to verify that the families {π(Se)}e∈E1 and {π(P v )}v∈E0 satisfy the relations which define C∗(E). Obviously π(Se)

are partial isometries and π(P v ) are projections, for all e ∈ E1 and v ∈ E0. Note that the projections π(P v ) are mutu-

ally orthogonal, because Du

μ-a.e.∩ D v = ∅ for u �= v . The equality π(Se)
∗π(Se) = π(Pr(e)) is immediate, and the inequality

π(Se)π(Se)
∗ � π(P s(e)) follows from the third item of the E-branching system definition. To verify the last relation, let

v ∈ E0 be such that 0 < {e ∈ E1: s(e) = v} < ∞. Then D v = ⋃
e: s(e)=v Re , and so

MχD v
= Mχ ⋃

e: s(e)=v
Re

.

Since Re

μ-a.e.∩ Rd = ∅ for e �= d, then

Mχ ⋃
e: s(e)=v

Re
=

∑
e: s(e)=v

MχRe
.

Therefore, π(P v ) = ∑
e: s(e)=v π(Se)π(Se)

∗ . �
The above theorem says that for a given E-branching system there exists a representation of C∗(E) in B(L2(X,μ)). But

that would be meaningless if E-branching systems did not exist. In the next section we show that this is not the case.

3. Representations in L2(RRR)

Next we show that for any given graph E , with E0 and E1 countable, there exists an E-branching system in R associated.
We then show that for graphs that satisfy condition (L) the representations arising from these E-branching systems in R are
faithful. Our proof is constructive and one can actually obtain a great number of E-branching systems following the ideas
below.

Theorem 3.1. Let E = (E0, E1, r, s) be a graph, with E0, E1 both countable. Then there exists an E-branching system (X,μ), where
the space X is an (possible unlimited) interval of R and μ is the Lebesgue measure.

Proof. Let E1 = {ei}∞i=1 (or, if E1 is finite, let E1 = {ei}N
i=1). For each i � 1 define Rei = [i −1, i]. Let W = {v ∈ E0: v is a sink}

(a vertex v ∈ E0 is a sink if v /∈ s(E1)). Note that W is finite or infinite countable. Write W = {vi: i = 1,2,3, . . .}. For
each vi ∈ W , define D vi = [−i,−i + 1]. For the vertices u ∈ E0 which are not sinks, define Du = ⋃

ei : s(ei)=u Rei . Note that
items 1–4 from Definition 2.1 are satisfied, considering the Lebesgue measure μ. It remains to define functions which satisfy
items 5–6.

Let e ∈ E1.
If r(e) is a sink then r(e) = vi ∈ W , and so Dr(e) = [−i,−i + 1]. Then we define fe : Dr(e) → Re as being a C1-

diffeomorphism (for example, the linear diffeomorphism). Note that such fe in fact exists, because Dr(e) and Re are both
closed limited intervals of R.

If r(e) = v is not a sink, then

Dr(e) = D v =
⋃

e: s(e)=v

Re.

To define the function fe : Dr(e) → Re in this case we proceed as follows.
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First we divide the interval
◦
Re (where

◦
Re denotes the interior of Re) in #{e: s(e) = v} intervals Ie (notice that we might

have to divide
◦
Re in a countable infinite number of intervals). Then, we define f̃e : ⋃

e: s(e)=v

◦
Re → ⋃

e: s(e)=v

◦
Ie so that

f̃e | ◦
Re

is a C1-diffeomorphism between
◦
Re and

◦
Ie (for example, the linear diffeomorphism). We now define fe : Dr(e) → Re

as being an extension of f̃e to Dr(e) and f −1
e : Re → Dr(e) as being a extension of f̃e

−1
to Re .

For a given e ∈ E1, the maps fe and f −1
e are measurable maps, in the measure spaces Dr(e) and Re , respectively, with the

Lebesgue measure μ (and the Borel sets). Moreover, μ ◦ fe and μ ◦ f −1
e are σ -finite measures of (the measurable subsets

of) Dr(e) and Re , respectively. It remains to see that there exist the nonnegative Radon–Nikodym derivatives Φ fe and Φ−1
fe

,
and this follows from [9].

Now, defining

X =
( ⋃

ei∈E1

Rei

)
∪

( ⋃
vi∈W

D vi

)

we obtain the desired (X,μ) E-branching system. �
Theorem 3.1 guarantees that every graph C∗-algebra (from a countable graph) may be represented in B(L2(R)). Of course

when the graph C∗-algebra is simple, the representations obtained via Theorems 2.2 and 3.1 are faithful.
Another case when the representations obtained via Theorem 2.2 are faithful, without C∗(E) being simple, is the case

when the graph satisfies a special condition, called condition (L). A graph E satisfies condition (L) if each loop has an exit,
that is, if x1 . . . xn is a loop then there is a vertex e such that s(e) = s(xi) for some i but e �= xi .

Theorem 3.2. Let E be a countable graph which satisfies the condition (L). Then the representation π : C∗(E) → B(L2(X)), where X
is an (possible unlimited) interval of R, obtained via Theorems 3.1 and 2.2 is faithful.

Proof. First note that for each v ∈ E0, P v ∈ C∗(E) is a non-null element, because, by Theorems 2.2 and 3.1, there exists a
representation π : C∗(E) → B(L2(R)) such that π(P v ) is the multiplication operator by χD v , where D v is a set of positive
Lebesgue measure.

Let π : C∗(E) → B(L2(R)) be the representation obtained via Theorems 3.1 and 2.2. Since E satisfies condition (L), by
[17, Theorem 2], π is faithful. �
4. Nonsingular E-branching systems and Perron–Frobenius operators

Nonsingular maps1 on a measure space, (X,μ), are of great interest in ergodic theory. In particular, each nonsingular
map gives rise to a Perron–Frobenius operator on L1(X,μ). In this section, we give a nice description of the Perron–
Frobenius operator (for a large class of functions in L1(X,μ)) in terms of the representations introduced in the previous
section. Unfortunately we cannot do this for all nonsingular maps, but we can do it for all nonsingular maps that arise
naturally from an E-branching system.

To see how a nonsingular map arise from an E-branching system, recall that in the proof of Theorem 3.1 the measure
space (X,μ) could be written as a disjoint union of the subsets {Re}e∈E1 and {Du}u∈W almost everywhere. In this case, we
may define a map F : X → X as follows:

F (x) =

⎧⎪⎨
⎪⎩

f −1
e (x) if x ∈ ◦

Re for some e ∈ E1,

0 if x is a extreme point of some interval Re,

x if x ∈ Du for some u ∈ W .

The map F above is nonsingular, since if A ⊆ X is a measurable subset with μ(A) = 0 then, for a given u ∈ W ,
μ(F −1(A) ∩ Du) = μ(A ∩ Du) = 0. Furthermore, for each e ∈ E1, μ(F −1(A) ∩ Re) = μ( fe(A ∩ Dr(e))) = 0, since μ(A ∩
Dr(e)) = 0 and μ ◦ fe is absolutely continuous with respect to μ in Dr(e) . So μ(F −1(A)) = 0, because X is a countable

union of the sets Re and Du . Note also that the map F defined above has the property that F |Re

μ-a.e.= f −1
e . This motivates

the definition of nonsingular E-branching systems:

Definition 4.1. A nonsingular E-branching system (X,μ, F ), associated to a directed graph E = (E0, E1, r, s), is an

E-branching system (X,μ), as defined in Definition 2.1, together with a nonsingular map F : X → X such that F |Re

μ-a.e.= f −1
e

for each e ∈ E1.

1 By a nonsingular map F : X → X we mean a measurable map such that μ(F −1(A)) = 0 if μ(A) = 0.
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From Theorem 3.1 and the discussion above, we obtain promptly the corollary below.

Corollary 4.2. For a given directed graph E = (E0, E1, r, s), with E0 , E1 both countable, there exists a nonsingular E-branching system
(X,μ), where X is a (possible unlimited) closed interval of R and μ the Lebesgue measure.

Actually, every E-branching system of a countable directed graph is also a nonsingular E-branching system, as we show
below.

Proposition 4.3. For every E-branching system (X,μ) of a countable directed graph E = (E0, E1, r, s), there exists a map F : X → X
such that (X,μ, F ) is a nonsingular E-branching system.

Proof. Let Y be the complement of
⋃

e∈E1 Re in X . Then we can write X = Y
.∪ (

⋃
e∈E1 Re). Notice that, for each e ∈ E1,

there exists R̃e ⊆ Re such that R̃e
μ-a.e.= Re and since E1 is countable R̃e can be chosen such that all R̃e are pairwise disjoint.

So, X
μ-a.e.= Y

.∪ (
.⋃

e∈E1 R̃e). Now, let

F̃ : Y
.∪
( .⋃

e∈E1

R̃e

)
→ Y

.∪
( .⋃

e∈E1

R̃e

)

be defined by

F̃ (x) =
{

f −1
e (x) if x ∈ R̃e for some e ∈ E1,

x if x ∈ Y ,

and define F : X → X as an extension of F̃ .
So, F |Re

μ-a.e.= f −1
e for each e ∈ E1. It remains to check that F is nonsingular. Let A ⊆ X be a measurable set with μ(A) = 0.

Then, since E1 is countable, it is enough to show that μ(F −1(A) ∩ Y ) = 0 and μ(F −1(A) ∩ R̃e) = 0 for each e ∈ E1. Now,
note that μ(F −1(A) ∩ Y ) = μ(A ∩ Y ) = 0 and for each e ∈ E1, μ(F −1(A) ∩ R̃e) = μ( fe(A ∩ Dr(e))) = μ ◦ fe(A ∩ Dr(e)) = 0,
since μ ◦ fe is absolutely continuous with respect to μ, in Dr(e) . �

Recall that if F : X → X is a nonsingular map, where X is a measure space with measure μ, the Perron–Frobenius
operator induced by F , denoted by P F , is the operator in B(L1(X,μ)) such that for all ψ ∈ L1(X,μ), and for all measurable
subsets A ⊆ X , the equality∫

A

P F (ψ)(x)dμ =
∫

F −1(A)

ψ(x)dμ

holds.
If (X,μ, F ) is a nonsingular E-branching system of a directed graph E then, by Theorem 2.2, there exists a ∗-

representation of the graph algebra C∗(E) in B(L2(X,μ)). The next theorem shows a relation between this representation
and the Perron–Frobenius operator P F .

Theorem 4.4. Let E be a countable directed graph, (X,μ, F ) be a nonsingular E-branching system and let ϕ ∈ L2(X,μ).

1. If supp(ϕ) ⊆ ⋃N
i=1 Rei then P F (ϕ2) = ∑N

i=1(π(S∗
ei
)ϕ)2 .

2. If ϕ is a real-valued function and supp(ϕ) ⊆ ⋃∞
i=1 Rei then P F (ϕ2) = limN→∞

∑N
i=1(π(S∗

ei
)ϕ)2 , where the convergence occurs

in the norm of L1(X,μ).
3. If supp(ϕ) ⊆ ⋃∞

i=1 Re j and ϕ = u + iv, with u, v real functions such that uv ∈ L2(X,μ), then P F (ϕ2) =
limN→∞

∑N
i=1(π(S∗

ei
)ϕ)2 , where the convergence occurs in the norm of L1(X,μ).

Proof. The first assertion follows from the fact that for each measurable set A ⊆ X ,
∫

A P F (ϕ2)(x)dμ =∫
A

∑N
i=1(π(S∗

ei
)ϕ(x))2 dμ. We prove this equality below, and to do it we use the Radon–Nikodym derivative of μ ◦ f i ,

the change of variable theorem and the fact that F −1(A) ∩ Rei = fei (A ∩ Di).
Given a measurable set A ⊆ X , notice that

N∑
i=1

∫ (
π

(
S∗

ei

)
ϕ(x)

)2
dμ =

N∑
i=1

∫
χDei

(x)Φ fei
(x)ϕ

(
fei (x)

)2
dμ
A A
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=
N∑

i=1

∫
A∩Dei

Φ fei
(x)ϕ

(
fei (x)

)2
dμ =

N∑
i=1

∫
A∩Dei

ϕ
(

fei (x)
)2

d(μ ◦ fei )

=
N∑

i=1

∫
f i(A∩Dei )

ϕ(x)2 dμ =
N∑

i=1

∫

F −1(A)∩Rei

ϕ(x)2 dμ

=
N∑

i=1

∫

F −1(A)

χRei
ϕ(x)2 dμ =

∫

F −1(A)

N∑
i=1

χRei
ϕ(x)2 dμ

=
∫

F −1(A)

ϕ(x)2 dμ =
∫
A

P F
(
ϕ2)(x)dμ.

Before we proceed with the proof of the second and third statements of the theorem, let us prove the following claim.

Claim. If h ⊆ L1(X,μ) is a real function with supp(h) ⊆ ⋃∞
j=1 Re j then limN→∞ P F (hN) = P F (h), where hN = ∑N

j=1 χRe j
h.

Suppose first that h(x) � 0 μ-a.e. Then, (hN )n∈N is an increasing sequence, bounded above by h, and so,

lim
N→∞

∫
X

P F (hN)(x)dμ = lim
N→∞

∫
X

hN(x)dμ =
∫
X

h(x)dμ =
∫
X

P F (h)(x)dμ.

Now, since hN � h we have that P F (hN) � P F (h) and hence

lim
N→∞

∥∥P F (h) − P F (hN)
∥∥

1 = lim
N→∞

∫
X

∣∣P F (h)(x) − P F (hN)(x)
∣∣dμ = lim

N→∞

∫
X

P F (h)(x) − P F (hN)(x)dμ = 0.

To prove the claim for a real function h ∈ L1(X,μ), write h = h1 − h2, where h1 and h2 are nonnegative functions and
use the linearity of P F .

Next we prove the second statement of the theorem. Define ϕN = ∑N
j=1 Re j ϕ . By the above claim, limN→∞ P F (ϕ2

N ) =
P F (ϕ2). By the first statement,

∑N
j=1(π(Se j )

∗ϕN )2 = P F (ϕ2
N ), and a simple calculation shows that

N∑
i=1

(
π

(
S∗

ei

)
ϕN

)2 =
N∑

i=1

(
π

(
S∗

ei

)
ϕ

)2
.

So, we conclude that

lim
N→∞

N∑
i=1

(
π

(
S∗

ei

)
ϕ

)2 = P F
(
ϕ2).

To prove the third statement, let ϕ ∈ L2(X,μ) be a complex function and write ϕ = u + iv , with u, v real functions.
Define uN = ∑N

j=1 χRe j
· u, and v N = ∑N

j=1 χRe j
· v . Then,

N∑
j=1

(
π(Se j )

∗ϕ
)2 =

N∑
j=1

(
π(Se j )

∗(uN + iv N)
)2

=
N∑

j=1

(
π(Se j )

∗uN
)2 −

N∑
j=1

(
π(Se j )

∗v N
)2 + i

N∑
j=1

2χDe j
· Φ fe j

· (uN ◦ fe j ) · (v N ◦ fe j )

= P F
(
u2

N

) − P F
(

v2
N

) − i2P F (uN v N).

The last equality follows from the first statement of the theorem and from the fact that

χDe j
· Φ fe j

· (uN ◦ fe j ) · (v N ◦ fe j ) = P F (uN v N),

since for each E ⊆ X ,∫
χDe j

(x)Φ fe j
(x)

(
uN

(
fe j (x)

))(
v N

(
fe j (x)

))
dμ =

∫
P F (uN v N)dμ.
E E
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Finally, since uN , v N are real functions, by the claim proved above,

lim
N→∞

N∑
j=1

(
π(Se j )

∗ϕ
)2 = lim

N→∞ P F
(
u2

N

) − P F
(

v2
N

) − i2P F (uN v N)

= P F
(
u2) − P F

(
v2) + i2P F (uv) = P F

(
(u + iv)2) = P F

(
ϕ2). �

5. Examples

We finish the paper with two examples of how our construction works.

Example 5.1. The compact operators in a separable Hilbert space.

Consider the following graph E

The graph C∗-algebra, C∗(E), is the algebra of compact operators in a separable Hilbert space, which we denote by K.
First we will show how to use our methods to obtain a faithful representation of K in B(L2(R)). We could follow the

steps of the proof of Theorem 3.1, but due to the symmetry of this graph we will build an E-branching system in the
following way:

Let Rei = [i − 1, i] and so we must define D vi = [i, i + 1] for each i ∈ Z. Also, let fei : Dr(ei) → Rei be defined by
fei (x) = x − 1. One can check that this defines an E-branching system (R,μ), where μ is the Lebesgue measure in R.
Following Theorem 2.2 we obtain a representation π : C∗(E) → B(L2(R)), such that π(P vi ) is the multiplication operator by
χ[i,i+1] and π(Sei )φ|x = χ[i−1,i](x)φ(x + 1) for each φ ∈ L2(R) and x ∈ R. By Theorem 3.2 this is a faithful representation.

Following Section 4 (see Proposition 4.3 and Theorem 4.4), there is a Perron–Frobenius operator, P F , associated to the
E-branching system (R,μ). The nonsingular map F :R →R restricted to each Rei is the inverse of fei and is given below:

The Perron–Frobenius operator in this case is easy to calculate, and is given by P F (ψ) = ψ ◦ F −1 for each ψ ∈ L1(R). In
particular, for ϕ ∈ L2(R) with supp(ϕ) ⊆ ⋃∞

i=1 Rei , this characterization may also be obtained via Theorem 4.4.

Example 5.2. Let E be the finite graph below:

Then C∗(E) is a non-simple C∗-algebra (see [20] for its ideal structure), but E is a graph that satisfies condition (L) and
hence we can apply Theorem 3.2 to obtain a faithful representation of C∗(E) in B(L2(X)), where X arises from Theorem 3.1.
Therefore, to construct an E-branching system, we will follow the steps of the proof of Theorem 3.1.
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So, let Rei = [i − 1, i] for i ∈ {1,2,3,4}, D v1 = [0,2], D v2 = [−1,0], D v3 = [2,4], and let fei : Dr(ei) → Rei be the affine
maps defined as in the figure below:

where, for example, the map fe2 : Dr(e2) = [2,4] → [1,2] = Re2 is defined by fe2 (x) = x
2 for each x ∈ [2,4].

In this example, the measure space is the interval [−1,4], with the Lebesgue measure. The representation π : C∗(E) →
B(L2([−1,4])) induced by this E-branching system is such that: π(P vi ) is the multiplication operator by χD vi

for i ∈ {1,2,3},

π(Se1 )ϕ = χ[0,1] · ϕ ◦ f −1
e1

and π(Sei )ϕ = √
2χ[i−1,i] · ϕ ◦ f −1

ei
for each i ∈ {2,3,4} and for each ϕ ∈ L2([−1,4]).

Following Section 4, there is a nonsingular map F : [−1,4] → [−1,4] associated to this E-branching system. The graph
of F is shown in the following figure:

This nonsingular map induces a Perron–Frobenius operator P F : L1([−1,4]) → L1([−1,4]), and following Theorem 4.4,
for each ϕ ∈ L2([−1,4]) with supp(ϕ) ⊆ [0,4], we have that

P F
(
ϕ2) =

4∑
i=1

(
π

(
S∗

e

)
ϕ

)2 = χ[−1,0] · (ϕ ◦ fe1)
2 + 1

2
χ[2,4] · [(ϕ ◦ fe2)

2 + (ϕ ◦ fe3)
2 + (ϕ ◦ fe4)

2].

So, for each x ∈ [−1,4], it holds that

P F
(
ϕ2)

|x = χ[−1,0](x) · ϕ(
fe1(x)

)2 + 1

2
χ[2,4](x) · [ϕ(

fe2(x)
)2 + ϕ

(
fe3(x)

)2 + ϕ
(

fe4(x)
)2]

= χ[−1,0](x) · ϕ(x + 1)2 + 1

2
χ[2,4](x) ·

[
ϕ

(
x

2

)2

+ ϕ

(
x

2
+ 1

)2

+ ϕ

(
x

2
+ 2

)2]
,

and this explicitly describes the Perron–Frobenius operator P F for a large number of functions.
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