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a b s t r a c t

In this paper we consider a general equilibrium problem in a Hilbert space defined
on a closed and convex set. We show a Tikhonov-type regularization method that can
be extended for the equilibrium problem. Under mild assumptions we establish the
equivalence between the existence of solution of the original problemand the boundedness
of the sequence generated by regularized problems.
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1. Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨·, ·⟩ and ∥.∥, respectively. Take a nonempty
closed and convex set C ⊂ H and f : C × C → R is an equilibrium bifunction, i.e., f (x, x) = 0 for every x ∈ C .

We consider the following Equilibrium Problem (in short, EP(f , C))

EP(f , C)

Find x∗

∈ C such that
f (x∗, y) ≥ 0 ∀y ∈ C .

The set of solutions of EP(f , C)will be denoted by S(f , C).
The Equilibrium problem was first considered and introduced by Ky Fan in [3], but equilibrium problems appeared with

this name in the paper of Blum and Oettli in 1994, see [2].
The equilibrium problem is very general in the sense that it includes, among its particular cases, convex minimization

problems, variational inequality problems, Nash equilibrium problems, and other applications, see for example [2,6] and
their references.

Existence results for solutions to equilibrium problems have been extensively studied, as it can be seen in [2,6,7].
The Tikhonov-type regularization is a well-known method that is widely used in convex optimization and monotone

variational inequality studies to handle ill-posed problems. The main idea of the Tikhonov-type regularization method for
themonotone variational inequality is that it adds a stronglymonotone operator depending on a regularization parameter to
obtain a strongly monotone variational inequality. The resulting regularized problem then has a unique solution depending
on the regularization parameter. When the cost operator is pseudomonotone, the monotonicity of the regularized problem
may fail to hold.
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Regularization methods for equilibrium problems without monotonicity assumptions have been considered in some
recent interesting papers, see [8,10,9] and the references therein.

Some other methods have been proposed to solve the equilibrium problems, see for example [1] and the references
therein.

In [4], a Tikhonov-type scheme has been proposed for solving finite-dimensional equilibrium problems. The following
regularized problem is considered:

Find x∗
∈ C such that fλ(x∗, y) := f (x∗, y)+ λg(x∗, y) ≥ 0 ∀y ∈ C, (1.1)

where g is a strongly monotone equilibrium bifunction on C, λ > 0 and g satisfies the condition

∃ δ > 0, x̂ ∈ C : |g(x, y)| ≤ δ∥x − x̂∥∥y − x∥, ∀x, y ∈ C . (1.2)

However, this condition is quite restrictive (for example it implies g(x̂, y) = 0 for all y ∈ C).
In this work, we extend the scheme (1.1) for solving equilibrium problems in Hilbert spaces. Also, we replace condition

(1.2) by the following

lim sup
∥y∥→∞

|g(x, y)|
∥y − x∥

< +∞ ∀x ∈ C, (1.3)

by presenting a practical way to construct strongly monotone bifunctions g satisfying (1.3).
The paper is organized as follows. In Section 2, we recall concepts and basic results that will be important for the

development of the work. In Section 3, we present a Tikhonov-type regularization method for equilibrium problems and
we show our main results.

2. Preliminaries

In this section, we recall definitions and known results that will be important in our subsequent analysis.

Definition 2.1. A bifunction ψ : C × C → R is said to be:
(i) strongly monotone on C with modulus β > 0 if

ψ(x, y)+ ψ(y, x) ≤ −β∥x − y∥2
∀x, y ∈ C .

(ii) monotone on C if

ψ(x, y)+ ψ(y, x) ≤ 0 ∀x, y ∈ C .

(iii) pseudomonotone on C if

∀x, y ∈ C : ψ(x, y) ≥ 0 ⇒ ψ(y, x) ≤ 0.

Clearly, (i) ⇒ (ii) ⇒ (iii).

Definition 2.2. A function ψ(·, y): C → R is said to be weakly upper semicontinuous at the point x ∈ C , when for any
sequence


xk


⊂ C such that xk ⇀ x, we get that

lim sup
k→∞

ψ(xk, y) ≤ ψ(x, y).

Definition 2.3. A function ψ(x, ·): C → R is said to be weakly lower semicontinuous at the point y ∈ C , when for any
sequence


yk


⊂ C such that yk ⇀ y, we get that

lim inf
k→∞

ψ(x, yk) ≥ ψ(x, y).

Remark 2.1. In [3], it has been established that ifψ(., y) is weakly upper semicontinuous for all y ∈ C, ψ(x, .) is convex for
all x ∈ C and C is weakly compact, then S(ψ, C) is nonempty.

Throughout the paper we assume that C ⊂ H is unbounded.
The following technical lemmas will be useful for the existence of solutions of the regularized problems, when f is

pseudomonotone.

Lemma 2.1. Let K , C be closed and convex subsets of H . Consider a convex function h : H → R and f (x, .) : C → R convex
for all x ∈ C.
(i) If x̄ minimizes h on C ∩ K and it belongs to the interior of K , then x̄ minimizes h on C.
(ii) If x̄ solves EP(f , C ∩ K) and it belongs to the interior of K , then x̄ solves EP(f , C).

Proof. See [5, Proposition 3.3]. �
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3. A Tikhonov-type regularization for the equilibrium problem

Initially, we present our basic assumptions for a bifunction ψ : C × C → R:

H1. ψ(., y) : C → R is weakly upper semicontinuous for all y ∈ C .
H2. ψ(x, .) : C → R is convex and weakly lower semicontinuous for all x ∈ C .
H3. ψ : C × C → R is strongly monotone with modulus β > 0.
H4. lim sup∥y∥→∞

|ψ(x,y)|
∥y−x∥ < +∞ ∀x ∈ C .

H5. For any sequence {xn} ⊂ C with limn→∞ ∥xn∥ = +∞, there exists u ∈ C and n0 ∈ N such that ψ(xn, u) ≤ 0 ∀n ≥ n0.

Now,we define our regularization procedure for the problem EP(f , C). For this, we consider λ > 0 andwe take a strongly
monotone equilibrium bifunction g : C × C → R with modulus β > 0. Following [4], we define the regularized bifunction
fλ: C × C → R by:

fλ(x, y) = f (x, y)+ λg(x, y). (3.4)

Note also that fλ(x, x) = 0 ∀ x ∈ C .
Next, we show that the EP(fλ, C) has a unique solution, when f is monotone. First, we recall an important result.

Theorem 3.1. Assume that ψ is pseudomonotone, satisfying H1, H2 and H5, then S(ψ, C) is nonempty.

Proof. See [6, Theorem 4.3]. �

Theorem 3.2. Assume that f is monotone and satisfies H1–H2 and g satisfies H1–H3 . Then for any λ > 0, EP(fλ, C) has a
unique solution.

Proof. It follows easily from (3.4) that fλ satisfies H1–H2. Moreover, as f is monotone and g satisfies H3, we have that fλ
is strongly monotone, in particular, fλ is pseudomonotone. To apply the Theorem 3.1 we must show that fλ satisfies the
assumption H5. For this, consider a sequence {xn} ⊂ C with limn→∞ ∥xn∥ = +∞. We will show that there exists u ∈ C and
n0 ∈ N such that fλ(xn, u) ≤ 0 ∀n ≥ n0. Since C is not empty, take u ∈ C .

Note that:

fλ(xn, u) = f (xn, u)+ λg(xn, u). (3.5)

By using the fact that f is monotone and g satisfies H3, it follows from (3.5) that:

fλ(xn, u) ≤ −[f (u, xn)+ λg(u, xn)] − λβ∥xn − u∥2. (3.6)

For each x ∈ C , define hx : C → R as hx(y) = h(x, y) := f (x, y) + λg(x, y). Note that h(x, .) is convex and weakly lower
semicontinuous. Thus, (3.6) results in:

fλ(xn, u) ≤ −h(u, xn)− λβ∥xn − u∥2. (3.7)

Take any element (x̄, v̄) in the graph of the subdifferential ∂hu which is nonempty, since ∂hu is monotone maximal. By the
definition of subdifferential, we have:

⟨v̄, xn − x̄⟩ ≤ hu(xn)− hu(x̄) = h(u, xn)− h(u, x̄). (3.8)

(3.8) is equivalent to

− h(u, xn) ≤ ⟨v̄, x̄ − xn⟩ − h(u, x̄)
≤ ∥v̄∥∥x̄ − xn∥ − h(u, x̄)

≤ ∥v̄∥∥x̄ − u∥ + ∥v̄∥∥u − xn∥ − h(u, x̄). (3.9)

Replacing (3.7) and (3.9), we obtain:

fλ(xn, u) ≤ ∥v̄∥∥x̄ − u∥ + ∥v̄∥∥u − xn∥ − h(u, x̄)− λβ∥xn − u∥2

= ∥xn − u∥

∥v̄∥ − λβ∥xn − u∥


+ ∥v̄∥∥x̄ − u∥ − h(u, x̄). (3.10)

Since ∥xn∥ → +∞, so that limn→∞ ∥xn − u∥ = +∞; so it follows from (3.10) that limn→∞ fλ(xn, u) = −∞, because
λβ > 0. Therefore, for n large enough, it follows that fλ(xn, u) ≤ 0. With this, we find that fλ satisfies all the assumptions of
Theorem 3.1, hence, S(fλ, C) is nonempty.

We now show that the solution is unique. Suppose that x̃ and x̂ are solutions of EP(fλ, C). It follows from (3.4) that:

0 ≤ fλ(x̃, x̂) = f (x̃, x̂)+ λg(x̃, x̂). (3.11)

0 ≤ fλ(x̂, x̃) = f (x̂, x̃)+ λg(x̂, x̃). (3.12)
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Adding (3.11) with (3.12) and using the fact that f is monotone and g satisfies H3, we obtain:

0 ≤ f (x̃, x̂)+ f (x̂, x̃)+ λ[g(x̃, x̂)+ g(x̂, x̃)] ≤ −λβ∥x̃ − x̂∥2
≤ 0. (3.13)

It follows from (3.13) that λβ∥x̃ − x̂∥ = 0, hence, x̂ = x̃, because λβ > 0. �

Weconsider a sequence of positive regularizationparameter {λk} and construct a sequence of solutions

xk


:= {x(λk)} ⊂

C , of the problem EP(fλk , C), with fλk : C × C → R defined by:

fλk(x, y) = f (x, y)+ λkg(x, y). (3.14)

We denote by S(fλk , C) the solution set of the problem EP(fλk , C).
Below we will show our main result for the monotone case.

Theorem 3.3. Suppose that f is monotone and satisfies H1–H2 and g satisfies H1–H4 . If

xk


is a sequence of solutions of the

problems EP(fλk , C) and λk → 0, then the following statements are equivalent:

(i) The sequence

xk


is bounded.

(ii) S(f , C) is nonempty.

Proof. From Theorem 3.2 with λ = λk, the sequence

xk


is well-defined.

First, assume that

xk


is bounded. Then, we have that there exists a subsequence


xkj


⊂


xk


that weakly converges to

some x̄ ∈ C , i.e., xkj ⇀ x̄, with fλkj (x
kj , y) ≥ 0 ∀y ∈ C . Thus, we have:

0 ≤ fλkj (x
kj , y) = f (xkj , y)+ λkjg(x

kj , y). (3.15)

Passing to the limit in (3.15) we obtain:

0 ≤ lim sup
j→∞

[f (xkj , y)+ λkjg(x
kj , y)]

≤ lim sup
j→∞

f (xkj , y)+ lim sup
j→∞

λkjg(x
kj , y). (3.16)

Since λkj → 0, by using H1, it follows from (3.16) that

f (x̄, y) ≥ 0 ∀y ∈ C .

Therefore S(f , C) ≠ ∅.
Take now xk ∈ S(fλk , C) and x̄ ∈ S(f , C). Thus we have:

0 ≤ fλk(x
k, x̄) = f (xk, x̄)+ λkg(xk, x̄) and (3.17)

0 ≤ f (x̄, xk). (3.18)

Adding (3.17) with (3.18) and using the monotonicity of f , we obtain:

0 ≤ f (x̄, xk)+ f (xk, x̄)+ λkg(xk, x̄) ≤ λkg(xk, x̄). (3.19)

On the other hand, we know that g is strongly monotone with modulus β > 0. Thus (3.19) implies that:

g(x̄, xk) ≤ −β∥xk − x̄∥2
⇒

g(x̄, xk)
∥xk − x̄∥

≤ −β∥xk − x̄∥

⇒ −
g(x̄, xk)
∥xk − x̄∥

≥ β∥xk − x̄∥

⇒
|g(x̄, xk)|
∥xk − x̄∥

≥ β∥xk − x̄∥. (3.20)

Suppose that

xk


is not bounded. In this case there exists


xkj


⊂


xk


such that limj→∞ ∥xkj∥ = +∞. It follows from

(3.20) that

lim sup
j→+∞

|g(x̄, xkj)|
∥xkj − x̄∥

≥ lim sup
j→+∞

β∥xkj − x̄∥ = +∞. (3.21)

Note that (3.21) contradicts H4. We conclude, therefore, that the sequence

xk


is bounded. �
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3.1. Nonmonotone case

In the case of f monotone, the perturbed problem EP(fλ, C) is strongly monotone. So EP(fλ, C) has a unique solution.
When f is pseudomonotone, the regularized problem may be not strongly monotone, or even non pseudomonotone.

From now on, Cn will be the intersection of C with the ball B(0, n) with radius n centered at 0. Note that Cn is weakly
closed and also bounded, because it is contained in the B(0, n), hence it is weakly compact, see for example, [11].

Lemma 3.1. Assume that f and g satisfy H1–H2. Then for each λ > 0, there exists x̄ ∈ Cn such that fλ(x̄, y) ≥ 0, for all y ∈ Cn.

Proof. It is an immediate consequence of Ky Fan’s result (see Remark 2.1) applied to fλ. �

In the following theorem, we show that S(fλ, C) is nonempty when f is nonmonotone.

Theorem 3.4. Assume that f satisfies H1, H2, H5 and g satisfies H1–H4 . Then for any λ > 0, S(fλ, C) is nonempty.

Proof. It is immediate that fλ satisfies H1–H2. Take λ > 0, {xn} ⊂ C with limn→∞ ∥xn∥ = +∞ and u ∈ C . Thus, we have:

fλ(xn, u) = f (xn, u)+ λg(xn, u)
≤ f (xn, u)− λg(u, xn)− λβ∥xn − u∥2

= f (xn, u)+ λ∥xn − u∥


−g(u, xn)
∥xn − u∥

− β∥xn − u∥


≤ f (xn, u)+ λ∥xn − u∥


|g(u, xn)|
∥xn − u∥

− β∥xn − u∥

. (3.22)

Taking the limit in (3.22) with n → ∞ and using H4 and H5, we have that there exists n0 ∈ N such that f (xn, u) ≤ 0 and
lim supn→∞

|g(u,xn)|
∥xn−u∥ < +∞; so fλ(xn, u) ≤ 0 ∀n ≥ n0. Therefore, for each λ > 0, we have that fλ satisfies H5.

From Lemma 3.1, we see that there exists xn ∈ Cn such that fλ(xn, y) ≥ 0 for all y ∈ Cn, hence xn solves EP(fλ, Cn).
Let us now analyze two cases:

(i) There exists n ∈ N such that ∥xn∥ < n. In this case xn ∈ int(B(0, n)), and from Lemma 3.1 xn solves EP(fλ, Cn) =

EP(fλ, C ∩ B(0, n)). From the item (ii) of Lemma 2.1, it follows that xn solves EP(fλ, C).
(ii) ∥xn∥ → +∞. In this case H5 ensures the existence of u ∈ C and n0 ∈ N such that

fλ(xn, u) ≤ 0, ∀n ≥ n0. (3.23)

Take n̄ ≥ n0 such that ∥u∥ < n̄. Then u ∈ C ∩ B(0, n̄) = Cn̄ and since xn̄ solves EP(fλ, Cn̄), it follows that

fλ(xn̄, u) ≥ 0. (3.24)

Comparing (3.23) and (3.24), we obtain

fλ(xn̄, u) = 0. (3.25)

From (3.25), we have

fλ(xn̄, u) = 0 ≤ fλ(xn̄, y), ∀y ∈ Cn̄. (3.26)

Now consider the convex function f n̄λ : H → R, defined as f n̄λ (y) = fλ(xn̄, y). Since u ∈ C ∩ B(0, n̄) = Cn̄, uminimizes f n̄λ on
Cn̄, from (3.26). Since ∥u∥ < n̄, u ∈ intB(0, n̄). It follows from item (i) of Lemma 2.1 that uminimizes f n̄λ on C. It follows from
(3.25) that:

0 = fλ(xn̄, u) = f n̄λ (u)

≤ f n̄λ (y)

= fλ(xn̄, y), ∀y ∈ C . (3.27)

From (3.27), we conclude that xn̄ solves EP(fλ, C). �

In the next theorem, we establish our main result for the nonmonotone case.

Theorem 3.5. Suppose that f is pseudomonotone and satisfies H1,H2,H5, and g satisfies H1–H4 . If

xk


is a sequence of

solutions from (3.14) and λk → 0, then the following statements are equivalent:

(i) The sequence

xk


is bounded.

(ii) S(f , C) is nonempty.
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Proof. From Theorem 3.4 with λ = λk, the sequence

xk


is well-defined. The boundedness of


xk


implies that there must

exist at least one subsequence

xkj


⊂


xk


weakly converging to some x̄ ∈ C .

Since f (., y) and g(., y) satisfy H1 and using λk → 0, we obtain

0 ≤ lim sup
j→∞

fλkj (x
kj , y) = lim sup

j→∞

[f (xkj , y)+ λkjg(x
kj , y)]

≤ lim sup
j→∞

f (xkj , y)+ lim sup
j→∞

[λkjg(x
kj , y)]

≤ f (x̄, y), ∀y ∈ C . (3.28)

From (3.28), we have that S(f , C) ≠ ∅.
Now, take x̄ ∈ S(f , C). We now show that the sequence


xk


is bounded. Since xk ∈ S(fλk , C), we have:

f (x̄, xk) ≥ 0 and fλk(x
k, x̄) ≥ 0. (3.29)

From (3.29) we need to make f (xk, x̄) ≤ 0, because f is pseudomonotone.
Note that:

0 ≤ fλk(x
k, x̄) = f (xk, x̄)+ λkg(xk, x̄)

≤ λkg(xk, x̄). (3.30)

From (3.30) we obtain that g(xk, x̄) ≥ 0. By using H3, it results

g(xk, x̄)+ g(x̄, xk) ≤ −β∥xk − x̄∥2. (3.31)

Since g(xk, x̄) ≥ 0, it follows from (3.31) that g(x̄, xk) ≤ −β∥xk − x̄∥2.
The conclusion that


xk


is bounded is obtained using the same argument of the proof of the second part of

Theorem 3.3. �

Remark 3.1. In [4] it has been proposed a regularization method like (3.14) in Rn, where it is assumed that the bifunction
g satisfies the following condition:

∃ δ > 0, x̂ ∈ C : |g(x, y)| ≤ δ∥x − x̂∥∥y − x∥, ∀x, y ∈ C . (3.32)

Note that, (3.32) implies H4. Next, we present an example where the bifunction g satisfies H4, but does not satisfy (3.32).

Example 3.1. We consider g : C × C → R, g(x, y) = x(y − x)+ ln( xy ), where C := {x ∈ R: x ≥ 1}. In fact, we have that

lim sup
|y|→∞

|g(x, y)|
|y − x|

= lim sup
|y|→∞


x(y − x)
|y − x|

+
ln(x)

|y − x|
−

ln(y)
|y − x|


= x,

hence, g satisfies H4.
On the other hand, assume that g verifies (3.32) for some δ > 0 and x̂ ≥ 1. We get that |g(x̂, y)| = 0, ∀ y ∈ C , but

lim sup
|y|→∞

|g(x̂, y)| = lim sup
|y|→∞

(y − x̂)

x̂ + ln


x̂
y


/(y − x̂)

 = +∞,

which is a contradiction.

Remark 3.2. Now, we present a class of strongly monotone bifunctions g satisfying H4. To get our aim, let us consider a
strongly monotone operator T : C ⊂ H → H and a function φ: C → R such that

lim sup
∥y∥→+∞

|φ(y)− φ(x)|
∥y − x∥

< +∞.

Then, define g(x, y) := ⟨T (x), y − x⟩ + φ(x) − φ(y). Indeed, our conclusion follows from the triangular inequality and
Cauchy–Schwarz Inequality.

4. Conclusion

In this work, we extended a Tikhonov-type regularization for infinite-dimensional Equilibrium problems. Under mild
assumptionsweestablished the equivalence between the existence of solutions of the original problemand the boundedness
of the sequence generated by regularized problems.
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