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1. Introduction

Let D be the unit disk in the complex plane C. The Sobolev space S is the completion of the space of all smooth functions
f on D for which

D
f dA

2 +


D

∂ f∂z
2 +

∂ f∂ z̄
2


dA < ∞

where dA denotes the normalized Lebesgue measure on D. The space S is a Hilbert space with the inner product

⟨f , g⟩ =


D
fdA


D
ḡ dA +


D


∂ f
∂z
∂g
∂z

+
∂ f
∂ z̄
∂g
∂ z̄


dA.

The Dirichlet space D is the closed subspace of S consisting of all holomorphic functions f ∈ S with f (0) = 0. Let Q denote
the orthogonal projection from S onto D . Put

L 1,∞
=


u ∈ S : u,

∂u
∂z
,
∂u
∂ z̄

∈ L∞(D)


where the derivatives are taken in the sense of distributions and Lp(D) = Lp(D, dA) denotes the usual Lebesgue space on D.
By Sobolev’s embedding theorem [1, Theorem 5.4], each function in L 1,∞ can be extended to a continuous function on the
closed unit disk D̄. We will use the same notation between each function in L 1,∞ and its continuous extension.

Given u ∈ L 1,∞, the Toeplitz operator Tu and the (little) Hankel operator Hu with symbol u are defined on D respectively
by

Tuf = Q (uf ), Huf = QJ(uf )

for functions f ∈ D . Here J is the flip operator defined by Jf (z) = f (z̄). Then, it is easy to see that Tu and Hu are bounded
linear operators on D .
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In several recent papers, some algebraic properties of Toeplitz and Hankel operators on the Dirichlet space have been
studied. The (semi-)commuting Toeplitz operators have been characterized by the author with harmonic symbols in [2].
Also, results in [2] were later extended in [3] to the class of operators which are finite sums of products of two Toeplitz
operators with harmonic symbols. Later, the results in [2] have been extended in [4] to more general symbols satisfying a
certain absolute continuity condition and in [5] to general symbols in L 1,∞. At the same time, the product problem of when
the product TuTv equals another Toeplitz operator has been studied. Also, finite rank (semi-)commutators of two Toeplitz
operators have been characterized in [6] and commuting Hankel operators have been studied as in [5] or [7].

Very recently, a more general class of operators including (semi-)commutators and products of two Toeplitz operators
or two Hankel operators has been considered. More explicitly, the author and Zhu [8] considered operators L of the form

L =

N
j=1

AjBj,

where each of Aj and Bj is a Toeplitz operator or a Hankel operator. Then, they gave characterizations of when such operators
are equal to 0 on D .

Motivated by these results, in this paper we studymore generally the problem of characterizing when an operator of the
form L has finite rank on the Dirichlet space. The corresponding problems on the Hardy space or Bergman space have been
studied in [9–12] or [13].

In Section 2, we collect some preliminary results which will be used in our characterizations. In Section 3, we consider
operators of the form L where Aj, Bj are all Toeplitz operators and then give a characterization for the operators to have
finite rank in terms of certain boundary conditions and harmonicity of a function induced by the symbols; see Theorem 3.5.
In addition, we study the finite rank product problem of when a product of several Toeplitz operators has finite rank. Our
result shows that a product of several Toeplitz operators can have finite rank only in an obvious case; see Theorem 3.10. In
Section 4,we study the corresponding problem in casewhen Aj, Bj are all Hankel operators and obtain a characterization; see
Theorem 4.2. Specifically, in the case of rank 0, our results not only give complete different characterizations from results
in [8] but also recover several known results mentioned above concerning (semi-)commutators and products of Toeplitz
operators or Hankel operators. In Section 5, we consider operators which are sums of any two of the form TuHv or HuTv and
characterize such operators to have finite rank; see Theorem 5.4 and Corollaries 5.5 and 5.6.

2. Preliminaries

Each point evaluation is easily verified to be a bounded linear functional onD . Hence, for each a ∈ D, there exists a unique
ra ∈ D such that f (a) = ⟨f , ra⟩ for every f ∈ D . It is known that the function ra is given by

ra(z) = log


1
1 − āz


, z ∈ D.

Using the explicit formula for ra, one can see that Q can be represented by

Qψ(a) =


D

a
1 − aw̄

∂ψ

∂w
(w) dA(w), a ∈ D (1)

for functions ψ ∈ S . Specifically, for a function ψ ∈ S with series expansion

ψ(reiθ ) =

∞
j=−∞

ajr |j|eijθ

we see from a simple calculation using (1) that

Qψ(z) =

∞
j=1

ajz j, z = reiθ ∈ D. (2)

The Bergman space L2a is the closed subspace of L2(D) consisting of all holomorphic functions. Let P be the Bergman
projection which is the orthogonal projection from L2(D) onto L2a . It is known that P can be represented by

Pψ(a) =


D
ψ(w)ka(w) dA(w), a ∈ D

where ka denotes the Bergman kernel for L2a given by

ka(w) =
1

(1 − aw)2
, w ∈ D.

For each a ∈ D, we put

ρa(z) =
z

1 − āz
, z ∈ D.
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Since ρ ′
a = ka and ρa(0) = 0, we have

⟨ψ, ρa⟩ =


D

∂ψ

∂w
ρ ′
a dA = P


∂ψ

∂w


(a)

for every ψ ∈ S . In particular, we have ⟨ψ, ρa⟩ = ψ ′ for ψ ∈ D . See [2] or Chapter 4 of [14] for details and related facts.

3. Sums of Toeplitz products

In this section, we consider operators which are finite sums of products of two Toeplitz operators and characterize such
operators to have finite rank.

We first recall the notion of Lipschitz spaces. Let 0 < α < 1. Given a complex function f on D, we say f ∈ Λα if

sup
|f (z)− f (w)|

|z − w|α
< ∞

where the supremum is taken over all z, w ∈ D with z ≠ w. It is known that for a function f holomorphic on D, f ∈ Λα if
and only if (1 − |z|2)1−α f ′(z) is bounded on D and each holomorphic function in Λα is continuous up to the boundary ∂D.
Also, note that each function in L 1,∞ belongs to Λα and the projection P maps Λα into Λα; see [5,15] or Chapter 7 of [16]
for details.

Lemma 3.1. Let u, v ∈ L 1,∞ and fix a point z ∈ D. Define a function Φ on D given by Φ(a) = TuTvρa(z) for a ∈ D. Then Φ is
bounded on D.

Proof. Fix z ∈ D and recall ρ ′
a = ka for a ∈ D. Using (1), we first have Tvρa = ψ1,a + ψ2,a where

ψ1,a(w) =


D

w

1 − wζ̄

∂v

∂ζ
(ζ )ρa(ζ ) dA(ζ ),

ψ2,a(w) =


D

w

1 − wζ̄
v(ζ )ka(ζ ) dA(ζ )

for every a, w ∈ D. HenceΦ = F1 + F2 + G1 + G2 where

Fj(a) = z

D

∂u
∂w
(w)ψj,a(w)

1 − zw̄
dA(w),

Gj(a) = z

D

u(w)ψ ′

j,a(w)

1 − zw̄
dA(w)

for j = 1, 2 and a ∈ D. Now we show Fj,Gj ∈ L∞(D) for each j = 1, 2. Since u, v ∈ L 1,∞, we see by Lemma 3.10 of [14]

|F1(a)| =

z

D


D

∂u
∂w
(w)w ∂v

∂ζ
(ζ )ζ

(1 − zw̄)(1 − wζ̄ )(1 − āζ )
dA(ζ ) dA(w)


≤ C


D


D

1
|1 − āζ | |1 − wζ̄ |

dA(w) dA(ζ )

≤ C

D

1
|1 − āζ |

dA(ζ )

≤ C

for some constants C independent of a ∈ D. Hence F1 ∈ L∞(D). Also, by an application of Fubini’s theorem, we obtain

F2(a) =


D
vhka dA = P(v̄h)(a)

where

h(ζ ) = z̄

D

w ∂u
∂w
(w)

(1 − z̄w)(1 − ζ w̄)
dA(w), ζ ∈ D.

On the other hand, using again Lemma 3.10 of [14], we can see (1− |ζ |2)1−αh′(ζ ) is bounded on D and hence h ∈ Λα for all
α ∈ (0, 1). Since v ∈ Λα , we have P[v̄h] ∈ Λα for all α ∈ (0, 1) and thus F2 ∈ L∞(D). Also, by a similar argument, we have

G1(a) =


D

∂v
∂ζ
(ζ )ζ

1 − ζ ā
P[k](ζ ) dA(ζ )
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where

k(w) =
z̄

1 − z̄w
ū(w), w ∈ D.

Then similarly we can see P[k] ∈ Λα for all α ∈ (0, 1) and hence P[k] ∈ L∞(D). Now, by Lemma 3.10 of [14] again, we see
G1 ∈ L∞(D). Finally, using a similar argument, we see

G2(a) =


D
vP[k]ka dA = P[v̄P(k)](a).

Also, using v̄P[k] ∈ Λα for all α ∈ (0, 1), we see G2 ∈ L∞(D). ThereforeΦ is bounded on D. The proof is complete. �

Given a Hilbert space K with an inner product (, ) and a, b ∈ K , we let a ⊗ b be the rank one operator on K defined by
[a ⊗ b]x = (x, b)a for x ∈ K . Recall that each finite rank operator S on K can be written in the form

S =

N
j=1

aj ⊗ bj

for some a1, . . . , aN and b1, . . . , bN in K . In case S is an operator which is a finite sum of products of two Toeplitz operators
on D , we will need somemore information on the functions bj. To do this, we first need the following lemmawhich is taken
from Lemma 2.4 of [17].

Lemma 3.2. Let {gj}Nj=1 be a linearly independent set in D . Then there exist points z1, . . . , zN ∈ D such that the matrixg1(z1) · · · g1(zN)
...

...
gN(z1) · · · gN(zN)


is invertible.

Proposition 3.3. Let uj, vj ∈ L 1,∞ for j = 1, . . . ,M and xj, yj ∈ D for j = 1, . . . ,N. Suppose {xj}Nj=1 is linearly independent
and

M
j=1

TujTvj =

N
j=1

xj ⊗ yj

holds. Then y′

j is bounded on D for all j = 1, . . . ,N.

Proof. Since ⟨ρa, yj⟩ = y′

j(a) for each j, we first have

N
j=1

[xj ⊗ yj]ρa =

N
j=1

⟨ρa, yj⟩xj =

N
j=1

xjy′

j(a)

for every a ∈ D. Thus, letting

Fz(a) :=

M
j=1

TujTvjρa(z), z, a ∈ D,

we have

Fz(a) =

N
j=1

xj(z)y′

j(a), z, a ∈ D

and henceFz1(a)
...

FzN (a)

 =

x1(z1) · · · xN(z1)
...

...

x1(zN) · · · xN(zN)


y′

1(a)
...

y′

N(a)


for all points a ∈ D and z1, . . . , zN ∈ D. Now, since the functions x1, . . . , xN are linearly independent, Lemma 3.2 shows
that the N × N matrix in the above displayed equation is invertible for some points z1, . . . , zN ∈ D. Thus, each y′

j is a linear
combination of functions Fz1(a), . . . , FzN (a). On the other hand, by Lemma 3.1 Fz is bounded for each z ∈ D. Thus each y′

j is
bounded on D. The proof is compete. �

In the course of our proofs, we will use some known results on the Hardy space. Thus we need to introduce the well
known Hardy space.
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For 1 ≤ p ≤ ∞, we let Lp(∂D) = Lp(∂D, σ ) denote the usual Lebesgue space on ∂Dwhere σ is the normalized Lebesgue
measure on ∂D. For 1 ≤ p < ∞, the Hardy space Hp consists of all holomorphic functions f on D such that

sup
0≤r<1


∂D

|f (rζ )|p dσ(ζ ) < ∞.

It is well known that Hp can be identified with a closed subspace of Lp(∂D) via boundary values. We use the same notation
to denote a function in Hp and its boundary value in Lp(∂D).

We let C : L2(∂D) → H2 be the orthogonal projection from L2(∂D) onto H2. Given ψ ∈ L∞(∂D), we let tψ : H2
→ H2

be the (Hardy space) Toeplitz operator with symbol ψ defined by tψ f = C(ψ f ) for functions f ∈ H2. Then, tψ is a bounded
linear operator on H2. See Chapter 10 of [14] for more information.

Recall that each function inL 1,∞ can be extended to a continuous function (with the same notation) to D̄. We sometimes
call the restriction to ∂D of u the boundary function of u. In particular, when we write tu with u ∈ L 1,∞, the symbol of tu
should be understood to be the boundary function of u.

The following connection between Toeplitz operators on the Dirichlet and Hardy spaces has been known for any
u ∈ L 1,∞:

Tuf = ztu


1
z
f

, f ∈ D; (3)

see Lemma 3.2 of [6].
Forψ ∈ L∞(∂D), we recall thatψ admits a unique decompositionψ = f + g where f , ḡ are analytic, all negative Fourier

coefficients of f and nonnegative Fourier coefficients of g vanish. In this case, we call f the analytic part and g the co-analytic
part of ψ . Also, we then use the same notation between the (co-)analytic part on ∂D and its (anti-)holomorphic extension
to D via Poisson extension. Moreover, we have f , ḡ ∈ Hp for all p. For details, see Chapter 9 of [14] for example.

The following lemma taken fromCorollary 4.3 of [10]will be useful in our characterization of finite rank sums of products
of two Toeplitz operators.

Lemma 3.4. Let ϕj, ψj, ρ ∈ L∞(∂D) for j = 1, . . . ,M and αj, βj ∈ H2 for j = 1, . . . ,N. Let ϵj, δj be the analytic parts of ϕj, ψj
respectively. Then

M
j=1

tϕj tψj = tρ +

N
j=1

αj ⊗ βj

holds on H2 if and only if the following two conditions hold.

(a)
M

j=1 ϕjψj = ρ on ∂D.
(b)

M
j=1 ϵjδj − (1 − |z|2)

N
j=1 αjβj is harmonic on D.

Given two functions f , g holomorphic on D, put u = f + ḡ and suppose

sup
0<r<1


∂D

|u(rζ )|2 dσ(ζ ) < ∞. (4)

Then, we see f , g ∈ H2 from the boundedness of the Riesz projection C , since f = Cu and ḡ = (Id − C)u on ∂D. In the
following, we will use

⟨ϕ,ψ⟩2 =


∂D
ϕψ̄ dσ

for functions ϕ,ψ ∈ L2(∂D).
Nowwe are ready to prove themain result of this sectionwhich characterizes finite rank sums of products of two Toeplitz

operators.

Theorem 3.5. Let uj, vj, τ ∈ L 1,∞ for j = 1, . . . ,M and fj, kj be the analytic parts of the boundary functions of uj, vj
respectively. Let xj, yj ∈ D for j = 1, . . . ,N. Then

M
j=1

TujTvj = Tτ +

N
j=1

xj ⊗ yj (5)

holds on D if and only if the following two conditions hold.

(a)
M

j=1 ujvj = τ on ∂D.
(b)

M
j=1 fjkj − (1 − |z|2)

N
j=1

xj
z y

′

j is harmonic on D.
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Proof. For simplicity, we put

T =

M
j=1

TujTvj − Tτ , S =

M
j=1

tuj tvj − tτ .

First suppose the set {xj}Nj=1 is linearly independent. Assume (5) holds. Using (3), we have

S

h
z


=

1
z
T (h) =

K
j=1

⟨h, yj⟩
xj
z

for every h ∈ D . Since z−1D is dense in H2, it follows that

Sψ =

N
j=1

⟨zψ, yj⟩
xj
z

for every ψ ∈ H2. Note y′

j ∈ H2 for each j by Proposition 3.3. On the other hand, a simple calculation shows that ⟨zzn, yj⟩
= ⟨zn, y′

j⟩2 for each j and integer n ≥ 0. Hence ⟨zψ, yj⟩ = ⟨ψ, y′

j⟩2 for each j and ψ ∈ H2. It follows that

Sψ =

N
j=1

⟨ψ, y′

j⟩2
xj
z

=

N
j=1

xj
z

⊗ y′

j


ψ

for every ψ ∈ H2 and thus

S =

N
j=1

xj
z

⊗ y′

j on H2. (6)

Now, by Lemma 3.4, we have (a) and (b).
To prove the converse, assume (a) and (b) hold. First, we show y′

j ∈ H2 for each j. To do this, wewill use a similar argument
as in Proposition 3.3. By (b), we can write

M
j=1

fjkj − (1 − |z|2)
N
j=1

xj
z
y′

j = F + G

for some functions F ,G holomorphic on D. Since y′

j ∈ L2a , we see (1 − |z|2)y′

j is bounded on D by Theorem 4.14 of [14]. Note
z−1xj ∈ H2 for each j. Also, since fj, kj ∈ Hp for all p ≥ 1, we see fjkj satisfies (4) for each j. Thus F + G also satisfies (4) and
hence G ∈ H2. On the other hand, by the complexification lemma (see [18, Lemma 2]), we have

M
j=1

fj(z)kj(a)−
1 − zā

z

N
j=1

xj(z)y′

j(a) = F(z)+ G(a)

for every z, a ∈ D. Letting

Az(a) =
z̄

1 − z̄a


M
j=1

fj(z)kj(a)− F(z)− G(a)


for a, z ∈ D, we havex1(z1) · · · xN(z1)

...
...

x1(zN) · · · xN(zN)


y′

1(a)
...

y′

N(a)

 =

Az1(a)
...

AzN (a)


for all points a ∈ D and z1, . . . , zN ∈ D. Now, since x1, . . . , xN are linearly independent, as in the proof of Proposition 3.3,
each y′

j is a linear combination of Az1(a), . . . , AzN (a) for some points z1, . . . , zN ∈ D. Note Az ∈ H2 for each z ∈ D because
G, kj ∈ H2 for each j as observed above. Thus y′

j ∈ H2 for each j. Now, (a) and (b), together with Lemma 3.4, imply that (10)
holds. Since ⟨zψ, yj⟩ = ⟨ψ, y′

j⟩2 for each j and ψ ∈ H2 as observed above, we have

Sψ =

N
j=1

⟨ψ, y′

j⟩2
xj
z

=
1
z

N
j=1

⟨zψ, yj⟩xj
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for every ψ ∈ H2. Since Th = zS(z−1h) for h ∈ D by (3), we obtain

Th =

N
j=1

⟨h, yj⟩xj =

N
j=1

[xj ⊗ yj]h

for every h ∈ D; thus (5) holds on D .
Now suppose the set X = {xj}Nj=1 is linearly dependent and choose a maximal subset Y of linearly independent

elements in X so that each function in X \ Y is a linear combination of functions in Y . Without loss of generality, we may
assume Y = {x1, . . . , xK } for some K < N . For each xi ∈ X \ Y , write xi =

K
j=1 aijxj for some constants aij. Putting

Yj = yj +
N

i=K+1 aijyi for j = 1, . . . , K , we note

N
j=1

xj ⊗ yj =

K
j=1

xj ⊗ Yj.

Thus, by the result what we have proved in the previous case, we see (5) holds if and only if (a) holds and
M

j=1 fjkj − (1 −

|z|2)
K

j=1
xj
z Y

′

j is harmonic. But, since

K
j=1

xj
z
Y ′

j =

K
j=1

xj
z


y′

j +

N
i=K+1

aijy′

i


=

N
j=1

xj
z
y′

j,

we have the desired result. The proof is complete. �

Now we obtain several immediate consequences of Theorem 3.5. First, we have a characterization for finite rank sums
of semi-commutators as in the next corollary. Given Toeplitz operators Tu and Tv , we let [Tu, Tv) = TuTv − Tuv denote the
semi-commutator.

Corollary 3.6. Let uj, vj ∈ L 1,∞ for j = 1, . . . ,M and fj, kj be the analytic parts of the boundary functions of uj, vj respectively.
Let xj, yj ∈ D for j = 1, . . . ,N. Then

M
j=1

[Tuj , Tvj) =

N
j=1

xj ⊗ yj

holds on D if and only if

M
j=1

fjkj − (1 − |z|2)
N
j=1

xj
z
y′

j is harmonic on D.

To obtainmore concrete descriptions, we have the following characterization of harmonicity of functionswhich are finite
sums of products of holomorphic and antiholomorphic functions. The following is taken from Theorem 3.3 of [9].

Lemma 3.7. Let f1, . . . , fN and g1, . . . , gN be holomorphic functions on D. Then
N

j=1 fjgj is harmonic on D if and only if

N
j=1

[fj − fj(0)][gj − gj(0)] = 0 on D.

Taking xj = yj = 0 for all j in Theorem 3.5 and using Lemma 3.7, we obtain the following consequence which extends
Theorem 1.1 of [3] where harmonic symbols uj, vj and certain special τ have been considered.

Corollary 3.8. Let uj, vj, τ ∈ L 1,∞ for j = 1, . . . ,M. Let fj, kj be the analytic parts of the boundary functions of uj, vj respec-
tively. Then the following conditions are equivalent.

(a)
M

j=1 TujTvj = Tτ .

(b)
M

j=1 ujvj = τ on ∂D and
M

j=1[fj − fj(0)][kj − kj(0)] = 0 on D.

Also, as another application, taking xj = yj = 0 in Corollary 3.6 and using Lemma 3.7, we characterize zero sums of
semi-commutators which extends Corollary 3.7 of [8] where a complete different argument was used for the caseM = 1.
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Corollary 3.9. Let uj, vj, τ ∈ L 1,∞ for j = 1, . . . ,M. Let fj, kj be the analytic parts of the boundary functions of uj, vj

respectively. Then
M

j=1[Tuj , Tvj) = 0 if and only if

M
j=1

[fj − fj(0)][kj − kj(0)] = 0 on D.

Let us consider some examples concerning Theorem 3.5. Note TzTz = T1 − z ⊗ z by a straightforward computation;
see [8, Lemma 2.1] for example. More generally, for any positive integer N ≥ 2, since

|z|2N + (1 − |z|2)
N−1
j=1

|z|2j = 1,

we have

TzN TzN = T1 −

N
j=2

z j ⊗
z j

j

by Theorem 3.5. For u ∈ L 1,∞, note Tu = 0 if and only if u = 0 on ∂D; see Proposition 3.1 of [8]. It follows that
M
j=1

TϕjzN TψjzN
= TM − M

N
j=2

z j ⊗
z j

j

for any integerM ≥ 1 and ϕj, ψj ∈ L 1,∞ with ϕj = ψj = 1 on ∂D.
In conjunction with Theorem 3.5, we consider the finite rank product problem of when a product of several Toeplitz

operators has finite rank on D . In the case of rank zero, the following theorem was proved in Theorem 3.10 of [8].

Theorem 3.10. Let uj ∈ L 1,∞ for j = 1, . . . ,N. Then the following statements are all equivalent.
(a) Tu1 · · · TuN has finite rank on D .
(b) Tuj = 0 for some j.
(c) uj = 0 on ∂D for some j.

Proof. By Lemma 3.3 of [6] (or Proposition 5.1), we see that (a) holds if and only if tu1 · · · tuN has finite rank on H2, which is
equivalent to uj = 0 on ∂D for some j by Corollary 4.1 of [19]. Now, the result follows from the fact that for u ∈ L 1,∞, Tu = 0
if and only if u = 0 on ∂D; see Proposition 3.1 of [8]. This completes the proof. �

4. Sums of Hankel products

In this section, we consider operators which are finite sums of products of two Hankel operators and characterize such
operators to have finite rank.

We first prove the following proposition showing that a product of two Hankel operators can be written as a semi-
commutator of two Toeplitz operators. Such a result is well known in the Hardy space setting; see [20, Lemma B4.4.3] for
example. In what follows, we put û(z) = Ju(z) = u(z̄) for z ∈ D for simplicity.

Proposition 4.1. Let u, v ∈ L 1,∞. Then

HuHv = Tûv − TzuTzv
holds on D . In other words, HuHv = [T−zu, Tzv) holds.
Proof. By Proposition 5.1 of [8], we first note Hz̄ûHz̄v = Tuv − TuTv holds. Replacing u, v with z̄û, zv respectively, we obtain

H|z|2uH|z|2v = T|z|2ûv − TzuTzv. (7)

On the other hand, for ϕ,ψ ∈ L 1,∞ such that ϕ = ψ on ∂D, we note Tϕ = Tψ and Hϕ = Hψ ; see Propositions 3.1 and 4.1
of [8]. Hence H|z|2uH|z|2v = HuHv and T|z|2ûv = Tûv holds. Now, (7) yields the desired results. The proof is complete. �

Given a function ψ = f + g ∈ L∞(∂D) where f is the analytic part and g is the co-analytic part of ψ , we note that the
Poisson extension of the analytic part of zψ is z−1g . Also, z−1g is the Poisson extension of the analytic part of zψ .

The following is the main result of this section.

Theorem 4.2. Let uj, vj, τ ∈ L 1,∞ for j = 1, . . . ,M and gj, hj be the co-analytic parts of the boundary functions of uj, vj
respectively. Let xj, yj ∈ D for j = 1, . . . ,N. Then

M
j=1

HujHvj = Tτ +

N
j=1

xj ⊗ yj (8)
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holds on D if and only if the following two conditions hold.

(a) τ = 0 on ∂D.
(b) 1

|z|2
M

j=1gjhj + (1 − |z|2)
N

j=1
xj
z y

′

j is harmonic on D.

Proof. By Proposition 4.1, we see (8) holds if and only if
M
j=1

TzujTzvj = T
−τ+

M
j=1 zujzvj −

N
j=1

xj ⊗ yj

holds. Note z−1gj and z−1hj are Poisson extensions of the analytic parts ofzuj and zvj respectively. Now, the result follows
from Theorem 3.5. The proof is complete. �

For u ∈ L 1,∞, recall that Tu = 0 if and only if u = 0 on ∂D. So Theorem 4.2 shows that
M

j=1 HujHvj is a finite rank
perturbation of a Toeplitz operator only when it is a finite rank operator.

As a consequence, taking xj = yj = 0 in Theorem 4.2, we obtain a characterization on when a sum of products of two
Hankel operators equals a Toeplitz operator. The corresponding result is stated as Theorem 4.2 in [8] in case τ = 0 below.

Corollary 4.3. Let uj, vj, τ ∈ L 1,∞ for j = 1, . . . ,M and gj, hj be co-analytic parts of boundary functions of uj, vj respectively.
Then the following two statements are equivalent.

(a)
M

j=1 HujHvj = Tτ .
(b) τ = 0 on ∂D and

M
j=1[gj −gj′(0)z][hj −hj

′
(0)z̄] = 0 on D.

Proof. By Theorem 4.2, we see (a) holds if and only if τ = 0 on ∂D and

1
|z|2

M
j=1

gjhj =

M
j=1

gj
z
hj

z̄

is harmonic on D. Since
gj
z (0) = gj′(0) and hj

z̄ (0) = hj
′
(0) for each j, the result follows from Lemma 3.7. The proof is

complete. �

Note that if the co-analytic part of the boundary function of u ∈ L 1,∞ has the form of az̄ for some constant a, we see
Hu = 0 by Proposition 4.1 of [8]. Thus, as a consequence of Corollary 4.3, we have the following characterization which
extends Corollary 4.4 of [8] where a completely different argument has been used.

Corollary 4.4. Let u, v, ϕ, ψ, τ ∈ L 1,∞. Then HuHv − HϕHψ = Tτ on D if and only if τ = 0 on ∂D and one of the following
two conditions holds.

(a) Hu or Hv is 0, and Hϕ or Hψ is 0.
(b) Hϕ = βHu and Hv = βHψ for some constant β .

Proof. Let g, h, f , k be co-analytic parts of the boundary functions of u, v, ϕ, ψ respectively. By Corollary 4.3, HuHv −

HϕHψ = Tτ holds if and only if τ = 0 on ∂D and

[g −g ′(0)z][h −h′(0)z̄] = [f −f ′(0)z][k −k′(0)z̄] (9)

holds on D. Ifg =g ′(0)z on D, then Hu = 0, andf =f ′(0)z or k =k′(0)z̄, which implies Hϕ = 0 or Hψ = 0 by the remark
just before this corollary, so (a) holds. Similarly, if k =k′(0)z̄ on D, we see Hψ = 0, and Hu = 0 or Hv = 0. So (a) holds. Now
we assume neitherg −g ′(0)z nor k −k′(0)z̄ is identically 0 on D. By (9), we havef −f ′(0)zg −g ′(0)z

=
h −h′(0)z̄

k −k′(0)z̄

at all points of D except the countable set consisting of zeros of [g −g ′(0)z][k −k′(0)z̄]. Thus the above must be equal to a
constant β on D. Sof −f ′(0)z = β[g −g ′(0)z] and h −h′(0)z̄ = β[k −k′(0)z̄] on D. Hence Hϕ−βu = 0 and Hv−βψ = 0, so
(b) holds. The converse implication is clear because Tτ = 0 if and only if τ = 0 on ∂D. The proof is complete. �

Corollary 4.4 implies that HuHv = 0 if and only if Hu = 0 or Hv = 0, which is already noticed in Corollary 4.3 of [8]. In
view of Theorem3.10, onemight askwhether this property can be extended to products of arbitrarymanyHankel operators.
The answer is no. Using (2), one can easily check that Hz̄2Hz̄3Hz̄2 = 0 but none of them equals zero.

Let us consider some examples concerning Theorem 4.2. For any integer N ≥ 2 and k ≥ 0, we note

1
|z|2

zk+N+1zN+1 + (1 − |z|2)
N−1
j=1

zk+jz j = zk.
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Thus, by Theorem 4.2, we have

Hzk+N+1HzN+1 = −

N
j=2

zk+j
⊗

z j

j

and also
M

k=0

Hzk+N+1HzN+1 = −

M
k=0

N
j=2

z j+k
⊗

z j

j
= −

N
j=2

z j(1 − zM+1)

1 − z
⊗

z j

j

for everyM ≥ 0 and N ≥ 2.

5. Products of Toeplitz and Hankel operators

In this section, we characterize operators which are sums of any two of the form TuHv or HuTv . We first need some
notations. The notation P denotes the set of all nonzero analytic polynomials. Also, given a function u ∈ L 1,∞, we say
u ∈ A if there exists p ∈ P such that pu∗ is analytic on ∂D where u∗ is the boundary function of u. Also, for a bounded
operator S on K where K = H2 or D , we write S ∈ F (K) if S has finite rank on K .

The following proposition will be useful when we apply the Hardy space results to derive some results on the Dirichlet
space. The idea comes from Lemma 3.3 of [6] where sums of products of Toeplitz operators have been considered.

Proposition 5.1. Let T be a bounded operator on D and S be a bounded operator on H2. Suppose Tf = zS(z−1f ) for every f ∈ D .
Then T ∈ F (D) if and only if S ∈ F (H2).

Proof. Let A, B be ranges of T , S respectively. Note that z−1D is in H2. Since Tf = zS(z−1f ) for every f ∈ D , we have A ⊂ zB,
which implies that the rank of T is less than or equal to the rank of S. Also, since S(z−1D) = z−1A and z−1D is dense in H2,
we see that the rank of S equals the rank of T by the boundedness of S. This completes the proof. �

Given ψ ∈ L∞(∂D), the (Hardy space) Hankel operator hψ with symbol ψ is a bounded linear operator on H2 defined by
hψ f = CJ(ψ f ) for functions f ∈ H2. See Chapter 4 of [21] for details. As before, the symbol of hu with u ∈ L 1,∞ should be
understood to be the boundary function of u.

The following lemma gives a useful connection between Hankel operators on the Dirichlet space and Hardy space.

Lemma 5.2. For v ∈ L 1,∞, we have Hv f = zhvz2(z
−1f ) for every f ∈ D .

Proof. Let V be the Poisson integral of the boundary function of v and write

V (z) =


j<0

ajz−j +

j≥0

ajz j, z ∈ D

for the series expansion of V . Using (1), one can see that

Q (zkz̄ℓ) =


zk−ℓ, if k ≥ ℓ+ 1,
0, if k < ℓ+ 1 (10)

for all nonnegative integers k and ℓ. Then, for any integer ℓ ≥ 1, since

J[Vzℓ](reiθ ) =


j<0

ajr−j+ℓei(−j−ℓ)θ
+


j≥0

ajr j+ℓei(−j−ℓ)θ

for reiθ ∈ D, it follows from (10) that

HV [zℓ] =


j<0

ajQ (z−jz̄ℓ)+


j≥0

ajQ (z̄ j+ℓ)

=


j≥1

a−j−ℓz j.

On the other hand, since v(eiθ ) =


∞

j=−∞
ajeijθ on ∂D, one can also check

hvz2 [z
ℓ−1

](z) = C


∞

j=−∞

aje−i(j+ℓ+1)θ


= z−1


j≥1

a−j−ℓz j

for every z ∈ D and integers ℓ ≥ 1. Thus HV f = zhvz2(z
−1f ) for every f ∈ D . Now the result follows from the fact that

Hv = HV on D; see Theorem 2 of [5]. The proof is complete. �
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A well known Kronecker theorem [21] says that for ψ ∈ L∞(∂D), hψ ∈ F (H2) if and only if pψ is analytic on ∂D for
some p ∈ P . Using this result, we characterize finite rank Hankel operators on the Dirichlet space as shown in the next
proposition.

Proposition 5.3. Let u ∈ L 1,∞. Then Hu ∈ F (D) if and only if u ∈ A .

Proof. By Proposition 5.1 and Lemma 5.2, Hu ∈ F (D) if and only if hz2u ∈ F (H2), which is in turn equivalent to z2u ∈ A

by Kronecker’s theorem. Now the result follows from the fact that z2u ∈ A if and only if u ∈ A . The proof is complete. �

Now, we give a characterization of when a sum of two operators of the formHuTv is a finite rank perturbation of a Hankel
operator. But, we were not able to give a characterization for general finite sums of the products.

Theorem 5.4. Let u, v, ϕ, ψ, τ ∈ L 1,∞. Then HuTv + HϕTψ − Hτ ∈ F (D) if and only if one of the following statements holds.
(a) u, ϕ, τ ∈ A .
(b) u, ψ, ϕψ − τ ∈ A .
(c) v, ϕ, uv − τ ∈ A .
(d) v, ψ, uv + ϕψ − τ ∈ A .
(e) There exist p1, p2, q1, q2, r ∈ P with p1q1 + p2q2 = 0 such that p1u + p2ϕ, q1v + q2ψ and r[p2ϕ(q1v + q2ψ)+ p1q1τ ]

are analytic.

Proof. Put

T = HuTv + HϕTψ − Hτ , S = hz2utv + hz2ϕtψ − hz2τ .

By (3) and Lemma 5.2, we have Tf = zS(z−1f ) for every f ∈ D . Thus, by Proposition 5.1, we see T ∈ F (D) if and only if
S ∈ F (H2). On the other hand, using Theorems 4.2 and 3.1 of [11], we see that S ∈ F (H2) if and only if one of the following
conditions holds.
(i) hz2u, hz2ϕ, hz2τ ∈ F (H2).
(ii) hz2u, hψ , hz2(ϕψ−τ) ∈ F (H2).
(iii) hv, hz2ϕ, hz2(uv−τ) ∈ F (H2).
(iv) hv, hψ , hz2(uv+ϕψ−τ) ∈ F (H2).
(v) There exist p1, p2, q1, q2, r ∈ P with p1q1 + p2q2 = 0 such that p1u+ p2ϕ, q1v+ q2ψ and r[p2ϕ(q1v+ q2ψ)+ p1q1τ ]

are analytic.

For g ∈ L 1,∞, note that Hg ∈ F (D) if and only if hgz2 ∈ F (H2) by Proposition 5.1 and Lemma 5.2. Now, by Kronecker’s
theorem and Proposition 5.3, we have the desired result. The proof is complete. �

Also,we characterize sums of two operators of the form TuHv in the corollary below. In the proof,wewill use the following
connection between Toeplitz and Hankel operators:

TuHv + Hz̄ûTzv = Hûv, u, v ∈ L 1,∞
; (11)

see Proposition 5.2 of [8].

Corollary 5.5. Let u, v, ϕ, ψ ∈ L 1,∞. Then TuHv + TϕHψ ∈ F (D) if and only if one of the following statements holds.
(a) û, ϕ̂, ûv + ϕ̂ψ ∈ A .
(b) û, ψ, ûv ∈ A .
(c) v, ϕ̂, ϕ̂ψ ∈ A .
(d) v, ψ ∈ A .
(e) There exist p1, p2, q1, q2, r ∈ P with p1q1 + p2q2 = 0 such that p1z̄û + p2z̄ϕ̂, q1zv + q2zψ and r[p2ϕ̂(q1v + q2ψ) +

p1q1(ûv + ϕ̂ψ)] are analytic.

Proof. By (11), we have

−[TuHv + TϕHψ ] = Hz̄ûTzv + Hz̄ϕ̂Tzψ − Hûv+ϕ̂ψ .

Note zz̄ = 1 on ∂D. Also, given ϕ ∈ L 1,∞, we note ϕ ∈ A if and only if zϕ ∈ A , which is equivalent to z̄ϕ ∈ A . Now,
Theorem 5.4 gives the desired result. The proof is complete. �

By (11), we have

HuTv − TϕHψ = HuTv + Hz̄ϕ̂Tzψ − Hϕ̂ψ

for u, v, ϕ, ψ ∈ L 1,∞. Thus the following characterization is a consequence of Theorem 5.4.

Corollary 5.6. Let u, v, ϕ, ψ ∈ L 1,∞. Then HuTv − TϕHψ ∈ F (D) if and only if one of the following statements holds.
(a) u, ϕ̂, ϕ̂ψ ∈ A .
(b) u, ψ ∈ A .
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(c) v, ϕ̂, uv − ϕ̂ψ ∈ A .
(d) v, ψ, uv ∈ A .
(e) There exist p1, p2, q1, q2, r ∈ P with p1q1 + p2q2 = 0 such that p1u + p2z̄ϕ̂, q1v + q2zψ and rϕ̂v are analytic.

In the cases of ϕ = v and ψ = u in Corollary 5.6, we characterize finite rank commutators of Toeplitz and Hankel
operators as shown in the following.

Corollary 5.7. Let u, v ∈ L 1,∞. Then HuTv − TvHu ∈ F (D) if and only if one of the following statements holds.

(a) u ∈ A .
(b) v, v̂, uv − v̂u ∈ A .
(c) There exist p1, p2, q1, q2, r ∈ P with p1q1 + p2q2 = 0 such that p1u + p2z̄v̂, q1v + q2zu and r v̂v are analytic.

Finally, taking ϕ = ψ = 0 or u = v = 0 in Corollary 5.6, we characterize finite rank products of Toeplitz and Hankel
operators.

Corollary 5.8. Let u, v ∈ L 1,∞. Then the following statements holds.

(a) HuTv ∈ F (D) if and only if either u ∈ A or v, uv ∈ A .
(b) TϕHψ ∈ F (D) if and only if either ψ ∈ A or ϕ̂, ϕ̂ψ ∈ A .
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