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We discuss various notions generalizing the concept of a homogeneous space to the setting
of locally compact quantum groups. On the von Neumann algebra level we recall an
interesting duality for such objects studied earlier by M. Izumi, R. Longo, S. Popa for
compact Kac algebras and by M. Enock in the general case of locally compact quantum
groups. A definition of a quantum homogeneous space is proposed along the lines of
the pioneering work of Vaes on induction and imprimitivity for locally compact quantum
groups. The concept of an embeddable quantum homogeneous space is selected and
discussed in detail as it seems to be the natural candidate for the quantum analog of
classical homogeneous spaces. Among various examples we single out the quantum analog
of the quotient of the Cartesian product of a quantum group with itself by the diagonal
subgroup, analogs of quotients by compact subgroups as well as quantum analogs of trivial
principal bundles. The former turns out to be an interesting application of the duality
mentioned above.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The notion of a homogeneous space of a locally compact group is of fundamental importance in many branches of
mathematics. The non-commutative geometric generalization of the theory of locally compact groups was enriched greatly
by the paper of S. Vaes [35], in which the notion of a closed subgroup and, more importantly a quantum homogeneous
space was thoroughly discussed (alongside many other developments). For compact quantum groups these notions were
already developed in the PhD thesis of P. Podleś [20] and later published in [21]. It was shown in that paper that quantum
groups often have fewer subgroups than one would expect. This was, in particular, proved for the quantum SU(2) group
which is a deformation of the classical SU(2), yet whose list of subgroups is dramatically shorter than that of the classical
SU(2). Thus Podleś realized that some quantum homogeneous spaces did not come from quantum subgroups. It led him to
introduce the notions of

� homogeneous space,
� embeddable homogeneous space,
� quotient homogeneous space

in the compact quantum group context and he proved that these three classes are consecutively strictly smaller. Moreover
in his work on quantum spheres [19] he showed that by allowing (quantum) homogeneous spaces which are not of the
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Fig. 1. Schematic presentation of relations between types of quantum group actions.

quotient type we reveal a wealth of new examples of interesting quantum spaces. The three different classes of (quantum)
homogeneous spaces mentioned above are reduced to usual homogeneous spaces provided the quantum group and the
homogeneous space are classical. It is important to note that the first (broadest) class allows non-commutative homogeneous
spaces for classical groups. However (quantum) homogeneous spaces of the second and third class for a classical group are
necessarily classical.

The class of embeddable homogeneous spaces was defined by Podleś as containing quantum spaces X with an action of a
compact quantum group G which can be realized inside C(G) by the comultiplication. In other words he considered coideals
in C(G) (cf. Theorem 4.5(2) and Proposition 3.1). The classical correspondence between closed subgroups and coideals has by
now received more attention from researchers in the theory of quantum groups. We would like to point out an interesting
approach, due to several authors, using idempotent states (see e.g. [6,7,28,26]). The case of co-amenable compact quantum
groups was treated from this point of view in [7, Theorem 4.1]. A similar result for unimodular co-amenable locally compact
quantum groups can be found in [28, Theorem 3.5].

This paper is devoted to generalization of the notion of embeddable homogeneous spaces for compact quantum groups
to the context of locally compact quantum groups of Kustermans and Vaes [12,14,17]. We will follow the path begun by
Vaes in [35], where he dealt with the generalization to the non-compact case of the quotient construction considered by
Podleś.

The task seems quite a lot more complicated than for compact quantum groups. We encounter many different classes
of objects related to a given locally compact quantum group. We will introduce all these notions in Sections 2, 3 and 4.
Nevertheless, before giving precise definitions, we wish to present a diagram describing (informally) relations between the
various concepts which will be dealt with in the paper. This is done in Fig. 1.

The intersection between (ergodic) W∗-quantum G-spaces and C∗-quantum G-spaces in Fig. 1 should not be understood
literally. It represents the class of W∗-quantum G-spaces for which there exists a suitably compatible “C∗-version” (see
Definition 4.1).

One of the reasons for considering so many different objects is that some new constructions are natural and relatively
easy to perform on one level (e.g. the W∗-level) and seem quite complicated if not impossible on other levels (e.g. the
C∗-level). This is exemplified in particular in Section 3 where we discuss a very satisfying duality (in the spirit of [31])
between embeddable W∗-quantum G-spaces which was introduced for compact Kac algebras in [10, Section 4] and for
locally compact quantum groups in [5, Section 3]. This duality produces for each embeddable W∗-quantum G-space X an
embeddable W∗-quantum Ĝ-space which we denote by X̃ and call the co-dual of X.1 We include the proof that the second
co-dual ˜̃X is equal to X (this is a true equality, not isomorphism — the price we pay for this is that our objects come with a
particular embedding into operators on appropriate Hilbert spaces). A very similar result is contained in [5, Théorème 3.3],
but in a slightly different context as the duality discussed there maps right co-ideals to left ones. This duality, when re-
stricted to a classical group G, coincides with the well-known Takesaki–Tatsuuma duality between invariant subalgebras of
L∞(G) and closed subgroups of G (see [31]). Since our duality gives rise to the duality between invariant subalgebras of
L∞(G) and L∞(Ĝ) it should be stressed that it is the co-commutativity of Ĝ that forces all invariant subalgebras of L∞(Ĝ)

to be of the form L∞(Ĥ) for certain closed quantum subgroup H ⊂ G. In the case of non-classical group G we get a fully
symmetric picture of the duality that links embeddable W∗-quantum G-spaces and embeddable W∗-quantum Ĝ-spaces.

The necessary material on quantum groups and the operator algebra techniques we use can be found in [12,37]. The
research presented in this paper is based strongly on the paper of Vaes [35], the work on quantum subgroups [4] (which,
in turn, follows [18] closely) and [11]. Some important definitions and concepts will be touched upon in Section 2.

1 The reason for the term “co-dual” in favor of “dual” stems from the fact that the co-dual of the quantum group itself treated as a homogeneous space
is not its dual as a quantum group.
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Section 3 introduces the notion of an embeddable W∗-quantum G-space and deals with duality for such objects. Several
examples including classical ones are discussed. The analysis of the classical situation reproduces to a certain extent the
results of [27]. Then, in Section 4, we introduce quantum homogeneous spaces and embeddable quantum homogeneous
spaces which are the main focus of this paper. Section 5 deals with what we call the “co-compact” cases which are quantum
analogues of quotients by compact subgroups (cf. [25] for another point of view on this situation). In Section 6 the quantum
analog of the quotient of the Cartesian product of a group with itself by the diagonal subgroup is discussed. We construct
this object and show that it is an embeddable quantum homogeneous space, as defined in Section 4. We also prove that it
is not of quotient type unless the considered quantum group is, in fact, classical. This lends more substance to the slogan
that the diagonal subgroup does not exist for quantum groups. The duality discussed in Section 3 is used to prove this
result. Finally, Section 7 discusses a strengthening of the definition of an embeddable quantum homogeneous space which
corresponds to the classical notion of a trivial principal bundle.

2. Preliminaries

Throughout the paper we will be using standard tools of the theory of operator algebras employed in the study of
quantum groups. Introductory material on these topics may be found e.g. in [13]. For more advanced topics on multipliers
we refer to [37,15]. A crucial notion of a strict mapping introduced in [35, Definition 3.1] will be used extensively. Let N be
a von Neumann algebra and let A be a C∗-algebra. A mapping θ : N → M(A) is strict if for any norm-bounded net (xi)i∈I of
elements of N converging in the strong∗ topology to y ∈ N the net (θ(xi))i∈I is strictly convergent to θ(y). This means that
for any a ∈ A the nets(

θ(xi)a
)

i∈I and
(
θ(xi)

∗a
)

i∈I
converge in norm to θ(y)a and θ(y)∗a respectively.

We will use the very convenient notation which can be found e.g. in [3, Section 2]: for a subset X of a Banach space
the symbol [X ] denotes the norm-closed linear span of X . To keep the notation light we also write [. . .] instead of [{. . .}]
whenever necessary.

Let us recall the definition of a locally compact quantum group on von Neumann algebra level:

Definition 2.1. (See [14, Definition 1.1].) A pair G = (M,�) consisting of a von Neumann algebra M and a normal unital
∗-homomorphism �: M → M ⊗̄ M is called a locally compact quantum group if

� � is coassociative, i.e. (� ⊗ id) ◦ � = (id ⊗ �) ◦ �;
� there exist n.s.f. weights ϕ and ψ on M such that

– ϕ is left invariant: ϕ((ω ⊗ id)�(x)) = ϕ(x)ω(1) for all x ∈ M+
ϕ and ω ∈ M+∗ ,

– ψ is right invariant: ψ((id ⊗ ω)�(x)) = ψ(x)ω(1) for all x ∈M
+
ψ and ω ∈ M+∗ .

In what follows we shall write L∞(G) for the von Neumann algebra M from Definition 2.1 and �G for �. There are a few
possible conventions available while developing general theory. The choices correspond to the left and right Haar weight
option. Anticipating the needs of this paper we adopt the following choices and notation (found also in [1,17]):

� L2(G) denotes the GNS-Hilbert space for the right Haar weight ψ ; in what follows η will denote the corresponding
GNS-map.

� W ∈ B(L2(G) ⊗ L2(G)) is the Kac–Takesaki operator of G. It is uniquely defined by its values on the simple tensors
η(x) ⊗ η(y):

W
(
η(x) ⊗ η(y)

) = (η ⊗ η)
(
�G(x)(1 ⊗ y)

)
.

� The Tomita–Takesaki antiunitary conjugation related to ψ is denoted by J .

Starting with G one constructs the dual quantum group Ĝ. By definition

L∞(Ĝ) = {
(id ⊗ ω)(W )

∣∣ ω ∈ B
(
L2(G)

)
∗
}′′

and L2(Ĝ) = L2(G). The last equality means that the range of the GNS-map η̂ of the right Haar weight ψ̂ of Ĝ is L2(G) and
we have ψ̂(x∗x) = (η̂(x)|η̂(x)) for any x in the domain of η̂. The related modular conjugation Ĵ is an antiunitary operator
acting on L2(G). Remarkably, Ĵ implements the unitary antipode R of G:

R(x) = Ĵ x∗ Ĵ for any x ∈ L∞(G)

[12, Section 5]. The Kac–Takesaki operator Ŵ ∈ B(L2(G) ⊗ L2(G)) of Ĝ is, in turn, given by Ŵ = ΣW ∗Σ , where Σ ∈
B(L2(G) ⊗ L2(G)) denotes the flip operator.

The quantum group G can be equivalently described using the language of C∗-algebras. In particular, given a locally
compact quantum group G there is a C∗-algebra, which we will denote by C0(G), strongly dense in L∞(G) such that
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�G restricted to C0(G) is a morphism from C0(G) to C0(G) ⊗ C0(G) in the sense of [37] (see also [15]). We will use
the same symbol (namely �G) for comultiplications on L∞(G) and C0(G) as well as its extension to a map M(C0(G)) →
M(C0(G) ⊗ C0(G)).

Definition 2.2. Let G be a locally compact quantum group. A W∗-quantum G-space X consists of a von Neumann algebra
L∞(X) and an injective normal unital ∗-homomorphism δX: L∞(X) → L∞(G) ⊗̄ L∞(X) such that

(id ⊗ δX) ◦ δX = (�G ⊗ id) ◦ δX.

A W∗-quantum G-space X is ergodic if δX(x) = 1 ⊗ x implies x ∈C1.

Definition 2.3. Let G be a locally compact quantum group. A C∗-quantum G-space Y consists of a C∗-algebra C0(Y) and an
injective

δY ∈ Mor
(
C0(Y),C0(G) ⊗ C0(Y)

)

such that

(id ⊗ δY) ◦ δY = (�G ⊗ id) ◦ δY

and the Podleś condition holds:
[
δY

(
C0(Y)

)(
C0(G) ⊗ 1

)] = C0(G) ⊗ C0(Y).

3. Embeddable W∗-quantum GGG-spaces

Proposition 3.1. Let G be a locally compact quantum group and let X be an ergodic W∗-quantum G-space. Assume that there exists
a normal unital ∗-homomorphism γ : L∞(X) → L∞(G) such that

(id ⊗ γ ) ◦ δX = �G ◦ γ . (3.1)

Then γ is injective.

Proof. Let J ⊂ N be the kernel of γ and p ∈Z(N) be the central projection corresponding to the two-sided ideal J: J = pN.
Eq. (3.1) implies that δX(J) ⊂ L∞(G) ⊗̄ J which, in turn, leads to the inequality δX(p) � 1 ⊗ p. It has been shown in the
proof of [11, Theorem 4.2] that in fact we have δX(p) = 1 ⊗ p. Using the ergodicity of X we conclude that either p = 0 or
p = 1. The second case is ruled out, since γ is a unital map. Hence p = 0 and kerγ = J = {0}. �

Proposition 3.1 says that if we are given a W∗-quantum G-space X with an equivariant map γ : L∞(X) → L∞(G) then
we may regard L∞(X) as a right coideal in L∞(G). Therefore, in such a situation, we will from now on assume that the
embedding is part of the data.

Definition 3.2. Let G be a locally compact quantum group and X an ergodic W∗-quantum G-space. We say that X is an
embeddable W∗-quantum G-space if L∞(X) ⊂ L∞(G) and δX is given by restriction of �G to L∞(X). In particular we have
�G(L∞(X)) ⊂ L∞(G) ⊗̄ L∞(X).

Example 3.3. One obvious example of an embeddable W∗-quantum G-space is X = G. More generally, let H be a closed
quantum subgroup of G in the sense Vaes ([35,4], cf. also [36]). Performing the quotient construction one gets an embed-
dable W∗-quantum G-space G/H, see [35, Definition 4.1]. Examples related to classical groups will be discussed in more
detail in Theorem 3.10.

Definition 3.4. Let X be an embeddable W∗-quantum G-space. We say that X is of quotient type if there exists a closed
quantum subgroup in the sense of Vaes H of G such that L∞(X) = L∞(G/H).

Proposition 3.5. Let X be an embeddable W∗-quantum G-space and let N be the relative commutant of L∞(X) in L∞(Ĝ):

N = {
y ∈ L∞(Ĝ)

∣∣ ∀x ∈ L∞(X) xy = yx
}
.

Then

(1) �
Ĝ
(N) ⊂ L∞(Ĝ) ⊗̄ N,

(2) the pair (N, γ ) with γ = �
Ĝ
|N is an embeddable W∗-quantum Ĝ-space.



578 P. Kasprzak, P.M. Sołtan / J. Math. Anal. Appl. 411 (2014) 574–591
Proof. Clearly (2) follows from (1). Now take y ∈ N and x ∈ L∞(X). Let W ∈ B(L2(G)⊗ L2(G)) be the Kac–Takesaki operator.
We have

�
Ĝ
(y)(1 ⊗ x) = Ŵ (y ⊗ 1)Ŵ ∗(1 ⊗ x)

= ΣW ∗Σ(y ⊗ 1)ΣW Σ(1 ⊗ x)ΣW ∗W Σ

= ΣW ∗(1 ⊗ y)W (x ⊗ 1)W ∗W Σ

= ΣW ∗(I ⊗ y)�G(x)W Σ

= ΣW ∗�G(x)(1 ⊗ y)W Σ

= (1 ⊗ x)ΣW ∗(1 ⊗ y)W Σ

= (1 ⊗ x)�
Ĝ
(y).

This shows that �
Ĝ
(y) ∈ L∞(Ĝ) ⊗̄ N. �

Definition 3.6. Let X be an embeddable W∗-quantum G-space. The embeddable W∗-quantum G-space (N, γ ) defined in
Proposition 3.5 will be called the co-dual of X.

From now on the co-dual embeddable W∗-quantum G-space of X will be denoted by X̃. In particular we have

L∞(X̃) = {
y ∈ L∞(Ĝ)

∣∣ ∀x ∈ L∞(X) xy = yx
}
. (3.2)

Let us also mention that a trace of the duality for embeddable W∗-quantum G-spaces can be found in [6, Section 4].

Example 3.7. Consider a locally compact quantum group G as an embeddable W∗-quantum G-space (cf. Example 3.3).
Then the co-dual G̃ is a one point set which can be naturally identified with the (classical) trivial subgroup of Ĝ (cf.
Theorem 3.10).

Remark 3.8. Let X be an embeddable W∗-quantum G-space and define M to be the von Neumann algebra

M = (
L∞(X) ∪ L∞(Ĝ)′

)′′ ⊂ B
(
L2(G)

)
. (3.3)

This is the crossed product von Neumann algebra as defined [33, Definition 2.1]. Usually in this context the crossed product is
defined as a subalgebra of B(L2(G))⊗̄ L∞(X) generated by the image of δX and the copy L∞(Ĝ)′ ⊗1 of L∞(Ĝ)′ , but since δX
is the restriction of �G we can use the operator W to bring this subalgebra back to B(L2(G)). More precisely we note that
W ∗(y ⊗ 1)W = y ⊗1 for any y ∈ L∞(Ĝ)′ and W ∗δX(x)W = x ⊗ 1 for any x ∈ L∞(X). Therefore we can identify M with the
crossed product (cf. remarks after [33, Definition 4.1]). Note that since we are using the right Haar measure, L∞(Ĝ) is the
quantum counterpart of the algebra generated by the right shifts on G. Following this analogy we see that the commutant
L∞(Ĝ)′ is the “algebra generated by the left shifts” and its appearance in the crossed product (3.3) is compatible with X

being a left quantum G-space.
Now we easily see that by definition L∞(X̃) = L∞(Ĝ) ∩ L∞(X)′ = M′ . Moreover we clearly have

L∞(˜̃X) = L∞(G) ∩ L∞(X̃)′ = L∞(G) ∩ M. (3.4)

Theorem 3.9. Let X be an embeddable W∗-quantum G-space. Then ˜̃X =X.

Proof. Let J and Ĵ be modular conjugations for the right Haar measures of G and Ĝ respectively. Also let M be the crossed
product algebra as described in Remark 3.8. Our aim is to show that

L∞(G) ∩ M = L∞(X) (3.5)

(cf. (3.4)).
Consider the unitary operator

U = (1 ⊗ Ĵ J )W ∗(1 ⊗ J Ĵ ),

where W ∈ L∞(Ĝ) ⊗̄ L∞(G) is the Kac–Takesaki operator. Note that we have

U ∈ L∞(Ĝ) ⊗̄ L∞(G)′

and the slices of the first leg of U generate L∞(G)′ (cf. [14, Proposition 2.15]). Therefore equality (3.4) implies that

x ∈ L∞(˜̃X) ⇐⇒ x ∈ M and U (1 ⊗ x)U∗ = 1 ⊗ x. (3.6)
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Consider the mapping α: x �→ U (1 ⊗ x)U∗ defined on M. We have α: M → L∞(Ĝ) ⊗̄ M. Indeed, clearly

α(x) = 1 ⊗ x ∈ L∞(Ĝ) ⊗̄ M (3.7)

for x ∈ L∞(X) ⊂ M, while for y ∈ L∞(Ĝ) we have

U (1 ⊗ Ĵ y Ĵ )U∗ = (1 ⊗ Ĵ J )W ∗(1 ⊗ J y J )W (1 ⊗ J Ĵ )

= (1 ⊗ Ĵ J )Σ�
Ĝ

(
R̂
(

y∗))Σ(1 ⊗ J Ĵ )

= (1 ⊗ Ĵ J )(R̂ ⊗ R̂)�
Ĝ

(
y∗)(1 ⊗ J Ĵ )

= ( J ⊗ Ĵ )�
Ĝ
(y)( J ⊗ Ĵ ),

so that for z ∈ L∞(Ĝ)′ we also have α(z) ∈ L∞(Ĝ) ⊗̄ L∞(Ĝ)′ ⊂ L∞(Ĝ) ⊗̄M (cf. again [14, Proposition 2.15] or [17, Section 5]).
In fact α is the dual action of Ĝ on the crossed product M as defined in [33, Section 2] (cf. also [33, Proposition 2.2]). By
[33, Theorem 2.7] the fixed point algebra Mα [33, Definition 1.2] is equal to the canonical copy of L∞(X) inside M. Since (3.6)
may be rephrased as x ∈ ˜̃X⇔ x ∈ Mα , we see that L∞(˜̃X) = Mα = L∞(X). �

Classical duality results in non-commutative harmonic analysis [31] together with the bi-co-duality result of Theorem 3.9
give us the following description of embeddable W∗-quantum G-spaces for a classical G.

Theorem 3.10. Let G be a locally compact group and G the associated locally compact quantum group (with commutative L∞(G) =
L∞(G)). Let X be an embeddable W∗-quantum G-space. Then there exists a closed subgroup H ⊂ G such that

(1) L∞(X) = L∞(G/H),
(2) L∞(X̃) = L∞(Ĥ) ⊂ L∞(Ĝ),

where H is the locally compact quantum group associated to H and Ĥ its dual.

Note that we identified L∞(Ĥ) with its image in L∞(Ĝ).

Proof of Theorem 3.10. (1) is a direct consequence of Theorem 5 and Theorem 2 of [31] adapted to our situation (in
particular Takesaki and Tatsuuma consider what we would call right actions). Moreover we have

L∞(X) = {
f ∈ L∞(G)

∣∣ f is constant on the right cosets of H
}

which is equal to the intersection of L∞(G) with the commutant of the subalgebra of B(L2(G)) generated by right shifts by
elements of H . This is saying manifestly that if we define Y by

L∞(Y) = vN(H)

(the algebra generated by right shifts, see [4, Section 4]) then X= Ỹ. By Theorem 3.9 X̃ =Y which is precisely (2). �
The next lemma provides a characterization of embeddable W∗-quantum G-spaces of quotient type in terms of their

co-duals.

Lemma 3.11. Let X be an embeddable W∗-quantum G-space. Then X is of quotient type if and only if there exists a closed quantum
subgroup H of G in the sense of Vaes such that L∞(X̃) is the image of L∞(Ĥ) in L∞(Ĝ).

Proof. Let H be a closed quantum subgroup of G in the sense of Vaes with corresponding injective ∗-homomorphism
γ : L∞(Ĥ) → L∞(Ĝ) (see [4, Theorem 3.3]). Let W H ∈ L∞(Ĥ) ⊗̄ L∞(H) be the Kac–Takesaki operator of H and let
α: L∞(G) → L∞(G) ⊗̄ L∞(H) be the corresponding action of H on G:

α(x) = (
(γ ⊗ id)

(
W H

))
(x ⊗ 1L∞(Ĥ))

(
(γ ⊗ id)

(
W H

)∗)
.

Since x ∈ L∞(G/H) if and only if α(x) = x ⊗ 1 (i.e. (γ ⊗ id)(W H) commutes with x ⊗ 1L∞(Ĥ)) and slices of the second leg

of W H generate L∞(Ĥ), we see that x ∈ L∞(G/H) if xy = yx for any y ∈ γ (L∞(Ĥ)). By (3.2) we conclude that G/H is the
co-dual of X̃. �

The above lemma suggests considering embeddable W∗-quantum G-spaces X such that co-dual X̃ satisfies δ
X̃
(L∞(X̃)) ⊂

L∞(X̃)⊗̄ L∞(X̃). In particular, it is important to characterize the situations when X̃ actually corresponds to a closed quantum
subgroup of G. A relevant tool might be provided by [2, Proposition 10.5].
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4. Quantum homogeneous spaces & embeddable quantum homogeneous spaces

In this section we introduce the definitions of a quantum homogeneous space and an embeddable quantum homoge-
neous space. As mentioned in Section 1 they are objects with two complementary descriptions: a von Neumann algebraic
one and a C∗-algebraic one. This idea is taken directly from the pioneering work of Vaes in [35, Section 6], where the
author considers quantum homogeneous spaces of quotient type (for regular locally compact quantum groups). His results
motivated a general definition given in [11, Definition 3.1] which we recall below and then specialize to the embeddable
case in the further part of this section.

Definition 4.1. Let G be a locally compact quantum group. A quantum homogeneous space for G is an ergodic W∗-quantum
G-space X such that there exists a C∗-quantum G-space Y with

(1) C0(Y) is a strongly dense C∗-subalgebra of L∞(X),
(2) δY is given by the restriction of δX to C0(Y),
(3) δX(L∞(X)) ⊂ M(K(L2(G)) ⊗ C0(Y)) and the map

δX: L∞(X) −→ M
(
K

(
L2(G)

) ⊗ C0(Y)
)

is strict.

In the situation described in Definition 4.1 we will identify the “quantum spaces” X and Y and simply write L∞(X)

and C0(X) for the corresponding von Neumann algebra and C∗-algebra respectively. We will also say that C0(X) together
with δX ∈ Mor(C0(X), C0(G) ⊗ C0(X)) describes the C∗-version of X. This is justified by the fact that the C∗-algebra C0(X)

is unique (see Theorem 4.5 below). Another point of view on the concept of quantum homogeneous space is that we have
one “quantum space” X with two structures: topological described by C0(X) and measurable described by L∞(X).

Definition 4.2. Let G be a locally compact quantum group and let X be a quantum homogeneous space of G. We say that
X is embeddable if the W∗-version of X is an embeddable W∗-quantum G-space.

Example 4.3.

(1) Let G be a locally compact quantum group. The quantum group itself is a W∗-quantum G-space. The fact that G has its
C∗-algebraic version [14, Proposition 1.7] means that G is a quantum homogeneous space as defined in Definition 4.1.

(2) Let G be a locally compact quantum group [1,3] and let H be closed subgroup of G in the sense of Vaes [35,4]. The
construction of L∞(G/H) may be easily performed by taking the fixed point algebra for an action of H on L∞(G).
However the existence of C0(G/H) is a non-trivial matter. It was proved in [35, Theorem 6.1] under the regularity
assumption on G. Actually Vaes notes that the regularity might not be necessary for the existence of the quantum
homogeneous space G/H as was for example shown for the case of H compact in [30] (cf. Example 5.3(2)).

Definition 4.4. Let G be a locally compact quantum group and let X be a quantum homogeneous space of G. We say that
X is of quotient type if the W∗-version of X is of quotient type in the sense of Definition 3.4.

This terminology agrees with the original one introduced by Podleś [21,20] although he used a slightly more restrictive
notion of a quantum subgroup.

Theorem 4.5. (See [11, Propositions 3.4 & 3.5].) Let G be a locally compact quantum group and let X be a quantum homogeneous
space for G. Then

(1) the C∗-algebra C0(X) is uniquely determined by the conditions of Definition 4.1,
(2) if Y is another quantum homogeneous space for G and π ∈ Mor(C0(X), C0(Y)) is an equivariant isomorphism then π extends to

an equivariant isomorphism L∞(X) → L∞(Y).

The term “embeddable quantum homogeneous space” is perhaps not the best since it is not the quantum space that
embeds, but the corresponding von Neumann algebra of functions. Nevertheless such terminology has been functioning for
many years in the context of compact quantum groups [21, Definition 1.8]. Note also that quantum homogeneous spaces of
quotient type (Definition 4.4) are prototypical examples of embeddable quantum homogeneous spaces.

Let X be an embeddable quantum homogeneous space for a locally compact quantum group G. As with embeddable
W∗-quantum G-spaces we will from now on regard the embedding L∞(X) ↪→ L∞(G) as part of the data. In particular we
will simply view L∞(X) as a right coideal in L∞(G) and δX will be identified with �G|L∞(X) . Nevertheless the symbol δX
will be used (see e.g. proof of Proposition 4.7).

Before we continue let us note the following:
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Proposition 4.6. Let G be a locally compact group. The class of embeddable quantum homogeneous spaces for G considered as a locally
compact quantum group coincides with the class of classical homogeneous spaces for G.

The proof of Proposition 4.6 is immediate e.g. from Theorem 3.10.
Let us now turn attention to the C∗-algebra C0(X). We have C0(X) ⊂ L∞(X) ⊂ L∞(G). The situation is clarified further

by the next proposition.

Proposition 4.7. Let G be a locally compact quantum group and let X be an embeddable quantum homogeneous space for G. Then

(1) C0(X) ⊂ M(C0(G)),
(2) the embedding C0(X) ↪→ M(C0(G)) is an element of Mor(C0(X), C0(G)).

Proof. Let W ∈ M(K(L2(G))⊗C0(G)) be the Kac–Takesaki operator for G. Since for any x ∈ C0(X) we have δX(x) = �G(x) =
W (x ⊗ 1)W ∗ , clearly

δX
(
C0(X)

) ⊂ M
(
K

(
L2(G)

) ⊗ C0(G)
)
. (4.1)

Now the Podleś condition for δX implies that

C0(X) = [
(ω ⊗ id)δX

(
C0(X)

) ∣∣ ω ∈ B
(
L2(G)

)
∗
]

which together with (4.1) shows that C0(X) ⊂ M(C0(G)) and proves (1).
In order to see that the inclusion C0(X) ↪→ M(C0(G)) is a morphism from C0(X) to C0(G) we first note that the Podleś

condition for δX implies the following equality:
[
C0(X)C0(G)

] = [
(ω ⊗ id)

(
δX

(
C0(X)

)(
K

(
L2(G)

) ⊗ C0(G)
)) ∣∣ ω ∈ B

(
L2(G)

)
∗
]
. (4.2)

Let (ei)i∈I be an approximate unit of C0(X) and let us fix a simple tensor k ⊗ a ∈K(L2(G)) ⊗ C0(G). Since for each i

δX(ei)(k ⊗ a) = W (ei ⊗ 1)W ∗(k ⊗ a),

we find that limi∈I δX(ei)(k ⊗ a) = k ⊗ a in norm. In particular for any a ∈ C0(G) we have

a ∈ [
(ω ⊗ id)

(
δX

(
C0(X)

)(
K

(
L2(G)

) ⊗ C0(G)
)) ∣∣ ω ∈ B

(
L2(G)

)
∗
]
.

This, together with (4.2), proves that C0(G) = [C0(X)C0(G)] which is precisely (2). �
At the end of this section let us show that whenever H is a closed quantum subgroup of a locally compact quantum

group G then L∞(Ĥ) may be interpreted as an embeddable quantum homogeneous Ĝ-space with a C∗-version C0(Ĥ). This
result will be used in Section 7.1 in the analysis of a quotient quantum homogeneous spaces arising in the bicrossed product
construction.

Proposition 4.8. Let H be a closed quantum subgroup of G with the corresponding normal inclusion γ : L∞(Ĥ) → L∞(Ĝ). Define X by
putting L∞(X) = γ (L∞(Ĥ)), and let δX = �

Ĝ
|L∞(X) . Then X is an embeddable W∗-quantum Ĝ-space. Moreover X is an embeddable

quantum homogeneous space and C0(X) = γ (C0(Ĥ)).

Proof. The fact that X is an embeddable W∗-quantum Ĝ-space is clear from the property of γ :

�
Ĝ

◦ γ = (γ ⊗ γ ) ◦ �
Ĥ
.

We will now show that X is in fact an embeddable quantum homogeneous space for Ĝ.
Note that since γ is normal and injective, there exists a Hilbert space H and a unitary operator T : H⊗ L2(H) → H⊗ L2(G)

such that

1H ⊗ γ (x) = T (1H ⊗ x)T ∗. (4.3)

Let Ŵ ∈ M(C0(H) ⊗ C0(Ĥ)) be the Kac–Takesaki operator of Ĥ. Let (yi)i∈I be a bounded net of elements of L∞(Ĥ) con-
vergent in the strong∗ topology and take x ∈ K(L2(G)) and d ∈ γ (C0(Ĥ)). Define Y = (id ⊗ γ )Ŵ . In order to check the
strictness condition of Definition 4.1 we compute

�
Ĝ

(
γ (yi)

)
(x ⊗ d) = (γ ⊗ γ )

(
�

Ĥ
(yi)

)
(x ⊗ d)

= (γ ⊗ id)
(
Y (yi ⊗ 1)Y ∗)(x ⊗ d).

Using (4.3) we see that
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1H ⊗ (
�

Ĝ

(
γ (yi)

)
(x ⊗ d)

) = 1H ⊗ (
(γ ⊗ id)

(
Y (yi ⊗ 1)Y ∗)(x ⊗ d)

)

= T12Y23(1H ⊗ yi ⊗ 1)Y ∗
23T ∗

12(1H ⊗ x ⊗ d).

Let us fix a 1-dimensional projection P ∈K(H). Note that since the first leg of all elements of the net
(
T12Y23(1 ⊗ yi ⊗ 1)Y ∗

23T ∗
12(1 ⊗ x ⊗ d)

)
i∈I

is in C1H , its norm-convergence is equivalent to norm-convergence of the net
(
T12Y23(1 ⊗ yi ⊗ 1)Y ∗

23T ∗
12(P ⊗ x ⊗ d)

)
i∈I . (4.4)

Furthermore, since

Y ∗
23T ∗

12(P ⊗ x ⊗ d) ∈ K(H) ⊗K
(
L2(Ĝ)

) ⊗ γ
(
C0(Ĥ)

)
,

we see that strong∗-convergence of (yi)i∈I implies norm-convergence of the net (4.4). This is in turn equivalent to the
norm-convergence of the net (�

Ĝ
(γ (yi))(x ⊗ d))i∈I . Norm-convergence of (�

Ĝ
(γ (yi))

∗(x ⊗ d))i∈I is proved similarly and
it follows that we get that

�
Ĝ

(
L∞(Ĥ)

) ⊂ M
(
K

(
L2(G)

) ⊗ γ
(
C0(Ĥ)

))

and the map �
Ĝ

:γ (L∞(Ĥ)) → M(K(L2(G)) ⊗ γ (C0(Ĥ))) is strict. All other conditions of Definition 4.2 may be checked
directly and we find that X is an embeddable quantum homogeneous space with C∗-version C0(X) = γ (C0(Ĥ)). �
5. Co-compact case

Proposition 5.1. Let G be a locally compact quantum group and let A ⊂ C0(G) be a non-degenerate C∗-subalgebra such that

� �G(A) ⊂ M(C0(G) ⊗ A),
� [(C0(G) ⊗ 1)�G(A)] = C0(G) ⊗ A.

Let N be the strong closure of A. Then

(1) �G(N) ⊂ L∞(G) ⊗̄ N,
(2) the pair (N, γ ) with γ = �G|N is an embeddable quantum homogeneous whose C∗-version coincides with (A,�G|A).

Proof. Statement (1) follows immediately from the assumptions. It remains to show that

�G(N) ⊂ M
(
K

(
L2(G)

) ⊗ A
)

(5.1)

and the map

N � x �−→ �G(x) ∈ M
(
K

(
L2(G)

) ⊗ A
)

(5.2)

is strict (cf. Definition 4.1). For this consider a bounded net (ai)i∈I of elements of A convergent to x ∈ N in the strong∗
topology. For any y ∈K(L2(G)) ⊗ A we have

�G(ai)y = W (ai ⊗ 1)W ∗ y.

Since W ∈ M(K(L2(G)) ⊗ C0(G)) we see that �G(ai)d = W (ai ⊗ 1)z, where z ∈K(L2(G)) ⊗ C0(G). In particular

�G(ai)y
i∈I−−→ �G(x)y

in norm. Similarly �G(ai)
∗ y

i∈I−−−→ �G(x)∗ y (remember ai
i

−→ x in the strong∗ topology). It follows that �G(x) is a strict

limit of elements of M(C0(G) ⊗ A) and, in particular, we get (5.1).
Strictness of (5.2) is established in exactly the same way: for a bounded and strong∗-convergent net (xi)i∈I of ele-

ments of N and y ∈ K(L2(G)) ⊗ A the nets (�G(xi)y)i∈I and (�G(xi)
∗ y)i∈I are norm-convergent to �G(limi∈I xi)y and

�G(limi∈I xi)
∗ y respectively. �

In the proof of Proposition 5.1 we used the well-known fact that a bounded strongly convergent net of operators multi-
plied by a compact operator is norm-convergent.

Definition 5.2. Let G be a locally compact quantum group. A quantum homogeneous space X for G such that C0(X) ⊂ C0(G)

is called co-compact.
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Example 5.3.

(1) Let G be a compact quantum group with faithful Haar measure. In [21, Definition 1.8] Podleś defined an embeddable
action of G to be a “compact” C∗-quantum G-space X (i.e. the corresponding C∗-algebra C0(X) is unital and hence
written C(X)) for which there exists Ψ ∈ Mor(C(X), C(G)) such that (id ⊗ Ψ ) ◦ δX = �G ◦ Ψ (in fact this definition
already appeared in [20, Definicja 2.9]). Letting L∞(X) be the strong closure of Ψ (C(X)) inside B(L2(G)) we obtain
an embeddable quantum homogeneous space in the sense of Definition 4.2. Moreover all such quantum homogeneous
spaces are clearly co-compact.

(2) Let G be a locally compact quantum group and let H be a compact quantum subgroup of G i.e. we assume that there
exists a surjective morphism π : Cu

0(G) → Cu
0(H) intertwining the corresponding comultiplications. Using π we define a

C∗-algebra of elements that are constant on the right H-cosets:

Cu
0(G/H) = {

a ∈Cu
0(G)

∣∣ (id ⊗ π)
(
�u

G
(a)

) = a ⊗ 1
}
.

Using [30, Theorem 5.1] (note that this theorem applies to our situation, i.e. Cu
0(G) is a bisimplifiable Hopf C∗-algebra

with a continuous counit) we see that the comultiplication �u
G

restricted to Cu
0(G/H) gives rise to a continuous coaction

of (Cu
0(G),�u

G
) on Cu

0(G/H). We shall denote it by δu
G/H . Let us define C0(G/H) as the image under the reducing

morphism ΛG:

C0(G/H) = ΛG

(
Cu

0(G/H)
)

(5.3)

(in other words (5.3) defines the quantum space G/H). Note that

[
�G

(
C0(G/H)

)(
C0(G) ⊗ 1

)] = [
(ΛG ⊗ ΛG)

(
�u

G/H

(
Cu

0(G/H)
)(

Cu
0(G) ⊗ 1

))]

= C0(G) ⊗ C0(G/H).

This shows that δu
G/H

descends (from universal to reduced level) to a continuous action δG/H of G on G/H. By Propo-
sition 5.1 G/H becomes an embeddable quantum homogeneous space with L∞(G/H) defined as the strong closure of
C0(G/H) in C0(G) and the C∗-version C0(G/H). Actually, it is not difficult to see that it is of quotient type. By its very
definition G/H is co-compact.

The name “co-compact” used in Definition 5.2 is justified by the following theorem:

Theorem 5.4. Let G be a locally compact quantum group and let X be an embeddable quantum homogeneous space of quotient type
related to a closed quantum subgroup H of G. Then

(1) if H is compact then X is co-compact,
(2) if there exists a non-zero x ∈ C0(X) ∩ C0(G) then H is compact.

Proof. (1) has been already explained in Example 5.3(2) (assume X is of quotient type).
For the proof of (2) recall from [35, Section 4] that the quantum homogeneous space G/H (of quotient type) is defined

in such a way that C0(G/H) is a subalgebra of the corresponding von Neumann algebra which we call L∞(G/H). This last
algebra is the fixed point algebra L∞(G)α , where α: L∞(G) → L∞(G) ⊗̄ L∞(H) is defined by the property that

(id ⊗ α)(W ) = W12 V 13,

where V ∈ M(C0(Ĝ) ⊗ C0(H)) is the bicharacter corresponding to the inclusion of H as a closed subgroup of G (cf.
[4, Subsection 1.3, Theorems 3.3 & 3.6]). Therefore for any x ∈ C0(G/H) we have α(x) = x ⊗ 1. We note that it can be
shown that α restricted to C0(G/H) coincides with the right quantum homomorphism corresponding to V ([18] and
[4, Subsection 1.3]).

So let x be a non-zero element of C0(G/H) such that also x ∈ C0(G). Since (y ⊗ 1)α(x) ∈ C0(G) ⊗ C0(H) (by [4, Theo-
rems 3.5 & 3.6(3)]), it follows that (ω ⊗ id)α(x) ∈ C0(H) for any ω ∈ C0(G)∗ . In particular for ω such that ω(x) = 1 we get
1 ∈ C0(H), i.e. H is compact. �
Remark 5.5. The proof of Theorem 5.4(1) shows that if X is an embeddable quantum homogeneous space of quotient type
such that C0(X) ∩ C0(G) �= {0} then C0(X) ⊂ C0(G) and X is co-compact.

6. The non-commutative analog of the quotient by the diagonal subgroup

Let G be a locally compact group. In this section we will study a non-commutative analog of the homogeneous space
obtained as a quotient of G × G by the diagonal subgroup. Classically the diagonal subgroup of G × G is the set{

(g, g)
∣∣ g ∈ G

} ⊂ G × G. (6.1)
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Clearly this subgroup is isomorphic to G and elements of the quotient space (G × G)/G of G × G by the subgroup (6.1) are
sets of the form{

(g1 g, g2 g)
∣∣ g ∈ G

}
(g1, g2 ∈ G).

Thus (G × G)/G is homeomorphic to G via the map
[
(u, v)

] �−→ uv−1. (6.2)

Unfortunately, in the quantum setting the map (6.2) is not particularly well behaved because the analog of the inverse
in G not only fails to be a ∗-homomorphism, but it is, in general, an unbounded operator and this leads to many technical
problems.

A way out of these difficulties, which we choose to follow, is to replace G × G by G × Gop in the construction described
above. The classical picture does not change, as G and Gop are isomorphic. With this replacement we find that the diagonal
subgroup becomes now{(

g, g−1) ∣∣ g ∈ G
} ⊂ G × Gop

and the corresponding quotient space (G × Gop)/G consist of the classes of the form
[
(g1, g2)

] = {(
g1 g, g−1 g2

) ∣∣ g ∈ G
}

(g1, g2 ∈ G).

Now the homeomorphism of (G × Gop)/G and G is provided by mapping a class [(g1, g2)] to the product g1 g2 ∈ G . This
mapping is much better suited to the quantum group framework. Indeed, on the level of algebras of functions we get a
natural identification of �G(L∞(G)) ⊂ L∞(G)⊗̄ L∞(G) with the algebra of functions on the homogeneous space (G ×Gop)/G .

Let now G be a locally compact quantum group. It is well known that the analog of the direct product G × Gop of G

with its opposite quantum group can be defined by putting

C0
(
G×Gop) = C0(G) ⊗ C0

(
Gop)

and

�G×Gop = (id ⊗ σ ⊗ id) ◦ (�G ⊗ �Gop),

where σ is the flip morphism C0(G) ⊗ C0(G
op) → C0(G

op) ⊗ C0(G).
In what follows we shall prove that setting L∞(X) = �G(L∞(G)) ⊂ L∞(G) ⊗̄ L∞(G) we define an embeddable quantum

homogeneous G×Gop-space. This space is the quantum analog of the homogeneous space obtained (in the classical case) by
taking the quotient of G×Gop by the diagonal subgroup. We will show in Proposition 6.3 that X is of quotient type if and
only if G is a classical group. In the course of the proof we will make extensive use of the concept of the opposite quantum
group Gop (mentioned above) and the commutant quantum group G′ . For details we refer the reader to [14, Section 4]. In
particular we will need the facts that Ĝop = Ĝ′ , Ĝ′ = Ĝop and their extended version: Ĝ×Gop = Ĝ× Ĝ′ (see [14]).

Proposition 6.1. Let G be a locally compact quantum group and let L∞(X) be the image of L∞(G) under �G considered as a map
from L∞(G) to L∞(G) ⊗̄ L∞(Gop). Then:

(1) �G×Gop (L∞(X)) ⊂ L∞(G×Gop) ⊗̄ L∞(X),
(2) X is an embeddable quantum homogeneous space with C∗-version C0(X) = �G(C0(G)).

Proof. Let

C0(X) = �G

(
C0(G)

) ⊂ M
(
C0

(
G×Gop)) = M

(
C0(G) ⊗ C0

(
Gop))

(6.3)

(it is clear that L∞(X) as defined in the statement of the theorem is the strong closure of so defined C0(X)). We will first
show that[(

C0
(
G×Gop) ⊗ 1C0(X)

)
�G×Gop

(
C0(X)

)] = C0
(
G×Gop) ⊗ C0(X).

Indeed
[(

C0
(
G×Gop) ⊗ 1C0(X)

)
�G×Gop

(
C0(X)

)]

= [(
C0

(
G×Gop) ⊗ 1C0(G) ⊗ 1C0(Gop)

)
�G×Gop

(
�G

(
C0(G)

))]

= [(
C0(G) ⊗ C0

(
Gop) ⊗ 1 ⊗ 1

)(
(id ⊗ σ ⊗ id)(�G ⊗ �Gop)�G

(
C0(G)

))]

= [(
C0(G) ⊗ C0

(
Gop) ⊗ 1 ⊗ 1

)(
(id ⊗ σ ⊗ id)(id ⊗ id ⊗ �Gop)(id ⊗ �G)�G

(
C0(G)

))]

= C0(G) ⊗ [(
C0

(
Gop) ⊗ 1 ⊗ 1

)(
(σ ⊗ id)(id ⊗ �Gop)�G

(
C0(G)

))]

= C0(G) ⊗ [(
C0

(
Gop) ⊗ 1 ⊗ 1

)(
(σ ⊗ id)(id ⊗ σ)(�G ⊗ id)�G

(
C0(G)

))]
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= C0(G) ⊗ [(
C0

(
Gop) ⊗ 1 ⊗ 1

)(
(id ⊗ �G)�Gop

(
C0(G)

))]

= C0(G) ⊗ C0
(
Gop) ⊗ �G

(
C0(G)

)

= C0
(
G×Gop) ⊗ C0(X).

In the fourth equality above we used the fact that
[(

C0(G) ⊗ 1
)
�G

(
C0(G)

)] = C0(G) ⊗ C0(G)

while in the seventh one we used
[(

C0
(
Gop) ⊗ 1

)
�Gop

(
C0(G)

)] = C0
(
Gop) ⊗ C0(G).

Thus X defined via (6.3) is a C∗-quantum G × Gop-space. Moreover, taking strong closure we put on X the structure
of an ergodic W∗-quantum G × Gop-space (which is moreover embeddable). We will show that this way X becomes an
embeddable quantum homogeneous space. To this end we need to establish that

�G×Gop
(
L∞(X)

) ⊂ M
(
K

(
L2(G×Gop)) ⊗ C0(X)

)

and the map �G×Gop |L∞(X): L∞(X) → M(K(L2(G×Gop)) ⊗ C0(X)) is strict. Let us denote this map by δX .
Let us first observe that

�G×Gop ◦ �G = (id ⊗ σ ⊗ id) ◦ (id ⊗ id ⊗ σ) ◦ (�G ⊗ �G) ◦ �G

= (id ⊗ σ ⊗ id) ◦ (id ⊗ id ⊗ σ) ◦ (�G ⊗ id ⊗ id) ◦ (�G ⊗ id) ◦ �G

= (σ ⊗ id ⊗ id) ◦ (id ⊗ �G ⊗ id) ◦ (id ⊗ �G) ◦ σ ◦ �G

= (σ ⊗ id ⊗ id) ◦ (id ⊗ �G ⊗ id) ◦ (id ⊗ �G) ◦ �Gop . (6.4)

Take now k1 ⊗ k2 ⊗ �G(y) ∈ K(L2(G)) ⊗ K(L2(Gop)) ⊗ C0(X) and let (yi)i∈I = (�G(xi))i∈I be a norm-bounded strongly
convergent net with xi ∈ L∞(G). By (6.4) we have

δX(yi) = (σ ⊗ id ⊗ id)(id ⊗ id ⊗ �G)(id ⊗ �G)�Gop(xi)

= Σ12W34W23Σ12W12(xi ⊗ 1 ⊗ 1 ⊗ 1)W ∗
12Σ12W ∗

23W ∗
34Σ12.

It follows that

δX(yi) · (k1 ⊗ k2 ⊗ �G(y)
)

= Σ12W34W23Σ12W12(xi ⊗ 1 ⊗ 1 ⊗ 1)W ∗
12Σ12W ∗

23W ∗
34Σ12 · W34(k1 ⊗ k2 ⊗ y ⊗ 1)W ∗

34

= Σ12W34W23Σ12W12(xi ⊗ 1 ⊗ 1 ⊗ 1)W ∗
12Σ12W ∗

23(k2 ⊗ k1 ⊗ y ⊗ 1)W ∗
34Σ12

= (σ ⊗ id ⊗ id)(id ⊗ id ⊗ �G)
(
W23

(
�Gop(xi) ⊗ 1

)
W ∗

23(k2 ⊗ k1 ⊗ y)
)

= (σ ⊗ �G)
(
W23

(
�Gop(xi) ⊗ 1

)
W ∗

23(k2 ⊗ k1 ⊗ y)
)
.

Consider now the net
((

�Gop(xi) ⊗ 1
)
W ∗

23(k2 ⊗ k1 ⊗ y)
)

i∈I . (6.5)

We claim that it is norm-convergent. Indeed, since W ∈ M(K(L2(G)) ⊗ C0(G)), we have W ∗
23(k2 ⊗ k1 ⊗ y) ∈ K(L2(G ×

Gop)) ⊗ C0(G), while the net
(
�Gop(xi) ⊗ 1

)
i∈I = (

(σ ⊗ id)(yi ⊗ 1)
)

i∈I
is bounded and strongly convergent. It follows that (6.5) is norm-convergent and since the norm-convergence of the net
δX(yi)

∗ · (k1 ⊗ k2 ⊗ �G(y)) is proved similarly. Thus we obtain strictness of δX . �
In order to find the co-dual of X we prove the following lemma:

Lemma 6.2. Let G be a locally compact quantum group and W ∈ L∞(Ĝ)⊗̄ L∞(G) its Kac–Takesaki operator. Let x ∈ L∞(G)⊗̄ L∞(G)

and y ∈ B(L2(G)) be such that W (y ⊗ 1)W ∗ = x. Then y ∈ L∞(G) and x = �G(y).

Proof. It is enough to show that there exists z ∈ L∞(G) such that �G(z) = x. Indeed, our assumptions then imply that
W (y ⊗1)W ∗ = x = W (z ⊗1)W ∗ and it follows that y = z ∈ L∞(G). In order to prove the existence of such a z it is enough
to show that (�G ⊗ id)(x) = (id ⊗ �G)(x) (by [34, Theorem 2.4.7] applied to the action of G on itself). We compute
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(�G ⊗ id)(x) = W12x13W ∗
12

= W12W13(y ⊗ 1 ⊗ 1)W ∗
13W ∗

12

= W23W12W ∗
23(y ⊗ 1 ⊗ 1)W23W ∗

12W ∗
23

= W23W12(y ⊗ 1 ⊗ 1)W ∗
12W ∗

23.

On the other hand

(id ⊗ �G)(x) = W23x12W ∗
23 = W23W12(y ⊗ 1 ⊗ 1)W ∗

12W ∗
23,

which ends the proof. �
Proposition 6.3. X be an embeddable W∗-quantum G-space defined above. Then

(1) we have L∞(X̃) = ( J ⊗ Ĵ )�
Ĝop (L∞(Ĝ))( J ⊗ Ĵ ) ⊂ L∞(Ĝ) ⊗̄ L∞(Ĝ)′ .

(2) X is of quotient type if and only if G is classical.

Proof. Ad (1). Let us recall that x ∈ X̃ if x ∈ L∞(Ĝ×Gop) = L∞(Ĝ) ⊗̄ L∞(Ĝ)′ and for any y ∈ L∞(G) we have x�G(y) =
�G(y)x. This means that

W ∗xW (y ⊗ 1) = (y ⊗ 1)W ∗xW

for all y ∈ L∞(Ĝ). Since W ∗xW ∈ L∞(Ĝ) ⊗̄ B(L2(G)) and L∞(Ĝ)∩ L∞(G)′ = L∞(Ĝop)∩ L∞(̂̂Gop) = C1 (see [34, p. 131]) we
see that W ∗xW = 1 ⊗ z for some z ∈ B(L2(G)).

Applying Lemma 6.2 with Ĝ′ instead of G we obtain z ∈ L∞(Ĝ′) = L∞(Ĝ)′ . Let z̃ = Ĵ z Ĵ . We see that

x = W ( J ⊗ Ĵ )(1 ⊗ z̃)( J ⊗ Ĵ )W ∗ = ( J ⊗ Ĵ )W ∗(1 ⊗ z̃)W ( J ⊗ Ĵ ) = ( J ⊗ Ĵ )�
Ĝop(z̃)( J ⊗ Ĵ ),

where we used the identity ( J ⊗ Ĵ )W ( J ⊗ Ĵ ) = W ∗ [17, Theorem 5.11].
Ad (2). Let us first define a normal order two automorphism α: B(L2(G)) → B(L2(G)) putting

α(t) = Ĵ J t J Ĵ

(the fact that α2 = id follows immediately from [14, Corollary 1.12]). We have the following relations (cf. [14, remarks before
Proposition 4.2]):

α
(
L∞(

Ĝop)) = L∞(
Ĝ′), �

Ĝ′ ◦ α = (α ⊗ α) ◦ �
Ĝop ,

α
(
L∞(

Gop)) = L∞(
G′), �G′ ◦ α = (α ⊗ α) ◦ �Gop . (6.6)

To show the first one we compute remembering that J implements R̂:

�
Ĝ′

(
α(x)

) = �
Ĝop

(
α(x)

)

= �
Ĝop (̂ J J x J Ĵ )

= (̂ J ⊗ Ĵ )�
Ĝ
( J x J )(̂ J ⊗ Ĵ )

= (̂ J J ⊗ Ĵ J )�
Ĝop(x)( J Ĵ ⊗ J Ĵ )

= (α ⊗ α)
(
�

Ĝop(x)
)
,

where in the third equality we used the fact that

�
Ĝop(z) = (̂ J ⊗ Ĵ )�

Ĝ
(̂ J z Ĵ )(̂ J ⊗ Ĵ )

for all z ∈ L∞(Ĝ)′ . The other relation (6.6) can be derived from the first one using duality.
Repeating the construction of X (Proposition 6.1) for the quantum group Ĝ we obtain an embeddable quantum homo-

geneous space Y. This means that

L∞(Y) = �
Ĝ

(
L∞(Ĝ)

) ⊂ L∞(
Ĝ× Ĝop)

and δY = �
Ĝ×Ĝop |L∞(Y).

Using α we can define new embeddable quantum homogeneous spaces:

� Xα with L∞(Xα) = (id ⊗ α)(L∞(X)) ⊂ L∞(G×G′),
� Yα with L∞(Yα) = (id ⊗ α)(L∞(Y)) ⊂ L∞(Ĝ× Ĝ′).
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We have

δXα ◦ (id ⊗ α) = (
(id ⊗ α) ⊗ (id ⊗ α)

) ◦ δX,

δYα ◦ (id ⊗ α) = (
(id ⊗ α) ⊗ (id ⊗ α)

) ◦ δY. (6.7)

As before we only show the first relation of (6.7):

�
Ĝ×Ĝ′

(
L∞(X̃)

) = �
Ĝ×Ĝ′

(
(id ⊗ α)

(
�

Ĝ

(
L∞(Ĝ)

)))

= (
(id ⊗ σ ⊗ id) ◦ (�

Ĝ
⊗ �

Ĝ′) ◦ (id ⊗ α) ◦ �
Ĝ

)(
L∞(Ĝ)

)

= (
(id ⊗ σ ⊗ id) ◦ (id ⊗ id ⊗ α ⊗ α) ◦ (�

Ĝ
⊗ �

Ĝop) ◦ �
Ĝ

)(
L∞(Ĝ)

)

= (
(id ⊗ α ⊗ id ⊗ α) ◦ (id ⊗ σ ⊗ id) ◦ (�

Ĝ
⊗ �

Ĝop) ◦ �
Ĝ

)(
L∞(Ĝ)

)

= (
(id ⊗ α ⊗ id ⊗ α) ◦ �

Ĝ×Ĝop ◦ �
Ĝ

)(
L∞(Ĝ)

)
,

where we used the first line of (6.6) in the third equality.
Now statement (1) of this proposition means that X̃ = Yα . Similarly we have Ỹ = Xα . Moreover X is of quotient type if

and only if Xα is of quotient type. This is clear from Lemma 3.11: X is of quotient type if and only if X̃ has the property that
L∞(X̃) = γ (L∞(Ĥ)), where H is a closed quantum subgroup of G in the sense of Vaes and γ : L∞(Ĥ) → L∞(Ĝ×Gop) =
L∞(Ĝ× Ĝ′) is the corresponding normal inclusion (cf. [35,4]). Clearly (id ⊗ α) ◦ γ provides a normal inclusion making H a
closed quantum subgroup of G×G′ . Since the resulting embeddable quantum homogeneous space is Y we see that Xα is
of quotient type.

We will now assume that Xα is of quotient type and show that G must then be a classical group. It follows easily from
this assumption that δY(L∞(Y)) ⊂ L∞(Y) ⊗̄ L∞(Y). This means that for any x ∈ L∞(Ĝ) there exists y ∈ L∞(Ĝ) ⊗̄ L∞(Ĝ)

such that

�
Ĝ×Ĝop

(
�

Ĝ
(x)

) = (�
Ĝ

⊗ �
Ĝ
)(y). (6.8)

Using (6.4) applied to Ĝ we compute

�
Ĝ×Ĝop ◦ �

Ĝ
(x) = (σ ⊗ id ⊗ id) ◦ (id ⊗ �

Ĝ
⊗ id) ◦ (id ⊗ �

Ĝ
) ◦ �

Ĝop

= (σ ⊗ id ⊗ id) ◦ (id ⊗ id ⊗ �
Ĝ
) ◦ (id ⊗ �

Ĝ
) ◦ �

Ĝop

= (id ⊗ id ⊗ �
Ĝ
) ◦ (σ ⊗ id ⊗ id) ◦ (id ⊗ �

Ĝ
) ◦ �

Ĝop

= (id ⊗ id ⊗ �
Ĝ
) ◦ (id ⊗ σ) ◦ (�

Ĝ
⊗ id) ◦ �

Ĝ
.

Thus (6.8) reads as
(
(id ⊗ id ⊗ �

Ĝ
) ◦ (id ⊗ σ) ◦ (�

Ĝ
⊗ id) ◦ �

Ĝ

)
(x)

= (�
Ĝ

⊗ �
Ĝ
)(y) = (

(id ⊗ id ⊗ �
Ĝ
) ◦ (�

Ĝ
⊗ id)

)
(y).

It follows that for any x ∈ L∞(Ĝ) there exists y ∈ L∞(Ĝ) ⊗̄ L∞(Ĝ) such that(
(id ⊗ σ) ◦ (�

Ĝ
⊗ id) ◦ �

Ĝ

)
(x) = (�

Ĝ
⊗ id)(y). (6.9)

Now we note that since for any y ∈ L∞(Ĝ) ⊗̄ L∞(Ĝ) we have

(�
Ĝ

⊗ id ⊗ id)
(
(�

Ĝ
⊗ id)(y)

) = (id ⊗ �
Ĝ

⊗ id)
(
(�

Ĝ
⊗ id)(y)

)
,

we can apply �
Ĝ

⊗ id ⊗ id and id ⊗ �
Ĝ

⊗ id to the left hand side of (6.9) and get equal results. In other words, for any
x ∈ L∞(Ĝ) we have(

(�
Ĝ

⊗ id ⊗ id) ◦ (id ⊗ σ) ◦ (�
Ĝ

⊗ id) ◦ �
Ĝ

)
(x) = (

(id ⊗ �
Ĝ

⊗ id) ◦ (id ⊗ σ) ◦ (�
Ĝ

⊗ id) ◦ �
Ĝ

)
(x),

i.e.

(�
Ĝ

⊗ id ⊗ id) ◦ (id ⊗ σ) ◦ (�
Ĝ

⊗ id) ◦ �
Ĝ

= (id ⊗ �
Ĝ

⊗ id) ◦ (id ⊗ σ) ◦ (�
Ĝ

⊗ id) ◦ �
Ĝ
. (6.10)

Let Ŵ ∈ L∞(G) ⊗̄ L∞(Ĝ) be the Kac–Takesaki operator for Ĝ. Applying (6.10) to the second leg of Ŵ and remembering
that (id ⊗ �

Ĝ
)(Ŵ ) = Ŵ12Ŵ13 we obtain

Ŵ12Ŵ13Ŵ15Ŵ14 = Ŵ12Ŵ15Ŵ13Ŵ14. (6.11)

Since the first leg of Ŵ generates L∞(G), slicing appropriately Eq. (6.11) we conclude that abdc = adbc for any a,b, c,d ∈
L∞(G). Putting a = c = 1 we get bd = db for any d,b ∈ L∞(G). Commutativity of L∞(G) is equivalent to G being a classical
group. �
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7. Strongly embeddable quantum homogeneous spaces

Consider a classical locally compact group G and its homogeneous space X . The space X is equivariantly homeomorphic
to the quotient space G/H , where H is a closed subgroup of G . In particular we have a surjective continuous (and open)
map p: G → X whose every fiber is homeomorphic to H . In other words we obtain a principal bundle G

p−→ X with

structure group H . We say that the bundle G
p−→ X is trivial if G is homeomorphic to the Cartesian product H × X and this

homeomorphism is a morphism of bundles over X (classical theory of principal bundles is contained e.g. in [9, Chapter 4]).
The triviality of G

p−→ X is equivalent to the existence of a continuous map s: X → G (called a cross-section of the bundle)

such that p ◦ s = id [9, Corollary 8.3].
In this section we consider certain conditions on an embeddable quantum homogeneous space which are analogs of

the condition of triviality of the principal bundle discussed above. In the next definition we consider a morphism from a
C∗-algebra A to itself and assume it to be idempotent. This means that the canonical extension of the morphism to a map
M(A) → M(A) is idempotent.

Definition 7.1. Let G be a locally compact quantum group and X an embeddable quantum homogeneous space. We say
that X is projectively embeddable if there exists a π ∈ Mor(C0(G), C0(G)) such that π2 = π , �G ◦ π = (id ⊗ π) ◦ �G and
C0(X) = π(C0(G)).

It can be shown that, if G is a classical locally compact group, then any projectively embeddable (quantum) homogeneous
space for G is a classical homogeneous space X such that the principal bundle G → X is trivial. However, the condition of
projective embeddability seems too strong for the non-commutative setting. It will be shown in Section 7.2 that the quantum
deformation of the action of the “az +b” group on its homogeneous space C (which should certainly be considered as giving
rise to a trivial principal bundle) is not projectively embeddable.

Before stating the condition replacing projective embeddability let us note the following proposition:

Proposition 7.2. Let G be a locally compact quantum group and let D ⊂ M(C0(G)) be a C∗-subalgebra such that [�G(D)(C0(G) ⊗
1)] = C0(G) ⊗ D. Let U ∈ M(K(L2(G)) ⊗ D) be a unitary such that �G(d) = U (d ⊗ 1)U∗ for all d ∈ D and let N ⊂ L∞(G) be the
strong closure of D. Then defining X so that L∞(X) = N and δX = �G|L∞(X) we obtain an embeddable quantum homogeneous space X
and, moreover, C0(X) = D.

Proof. Let (xi)i∈I be a bounded strong∗-convergent net of elements of N and take y ∈ K(L2(G)) ⊗ D. Since U y ∈
K(L2(G)) ⊗ D, we see that the net ((xi ⊗ 1)U y)i∈I is norm-convergent. We assumed that �G(xi)y = U (xi ⊗ 1)U∗ y for
all i, and so it follows that the net (�G(xi)y)i∈I is norm-convergent. Let now y ∈ N and (di) be a norm-bounded net of
elements of D converging in the strong∗ topology to y. The above reasoning shows that

� �G(y) is a strict limit of �G(di) ∈ M(K(L2(G)) ⊗ D) and �G(y) ∈ M(K(L2(G)) ⊗ D),
� the map N � y �→ �G(y) ∈ M(K(L2(G)) ⊗ D) is strict (cf. [35, remark after Definition 3.1]).

Checking the remaining conditions of Definition 4.1 is easy. �
Definition 7.3. Let X be an embeddable quantum homogeneous space for a locally compact quantum group G. We say
that X is a strongly embeddable quantum homogeneous space if there exists a unitary U ∈ M(K(L2(G)) ⊗ C0(X)) such that
δX(x) = U (x ⊗ 1)U∗ for all x ∈ L∞(X).

Example 7.4. Let G be a locally compact quantum group and π ∈ Mor(C0(G), C0(G)) a morphism satisfying π2 = π and
�G◦π = (id⊗π)◦�G . Then D = π(C0(G)) and U = (id⊗π)W ∈ M(K(L2(G))⊗D) satisfies the conditions of Proposition 7.2.
Thus defining X by setting L∞(X) = D′′ we obtain a strongly embeddable quantum homogeneous space X. In particular any
projectively embeddable quantum homogeneous space for G is strongly embeddable.

The condition of strong embeddability appear to be a satisfactory analog of the condition that the principal bundle
corresponding to the action is trivial. In the following subsections we discuss examples of strongly embeddable quantum
homogeneous spaces.

7.1. Bicrossed products of locally compact groups

In this subsection we shall study examples of quantum homogeneous spaces of quotient type provided by the bicrossed
product construction. Its interesting aspect is related to the generic non-regularity of quantum groups arising in this con-
struction ([3], recall that the general result on the existence of the C∗-version of a given quotient type W∗-quantum G-space
is based on the regularity of G). Our presentation of the bicrossed product construction closely follows [3]. For earlier ap-
proaches see also [16,32].
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Let G1, G2 be a pair of closed subgroups of a locally compact group G such that G1 ∩ G2 = {e} and the complement of
G1G2 is of measure 0. Let L∞(Ĝ1) denote the von Neumann algebra generated by right shifts on L2(G1). Thus L∞(Ĝ1)

′ is
the von Neumann algebra generated by the left shifts. The same notation will be used with G1 replaced by G2.

Let p1: G → G1 be the measurable map (defined almost everywhere) given by p1(g1 g2) = g1. Similarly we have the map
p2: G → G2 such that p2(g1 g2) = g2. Using p1 and p2 we introduce the pair of coactions

α: L∞(G1) → L∞(G2) ⊗̄ L∞(G1), α(x)(g2, g1) = x
(

p1(g2 g1)
)
,

β: L∞(G2) → L∞(G2) ⊗̄ L∞(G1), β(y)(g2, g1) = y
(

p2(g2 g1)
)
.

We denote by G the quantum group obtained from the above data via the bicrossed product construction. The von Neumann
algebra L∞(G) is given by the crossed product

L∞(G) = G2 �α L∞(G1) = {
α

(
L∞(G1)

) ∪ (
L∞(Ĝ2)

′ ⊗ 1
)}′′

. (7.1)

The coaction β enters in the definition of the comultiplication �G . It turns out that the embedding α: L∞(G1) → L∞(G) is
compatible with the comultiplications:

�G ◦ α = (α ⊗ α) ◦ �G1 . (7.2)

Proposition 7.5. Define X so that L∞(X) = α(L∞(G1)). Then X is a strongly embeddable quantum homogeneous space for G with
the C∗-version α(C0(G1)).

Proof. Using Proposition 4.8 with γ = α we see that X indeed is an embeddable quantum homogeneous space for G. In
order to prove that X is strongly embeddable let us consider the canonical unitary implementation of α ([33], cf. [3, proof
of Proposition 3.6]):

U ∈ M
(
C0(G2) ⊗K

(
L2(G1)

)) ⊂ B
(
L2(G2) ⊗ L2(G1)

)
, α(x) = U (1 ⊗ x)U∗.

More precisely, the unitary operator U is given by the restriction to G2 of the quasi-regular representation of G on L2(G/G2)

i.e. U : G2 � g �→ U g ∈ B(L2(G/G2)). In order to interpret U as an element M(C0(G2) ⊗K(L2(G1))) we use the identification
L2(G/G2) ∼= L2(G1). Using further identifications L2(G) ∼= L2(G) ∼= L2(G2) ⊗ L2(G1) we note that for any x ∈ C0(G1) we have

�G

(
α(x)

) = (α ⊗ α)
(
W G1(x ⊗ 1)

(
W G1

)∗)

= U12
(
(id ⊗ α)

(
W G1

))
234U∗

12

(
α(x) ⊗ 1

)
U12

(
(id ⊗ α)

(
W G1

))∗
234U∗

12

= T
(
α(x) ⊗ 1

)
T ∗,

where W G1 is the Kac–Takesaki operator of G1 and

T = U12
(
(id ⊗ α)

(
W G1

))
234U∗

12 ∈ M
(
K

(
L2(G)

) ⊗ α
(
C0(G1)

))
.

Summarizing we conclude that X is a strongly embeddable quantum homogeneous space with C∗-version C0(X) =
α(C0(G1)). �

The dual of G is obtained by exchanging the roles of G1 and G2 so that

L∞(Ĝ) = {
β
(
L∞(G2)

) ∪ (
1 ⊗ L∞(Ĝ1)

)}′′
.

In particular we see that Ĝ2 is a closed quantum subgroup of G in the sense of Vaes via the morphism β: L∞(G2) → L∞(Ĝ).
In what follows we will show that X =G/Ĝ2 where X was described in Proposition 7.5.

Proposition 7.6. The strongly embeddable quantum homogeneous space X defined in Proposition 7.5 is of quotient type: L∞(X) =
L∞(G/Ĝ2).

Proof. Using the reasoning of the proof of Lemma 3.11 we see that x ∈ L∞(G/Ĝ2) if and only if x ∈ L∞(G) and x
commutes with β(L∞(G2)) (the commutation holds in B(L2(G2) ⊗ L2(G1))). Since x ∈ G2 �α L∞(G1) and the second
leg of G2 �α L∞(G1) commutes with L∞(G1) (see (7.1)), we conclude that x also commutes with 1 ⊗̄ L∞(G1). From
the fact that L∞(G2) ⊗̄ L∞(G1) is generated by β(L∞(G2)) and 1 ⊗̄ L∞(G1) it follows that x belongs to the commu-
tant of L∞(G2) ⊗̄ L∞(G1). Since the von Neumann algebra L∞(G2) ⊗̄ L∞(G1) is a maximal commutative subalgebra of
B(L2(G2)⊗ L2(G1)) we get x ∈ L∞(G2) ⊗̄ L∞(G1). Proceeding as in the proof of Theorem 3.9 we see that x is invariant under
the dual action on G2 �α L∞(G1). This shows that L∞(G/Ĝ2) ⊂ α(L∞(G1)) and since the opposite inclusion is clear, we get
the equality L∞(X) = α(L∞(G1)) = L∞(G/Ĝ2). �
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7.2. Quantum homogeneous space of the quantum “az + b” group

In this subsection let G be the quantum “az + b” group (see [38,29] and [23, Section 1] for a general approach) for
an admissible value of the deformation parameter (cf. [23, Section 1]). In [30, Section 3] and [24] a construction of a
quantum space Y endowed with a continuous action of G was carried out. The space Y turned out to be a classical space
(the C∗-algebra C0(Y) is commutative) and Y was called a “homogeneous space” for G. We will shed more light on this
example.

Let δY ∈ Mor(C0(Y), C0(G) ⊗ C0(Y)) be the action of G on Y. By the results of [38,29,30] we have

δY(x) = U (x ⊗ 1)U∗, (7.3)

where U ∈ M(K(L2(G)) ⊗ C0(Y)) is defined using the quantum exponential function [23, Section 1] and its form depends on
the value of the deformation parameter (see also [30, proof of Theorem 3.1]).

As C0(Y) comes equipped with an embedding into B(L2(G)) we can immediately put “measurable structure” on Y by
setting L∞(Y) = C0(Y)′′ . It is fairly clear form [30, Section 3] (cf. also [24]) that there is a classical (in fact abelian) locally
compact group Γ such that Γ is a closed quantum subgroup of G. Using standard facts about crossed products by abelian
groups one easily sees that L∞(Y) is precisely the set of those x ∈ L∞(G) which commute with the image of the associated
inclusion L∞(Γ̂ ) ↪→ L∞(G). This means that Y =G/Γ . In particular we have:

Proposition 7.7. Y is a strongly embeddable quantum homogeneous space for G of quotient type.

The classical “az + b” group is a semidirect product of C by the action of C× = C \ {0}. It follows that if G denotes the
classical “az +b” group then the bundle G → G/C× is trivial. In particular the homogeneous space G/C× = C is projectively
embeddable. Interestingly this is not the case on the quantum level.

Proposition 7.8. Let G be the quantum “az + b” group for non-trivial deformation parameter (so that G is not the classical “az + b”
group). Then the quantum homogeneous space Y for G is not projectively embeddable.

Proof. Assume that we have a morphism π ∈ Mor(C0(G), C0(G)) satisfying conditions of Definition 7.1. In particular π
maps C0(G) into a commutative C∗-algebra C0(Y). It is known that C0(G) is a crossed product of C0(Y) by an action of the
group Γ mentioned above (see [38,29,22,24,23] for various descriptions of this fact). Since the original action is inner in
the crossed product, the morphism π restricted to C0(Y) would have to map into the fixed point subalgebra (of the action
of Γ ) of M(C0(Y)). But this subalgebra is equal to C1. On the other hand π must be the identity on C0(Y). Hence we arrive
at a contradiction. �

As mentioned in the proof of Proposition 7.8 the C∗-algebra C0(G) is a crossed product of C0(Y) by an action of Γ .
This situation is explicitly considered as a “trivial quantum principal bundle” by some authors (see e.g. [8, Definition 2.2]).
This underlines our point that the principal bundle corresponding to the action of G on Y should be considered as a non-
commutative “trivial bundle” and strengthens the case that the notion of strong embeddability captures this phenomenon.
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