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• We obtain a new Steckin inequality for the combinations of Bernstein operators.
• This inequality gives the optimal approximation rate.
• We give the strong converse result for the combinations of Bernstein operators.
• This result covers the direct estimate, the converse result and the saturation.
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a b s t r a c t

In this paper we obtain a new strong type of Steckin inequality for the linear combinations
of Bernstein operators, which gives the optimal approximation rate. Moreover, a method
to prove lower estimates for linear operators is introduced. As a result the lower estimate
for the linear combinations of Bernstein operators is obtained by using the Ditzian–Totik
modulus of smoothness.
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1. Introduction and main results

Bernstein operators on f ∈ C[0, 1] are given by

Bn(f , x) =

n
k=0

pn,k(x)f

k
n


, pn,k(x) =

n
k


xk(1 − x)n−k.

The relation between their rate of approximation and the smoothness of the function approximated has been investigated
in many papers. In many cases, such investigations lead to the so-called direct estimate, the converse result and the
saturation. Among these investigations, the Berens–Lorentz theorem [2] is an early influential converse result. M. Becker [1],
Z. Ditzian [3–5], and V. Totik [12] later proved this type of converse results for various cases. In 1992 D.X. Zhou [19] proved
the final case by confirming the conjecture of Z. Ditzian [5]. In 1994, Ditzian [6] obtained the upper pointwise estimate for
approximation by the Bernstein operators. The saturation for these operators was found in [11,18]. In 1994, V. Totik [13],
H.B. Knoop and X.L. Zhou [10] obtained the strong converse inequality for approximation by the Bernstein operators
respectively. In other words, for some constant C > 0 independent of f and n, one has

C−1ω2
ϕ


f , n−1/2

≤ ∥Bnf − f ∥ ≤ Cω2
ϕ


f , n−1/2 , ∀f ∈ C[0, 1]. (1.1)

Here ω2
ϕ(f , t) denotes the second order modulus of smoothness with weight function ϕ(x) = (x(1− x))1/2 (see [7, pp. 7–8]

for details), and ∥f ∥ = ∥f ∥C[0,1].
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Because of the Korovkin theorem (see e.g. [11]), the optimal rate of the convergence for a positive operator cannot be
faster than that of C2 functions. Therefore, in order to obtain more efficient approximation operators one has to consider
non-positive operators. To this end, in [7, p. 116] the following combinations of Bernstein operators were introduced for
r ≥ 1 by

Bn,r(f , x) =

r−1
i=0

ci(n)Bni(f , x),

where ni and ci(n) satisfy

(a) n = n0 < · · · < nr−1 ≤ Kn; (b)
r−1
i=0

|ci(n)| ≤ C;

(c)
r−1
i=0

ci(n) = 1; (d)
r−1
i=0

ci(n)n
ρ

i = 0, ρ = 1, 2, . . . , r − 1.

It was shown by Z. Ditzian and V. Totik [7, p. 11] in 1987 that

∥Bn,r(f ) − f ∥ ≤ C

ω2r

ϕ


f , n−1/2

+ n−r
∥f ∥


, (1.2)

and for 0 < α < 2r

∥Bn,r(f ) − f ∥ = O(n−α/2) ⇔ ω2r
ϕ (f , t) = O(tα), (1.3)

where ω2r
ϕ (f , t) is the 2r-th modulus of smoothness with the step-weight function ϕ(x) =

√
x(1 − x) (see [7, pp. 7–8]).

The results above are the so-called norm direct and converse results. In [7, p. 122] they also obtained a strong type of
Steckin inequality for the combinations of Bernstein operators. In 1995, D.X. Zhou [20] extended the Berens–Lorentz theorem
to higher order of smoothness, by proving pointwise direct and converse results for these combinations by the r-th classical
modulus of smoothness ωr(f , t), where r is the number of terms in the combinations. In 1999 and 2000, L.S. Xie [17] and
S.S. Guo et al. [8] respectively obtained similar results as mentioned above for the combinations of Bernstein operators by
the 2r-th Ditzian–Totik modulus of smoothness ω2r

ϕ (f , t). The similar results on pointwise simultaneous approximation by
the combinations can be found in [15]. However, the saturation problem for all r ≥ 1 was first solved in [16]. It is necessary
to mention some notations here.

For k = 1, 2, . . . let
aj,k = jaj,k−1 + (k − 1)aj−1,k−2 (1.4)

with
a0,k = 0, a1,k = 1, ak,2k = (2k − 1)!!,

where 1 < j < [k/2] if k is even and 1 < j ≤ [k/2] otherwise. The differential operators needed are given by

Pr(D) =

r
j=1

aj,r+j

(r + j)!
(x(1 − x))j(1 − 2x)δr+jDr+j,

where δj = 0 if j is even and δj = 1 otherwise. We use these differential operators to define the K -functional, namely,

K(f , r, t) = inf
g


∥f − g∥ + t2r∥Pr(D)g∥ + t2r+1

∥ϕ2r+1g(2r+1)
∥

,

where as usual ϕ(x) =
√
x(1 − x) and g ∈ C2r+1

[0, 1]. We proved in [16, p. 87] the following

Theorem 1.1. For fixed r ≥ 1 the following statement is true:

∥Bn,r(f ) − f ∥ = O(n−r) ⇐⇒ K(f , r, t) = O(t2r).

In [16] we also studied the problem of whether one can replace K(f , r, t) = O(t2r) by ω2r
ϕ (f , t) = O(t2r). Thus, let

σ(x) =
a1,r+1

(r + 1)!
+

r−1
j=1

aj+1,r+j+1

(r + j + 1)!
x(x − 1) · · · (x − j + 1).

We have (see [16, p. 88])

Theorem 1.2. Let r ≥ 1 be fixed. If −1 ∉ {Re x : σ(x) = 0}, then there holds for f ∈ C[0, 1]

K(f , r, t) = O(t2r) ⇐⇒ ω2r
ϕ (f , t) = O(t2r).

Let Πn be a set of algebraic polynomials with degree n, and
En(f ) = inf

P∈Πn
∥f − P∥.
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In this paper we will prove a new strong type of Steckin inequality for Bn,r(f ), i.e.,

Theorem 1.3. For fixed r ≥ 1 there is a constant C > 0 such that for f ∈ C[0, 1] and n = 1, 2, . . .

∥Bn,r(f ) − f ∥ ≤ C

K(f , r, n−1/2) + n−rEr(f )


(1.5)

and

K(f , r, n−1/2) ≤ C


n−r−1/2

n
k=1

kr−1/2
∥Bk,r(f ) − f ∥ + n−rEr(f )


. (1.6)

Remark 1. Theorem 1.3 implies the saturation for the combination of Bernstein operators.We know that the classic Steckin
inequality for operators does not give an optimal approximation rate, while (1.5) and (1.6) imply the result of Theorem 1.1.
In fact, if K(f , r, t) = O(t2r), by (1.5) we have

∥Bn,r(f ) − f ∥ = O(n−r).

On the other hand, if ∥Bk,r(f ) − f ∥ = O(k−r), by (1.6) we get

K(f , r, n−1/2) ≤ C


n−r−1/2

n
k=1

kr−1/2
· k−r

+ n−rEr(f )


≤ Cn−r ,

which implies K(f , r, t) = O(t2r).

The following theorem gives the so-called strong converse result for approximation by Bn,r(f ).

Theorem 1.4. Let r > 1 be fixed. If −1 ∉ {Re x : σ(x) = 0}, then there holds for all f ∈ C[0, 1] and all n = 1, 2, . . .

max
k≥n

∥Bk,r(f ) − f ∥ + n−rEr(f ) ≍ ω2r
ϕ (f , n−1/2) + n−rEr(f ), (1.7)

where the symbol X ≍ Y means that there exists a positive constant M independent of n and f such that M−1Y ≤ X ≤ MY.

Remark 2. The equivalence (1.7) covers the direct estimate (1.2), the converse result (1.3) and the saturation (see
Theorems 1.1 and 1.2) for norm approximation by these combinations. In fact, from (1.7), we have

∥Bn,r(f ) − f ∥ ≤ max
k≥n

∥Bk,r(f ) − f ∥ ≤ C

ω2r

ϕ


f , n−1/2

+ n−r
∥f ∥


,

which is the direct norm estimate for Bn,r(f ). Secondly, if ω2r
ϕ (f , t) = O (tα) for 0 < α ≤ 2r , by the above inequality we

have

∥Bn,r(f ) − f ∥ ≤ Cn−α/2. (1.8)

On the other hand, if ∥Bn,r(f ) − f ∥ = O

n−α/2


for 0 < α ≤ 2r , by (1.7) we have

ω2r
ϕ


f , n−1/2

≤ C

max
k≥n

∥Bk,r(f ) − f ∥ + n−rEr(f )


.

Setting ∥Bn0,r(f ) − f ∥ = maxk≥n ∥Bk,r(f ) − f ∥ with n0 ≥ n,

ω2r
ϕ


f , n−1/2

≤ C

∥Bn0,r(f ) − f ∥ + n−rEr(f )


≤ Cn−α/2,

which, combining (1.8), implies the norm converse result (the case 0 < α < 2r) and the saturation (the case α = 2r) for
Bn,r(f ).

Remark 3. The so-called Berens–Lorentz type theorems are the pointwise converse results for the operators. The complete
characterization given by D.X. Zhou [19] is a case in point. However, as the simple example f (x) = x2, with Bn(f , x)− f (x) =
x(1−x)

n , but ω2
ϕ


f , n−1/2


=

1
2n , shows, it is impossible to have pointwise lower estimate like (1.1) for Bernstein operators.

The same is true with the combinations of these operators.

Theorems 1.3 and 1.4 will be proved in Section 2. Throughout this paper, C denotes a positive constant independent of n
and x, whose value may be different in different situations.

2. Proof of Theorems 1.3 and 1.4

We begin with the following
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Lemma 2.1. For Pn ∈ Πn satisfying

∥Pn − f ∥ ≤ CEn(f ),

we have

∥f − Pn∥ + n−2r
∥Pr(D)Pn∥ + n−2r−1

∥ϕ2r+1P (2r+1)
n ∥ ≍ K(f , r, n−1). (2.1)

Proof. Clearly, we need only to verify the following three inequalities:

∥f − Pn∥ ≤ MK(f , r, n−1), ∥ϕ2r+1P (2r+1)
n ∥ ≤ Mn2r+1K(f , r, n−1)

and

∥Pr(D)Pn∥ ≤ Mn2rK(f , r, n−1). (2.2)

The first two are evident as

ω2r+1
ϕ (f , t) ≤ CK(f , r, t), En(f ) ≤ Cω2r+1

ϕ (f , n−1)

and

∥ϕ2r+1P (2r+1)
n ∥ ≤ Cn2r+1ω2r+1

ϕ (f , n−1),

which can be deduced immediately from the definition of K(f , r, t), (7.2.2) and (7.3.1) in [7]. To prove (2.2) we choose
g ∈ C2r+1

[0, 1] such that

∥f − g∥ + n−2r
∥Pr(D)g∥ + n−2r−1

∥ϕ2r+1g(2r+1)
∥ ≤ 2K(f , r, n−1). (2.3)

We may assume n = 2m, P2j ∈ Π2j , j = m + 1, . . . , and

∥P2j − g∥ = E2j(g), j = m + 1, . . . .

Thus we have

g − P2m =

∞
j=m

(P2j+1 − P2j).

From Theorem 7.2.1 in [7] and (2.3), we conclude

∥P2j+1 − P2j∥ ≤ C

2−j2r+1

∥ϕ2r+1g(2r+1)
∥

≤ C(2−j)2r+1(2m)2r+1K(f , r, 2−m), j = m + 1, . . . .

Obviously, this estimate holds also for j = m. Hence, by using the Bernstein inequality, we get finally

∥Pr(D)(g − P2m)∥ ≤ C
∞
j=m

22rj2−2rj−j22rm+mK(f , r, 2−m)

≤ C22rmK(f , r, 2−m),

which implies (2.2). �

Denote En = [a/n, 1 − a/n] for fixed a > 0. For the moments of the operator Bn,r we have shown in [16, p. 89]:

Lemma 2.2. Let x ∈ En, C(n) =
r−1

i=0 ci(n)n−r
i and aj,k given by (1.4). Then for some ϵk ∈ Lip1 satisfying ϵk(0) = ϵk(1) =

0, ϵ2r−1(x) ≡ 0 and ϵ2r(x) ≡ 0, we have

Bn,r((· − x)r+1, x) = C(n)x(1 − x)(1 − 2x)δr+1a1,r+1,

and for r + 2 ≤ k ≤ 2r

Bn,r((· − x)k, x) = C(n)(x(1 − x))k−r(1 − 2x)δk(ak−r,k + ϵk(x)) + O


ϕ2(k−r−1)(x)

nr+1


.

Moreover, following the notations of Lemma 2.2 we have (see [16, p. 92])
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Lemma 2.3. Let P ∈


m with m ≤
√
n, then the following inequality is true for all x ∈ [0, 1]:Bn,r(P, x) − P(x) − C(n)

r
i=1

(x(1 − x))i

(r + i)!
(1 − 2x)δr+i


ai,r+i + ϵr+i(x)


P (r+i)(x)


≤ C1


n−r−1/2

∥ϕ2r+1P (2r+1)
∥ + n−r−1

∥P∥

, (2.4)

where C1 is a positive constant independent of P and n, and ϵr+1(x) ≡ 0.

Let q be a given algebraic polynomial, and q̄ = {Re x : q(x) = 0}. We need also the results concerning the following
differential operator (see [14]): let

P(D) =

l
i=0

αi(x)(x(1 − x))iDl+i,

where αi ∈ Lip δ, i = 0, 1, . . . , l, for some 0 < δ ≤ 1 and αl(x) ≠ 0 for x ∈ [0, 1]. Let further

σ0(x) = α0(0) +

l
i=1

αi(0)x(x − 1) · · · (x − i + 1)

and

σ1(x) = α0(1) +

l
i=1

(−1)iαi(1)x(x − 1) · · · (x − i + 1).

We have (see [9, pp. 80–81] and [14, p. 251])

Lemma 2.4. Let α ≥ 0 be fixed. Then there is a constant A > 0 such that for all P ∈ Πn and all n = 1, 2, . . . , there hold

∥ϕ2l+2α+1P (2l+1)
∥ ≤ An(∥ϕ2αP(D)P∥ + ∥ϕ2αP∥)

and if −α ∉ σ 0 ∪ σ 1

∥ϕ2l+2αP (2l)
∥ ≤ A(∥ϕ2αP(D)P∥ + ∥ϕ2αP∥). (2.5)

Moreover, if σ0(x) = xσ0,0(x), σ1(x) = xσ1,1(x) and 0 ∉ σ 0,0 ∪ σ 1,1, then (2.5) also holds for α = 0.

We are now in the position to verify Theorem 1.3.

Proof of Theorem 1.3. Let Pm ∈ Πm with m = [
√
n] satisfy

∥Pm − f ∥ = Em(f ).

By (7.2.2) and (7.3.1) in [7] we have

∥Pm − f ∥ ≤ Cω2r+1
ϕ (f , n−1/2) (2.6)

and

∥ϕ2r+1P (2r+1)
m ∥ ≤ Cm2r+1ω2r+1

ϕ (f , n−1/2). (2.7)

As (see (2.1.4) in [7])

ω2r+1
ϕ (f , t) ≍ inf

g


∥f − g∥ + t2r+1

∥ϕ2r+1g(2r+1)
∥

,

we conclude by the definition of K(f , r, t) that

ω2r+1
ϕ (f , n−1/2) ≤ CK(f , r, n−1/2). (2.8)

By (2.6) and (2.8), we have

∥Bn,r(f ) − f ∥ ≤ 2∥f − Pm∥ + ∥Bn,r(Pm) − Pm∥

≤ CK(f , r, n−1/2) + ∥Bn,r(Pm) − Pm∥. (2.9)

Using (2.4), (2.7) and (2.8), we obtain for x ∈ [0, 1]

|Bn,r(Pm, x) − Pm(x)| ≤ |C(n)|

 r
i=1

ϕ2i(x)
(r + i)!

(1 − 2x)δr+i

ai,r+i + ϵr+i(x)


P (r+i)
m (x)


+ C


K(f , r, n−1/2) + n−r−1

∥Pm∥

. (2.10)
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We know that ϵ2r−1(x) ≡ ϵ2r(x) ≡ 0, and ϵr+i ∈ Lip 1 with ϵr+i(0) = ϵr+i(1) = 0 for i = 1, 2, . . . , r − 2. Thus, there is
C > 0 such that |ϵr+i(x)| ≤ Cϕ2(x) for x ∈ [0, 1] and i = 1, 2, . . . , r − 2. In what follows we should prove

∥ϕ2i+2P (r+i)
m ∥ ≤ C (∥Pr(D)Pm∥ + ∥Pm∥) for i = 1, 2, . . . , r − 2. (2.11)

Indeed, we may assume m = 2k. The set σ 0 ∪ σ 1 for Pr(D) has only finite elements. We have 0 < α < 1/2 satisfying
−α ∉ σ 0 ∪ σ 1. Let P2j ∈ Π2j , j = 0, 1, . . . , k− 1, be the best approximation of Pm with the weight ϕ2α . Then, we have from
Theorem 8.2.1 in [7]

∥ϕ2α(Pm − P2j)∥ ≤ C2−2jr(∥ϕ2α+2rP (2r)
m ∥ + ∥Pm∥), j = 0, 1, . . . , k − 1.

Consequently, we conclude from (8.1.4) and (8.1.3) in [7]

∥ϕ2i+2P (r+i)
m ∥ ≤

k−1
j=0

∥ϕ2i+2(P2j+1 − P2j)
(r+i)

∥

≤ C
k−1
j=0

2(2r−1)j
∥ϕ(P2j+1 − P2j)∥

≤ C
k

j=0

2−j(∥ϕ2α+2rP (2r)
m ∥ + ∥Pm∥)

≤ C(∥ϕ2α+2rP (2r)
m ∥ + ∥Pm∥).

On the other hand, as −α ∉ σ 0 ∪ σ 1 we get by (2.5) with l = r

∥ϕ2α+2rP (2r)
m ∥ + ∥Pm∥ ≤ A(∥Pr(D)Pm∥ + ∥Pm∥).

Thus, (2.11) follows from the last two displays. From (2.11), we obtain r
i=1

ϕ2i(x)
(r + i)!

(1 − 2x)δr+i

ai,r+i + ϵr+i(x)


P (r+i)
m (x)

 ≤ C(∥Pr(D)Pm∥ + ∥Pm∥).

Therefore, as C(n) ≍ n−r , we conclude from (2.10) and (2.1)

∥Bn,r(Pm) − Pm∥ ≤ Cn−r(∥Pr(D)Pm∥ + ∥Pm∥) + CK(f , r, n−1/2)

≤ C

K(f , r, n−1/2) + n−r

∥f ∥

. (2.12)

Combining (2.12) and (2.9) we have finally

∥Bn,r(f ) − f ∥ ≤ C

K(f , r, n−1/2) + n−r

∥f ∥

.

This inequality implies (1.5), since for any P ∈ Πr

∥Bn,r(f − P) − (f − P)∥ = ∥Bn,r(f ) − f ∥ and K(f − P, r, n−1/2) = K(f , r, n−1/2).

To show (1.6) we notice that if we define

P̃r(D) =

r
i=1

ϕ2i(x)
(r + i)!

(1 − 2x)δr+i

ai,r+i + ϵr+i(x)


Dr+i,

then the set σ 0 ∪ σ 1 for P̃r(D) is the same as for Pr(D). Consequently, (2.11) holds also for P̃r(D) instead of Pr(D). Thus, r
i=0

ϕ2i(x)
(r + i)!

(1 − 2x)δr+iϵr+i(x)P (r+i)
m (x)

 ≤ C

∥P̃r(D)Pm∥ + ∥Pm∥


.

Therefore,

∥Pr(D)Pm∥ ≤ C

∥P̃r(D)Pm∥ + ∥Pm∥


. (2.13)

On the other hand, we have

K(f , r, n−1/2) ≤ C

∥f − Pm∥ + n−r

∥Pr(D)Pm∥ + n−r−1/2
∥ϕ2r+1P (2r+1)

m ∥

.

We already know from (2.6) and (2.7)

∥f − Pm∥ + n−r−1/2
∥ϕ2r+1P (2r+1)

m ∥ ≤ Cω2r+1
ϕ (f , n−1/2),
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and from (2.13), (2.4), (2.6) and (2.7)

n−r
∥Pr(D)Pm∥ ≤ C


∥Bn,r(Pm) − Pm∥ + ω2r+1

ϕ (f , n−1/2) + n−r
∥f ∥


.

Hence, there holds

K(f , r, n−1/2) ≤ C

∥Bn,r(Pm) − Pm∥ + ω2r+1

ϕ (f , n−1/2) + n−r
∥f ∥


.

Following from Theorem 9.3.6 of [7]

ω2r+1
ϕ (f , n−1/2) ≤ Cn−r−1/2


n

k=1

kr−1/2
∥Bk,r(f ) − f ∥ + ∥f ∥


and from (2.6)

∥Bn,r(Pm) − Pm∥ ≤

∥Bn,r(f ) − f ∥ + Cω2r+1

ϕ (f , n−1/2)

.

Consequently, we obtain

K(f , r, n−1/2) ≤ C


∥Bn,r(f ) − f ∥ + n−r−1/2

n
k=1

kr−1/2
∥Bk,r(f ) − f ∥ + n−r

∥f ∥


.

Multiplying by nr−1/2 on both sides of the above inequality and taking the sum from N to 2N , we obtain by themonotonicity
of K(f , r, n−1/2)

N r+1/2K(f , r, (2N)−1/2) ≤ C


2N
k=1

kr−1/2
∥Bk,r(f ) − f ∥ + N1/2

∥f ∥


,

which obviously implies (1.6). �

Next we should apply Theorem 1.3 and Lemma 2.4 to verifying Theorem 1.4.

Proof of Theorem 1.4. It is easy to see that for Pr(D) the functions σ0(x) = xσ(x − 1) and σ1(x) = (−1)rxσ(x − 1). As
−1 ∉ {Re x : σ(x) = 0}, the operator Pr(D) satisfies the condition of Lemma 2.4 for α = 0. We obtain from (2.5) that there
is a constant A > 0 such that for all P ∈ Πn and all n = 1, 2, . . .

∥ϕ2rP (2r)
∥ ≤ A(∥Pr(D)P∥ + ∥P∥). (2.14)

On the other hand, if Pm ∈ Πm with m = [
√
n] is such that ∥f − Pm∥ = Em(f ), then

ω2r
ϕ (f ,m−1) ≤ C


∥f − Pm∥ + m−2r

∥ϕ2rP (2r)
m ∥


.

Thus, we have from (2.14) and (2.1)

ω2r
ϕ (f ,m−1) ≤ C(∥f − Pm∥ + m−2r

∥Pr(D)Pm∥ + m−2r
∥f ∥)

≤ C

K(f , r,m−1) + m−2r

∥f ∥

,

which obviously implies

ω2r
ϕ (f ,m−1) + m−2rEr(f ) ≤ C(K(f , r,m−1) + m−2rEr(f )).

Therefore, it follows from (1.6) that

ω2r
ϕ (f , n−1/2) + n−rEr(f ) ≤ C


n−r−1/2

n
k=1

kr−1/2
∥Bk,r(f ) − f ∥ + n−rEr(f )


.

Consequently, for τ = 0, 1/4 we obtain from the last display

ω2r
ϕ (f , n−1/2) + n−rEr(f ) ≤ Cn−r−τ max

1≤k≤n
kr+τ (∥Bk,r(f ) − f ∥ + n−rEr(f )).

On the other hand, let J(f , t) = ω2r
ϕ (f , t) + t2rEr(f ), then J(f , λt) ≤ Cλ2r J(f , t) for λ ≥ 1. We conclude from (1.2)

n−r−τ max
1≤k≤n

kr+τ (∥Bk,r(f ) − f ∥ + n−rEr(f )) ≤ CJ(f , n−1/2).

Combining the last two displays, we obtain finally for τ = 0 and 1/4

n−r−τ max
1≤k≤n

kr+τ (∥Bk,r(f ) − f ∥ + n−rEr(f )) ≍ J(f , n−1/2). (2.15)
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Hence, there holds

n−r max
1≤k≤n

kr(∥Bk,r(f ) − f ∥ + n−rEr(f )) ≍ n−r−1/4 max
1≤k≤n

kr+1/4(∥Bk,r(f ) − f ∥ + n−rEr(f )).

Assuming 1 ≤ k0 ≤ n satisfies

max
1≤k≤n

kr+1/4(∥Bk,r(f ) − f ∥ + n−rEr(f )) = k0r+1/4(∥Bk0,r(f ) − f ∥ + n−rEr(f )),

we have for some C0 > 0

n−rkr0(∥Bk0,r(f ) − f ∥ + n−rEr(f )) ≤ n−r max
1≤k≤n

kr(∥Bk,r(f ) − f ∥ + n−rEr(f ))

≤ C0n−r−1/4kr+1/4
0 (∥Bk0,r(f ) − f ∥ + n−rEr(f )),

which gives k0 ≥ nC−4
0 . Therefore we have from (2.15)

J(f , n−1/2) ≤ Cn−r−1/4 max
1≤k≤n

kr+1/4(∥Bk,r(f ) − f ∥ + n−rEr(f ))

≤ Cn−r−1/4k0r+1/4(∥Bk0,r(f ) − f ∥ + n−rEr(f ))

≤ C


max

k≥nC−4
0

∥Bk,r(f ) − f ∥ + n−rEr(f )


.

The property of J(f , n−1/2) implies

J(f , (nC−4
0 )−1/2) ≤ C


max

k≥nC−4
0

∥Bk,r(f ) − f ∥ + n−rEr(f )


.

The desired assertion follows from this estimate and (1.2). �
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