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NONLOCAL DIFFUSION EQUATIONS

VERENA BÖGELEIN, FRANK DUZAAR, PAOLO MARCELLINI,

AND STEFANO SIGNORIELLO

Abstract. In this paper we present a variational approach to establish the ex-

istence and uniqueness of variational solutions to nonlocal evolutionary prob-

lems. The model we have in mind is the following nonlocal version of the

parabolic p-Laplacian

ut − div
[
a
(‖Du(t)‖p

Lp(Ω)

) |Du|p−2 Du
]
= h,

which has recently attracted many authors. We emphasize that our approach

also applies in situations where the considered functionals do not allow the

derivation of the associated Euler-Lagrange equation.

1. Introduction

In this paper we are concerned with the existence of solutions to nonlocal para-
bolic partial differential equations, in the sense of aiming to construct solutions that
inherit a certain minimizing property. Such parabolic minimizers or variational so-
lutions are advantageous since they are likely to possess better regularity properties
due to their minimizing property. In this framework we are able to give elemen-
tary proofs for existence and uniqueness for gradient flows associated to functionals
depending on nonlocal quantities. The study of nonlocal problems is justified for
instance by the fact that in reality measurements are made through local averages
rather than pointwise. But also real-life phenomena may depend on nonlocal quan-
tities as for example the evolution of a population whose diffusion depends on the
whole population. Such problems have already been investigated for example in [8]
for the case p = 2 and in [7] for p > 1: More precisely, the problem of finding a
weak solution u to the Cauchy-Dirichlet problem

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

ut − div
[
a
(‖Du(t)‖pLp(Ω)

) |Du|p−2
Du

]
= h in ΩT ,

u = 0 on ∂Ω× (0, T ),

u (0) = uo in Ω,

where Ω ⊂ R
n is bounded and open, n ≥ 1, ΩT := Ω × (0, T ) for T ∈ (0,∞],

1 < p < ∞, a is continuous and positive, the right-hand side h is an element of
W−1,p′

(Ω), the number p′ = p
p−1 being the Hölder conjugate exponent of p, and

the initial value uo is assumed to be in W 1,p
0 (Ω) ∩ L2(Ω). In the case p = 2, (1.1)

is a parabolic equation with a Kirchhoff type diffusion term. Here and throughout
the rest of the paper we write u(t) for the restriction of u to the time slices Ω×{t},
i.e., for the map u(·, t). The authors study the problem of existence and uniqueness
of solutions and their asymptotic behaviour as time t tends to ∞. The existence of
weak solutions

u ∈ Lp
(
0, T ;W 1,p

0 (Ω)
) ∩ C0

(
[0, T ] ;L2 (Ω)

)
1
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is achieved in [7] by means of Galerkin’s method. It is worth to keep in mind that
(1.1) can be interpreted as the L2-gradient flow to the variational functional

F (v) := A

( ˆ
Ω

|Dv|pdx
)
−
ˆ
Ω

hvdx, where A(s) :=

ˆ s

0

a(σ)dσ.

In this paper we do not want to argue on the level of the gradient flow associated to
the above variational functional, i.e., on the level of the nonlocal diffusion equation
(1.1). Instead we are going to work on the level of minimizers resp. variational
solutions. This approach allows for fairly general situations, i.e., assumptions on
the variational integrand, whereas additional assumptions are needed to ensure that
the constructed variational solutions (parabolic minimizers) solve the corresponding
evolutionary system after all. We emphasize that all our proofs are self-contained
and do not use the classical existence theory for parabolic equations and systems.

More precisely, here we are concerned with an energy functional

F : W 1,p(Ω,RN )→ (−∞,∞]

of the form

(1.2) F (v) := A

( ˆ
Ω

|Dv|pdx
)
+

ˆ
Ω

S (x,K [v]) dx+

ˆ
Ω

f(x, v,Dv)dx,

where A, S, K and f are given functions whose properties will be explained in the
following.

1.1. Assumptions on the energy functional and definition of variational
solutions. Let A : [0,∞) → R be convex, increasing and such that it satisfies for
some μ1 ∈ R and κ > 0 the coercivity condition

(1.3) A(r) ≥ μ1r − κ ∀ r ≥ 0 .

Moreover, assume that S : Ω×R
N → [0,∞) with N ≥ 1 ( i.e., the problem might be

vector-valued) is a Carathéodory function such that the partial map u 
→ S (x, u)
is convex for almost every x ∈ Ω and suppose that K : L1

(
Ω,RN

) → L1
(
Ω,RN

)
is linear and bounded. For instance, the operator K could be of the form

K [u] (x) = (k ∗ u) (x) =
ˆ
Ω

k(x− y)u(y)dy,

where k ∈ C∞ (Rn) is an integral kernel, e.g., a Gaussian filter k ∼ exp(−c|x|2)
for some c > 0. Consider further a Carathéodory integrand f : Ω × R

N × R
Nn →

(−∞,∞] such that the partial map

(1.4) (u, ξ) 
→ f (x, u, ξ) is convex for almost every x ∈ Ω

and such that for some μ2 ∈ R, nonnegative functions g1 ∈ Lp′
(Ω) and g2 ∈ L1(Ω)

the coercivity condition

(1.5) f(x, u, ξ) ≥ μ2 |ξ|p − g1(x) |u| − g2(x)

is satisfied for all (x, u, ξ) ∈ Ω×R
N ×R

Nn. Throughout the paper we assume that
there holds

(1.6) μ1 + μ2 > 0.

Note that [f(·, v,Dv)]− ≤ |μ2||Dv|p + g1|v| + g2 ∈ L1(Ω) implies that the part of
F containing the integrand f is well defined on W 1,p(Ω,RN ). For the evolutionary
problem considered here, we assume that the initial condition uo satisfies

(1.7) uo ∈W 1,p
(
Ω,RN

) ∩ L2
(
Ω,RN

)
and

(1.8) F (uo) = A

( ˆ
Ω

|Duo|pdx
)
+

ˆ
Ω

S (x,K [uo]) dx+

ˆ
Ω

f(x, uo, Duo)dx <∞.
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Corresponding to the F -energy and the initial datum uo defined above, we are thus
concerned on a purely formal level with the following Cauchy-Dirichlet problem:

(1.9)
ut − div

[
A′

(‖Du(t)‖pLp(Ω)

) |Du|p−2
Du+Dξf(x, u,Du)

]
= −K∗[DuS(x,K[u])

]−Duf(x, u,Du) in ΩT ,

and u = uo on ∂PΩT . Here K∗ denotes the formal adjoint operator of K and

∂PΩT =
(
Ω× {0}) ∪ (∂Ω× (0, T ))

stands for the parabolic boundary of ΩT . Note that the assumptions on the inte-
grand f in (1.4) and (1.5) allow for a large variety of interesting functionals as in
[4]. For example, in the case μ1 > 0 and S ≡ 0, the integrand f could be of the

form −hu with h ∈ L
p

p−1 (ΩT ), formally yielding (1.1)1. Similarly, if f is of the
form −hu−|F |p−2F ·ξ with h as before and F ∈ Lp(Ω,RNn), we get (1.1)1 with an
additional additive term div(|F |p−2F ) on the right-hand side. Note here, that the
coercivity condition (1.5) is satisfied by means of Young’s inequality for example
with μ2 := − 1

2μ1, g1 = |h| and g2 := c|F |p for a constant c = c(p, μ1), so that (1.6)
holds true.

We are now in position to define the concept of variational solutions to the
Cauchy-Dirichlet problem (1.9), following an idea by Lichnewsky & Temam [16]
that was first used in the context of the evolutionary parametric minimal surface
equation. In what follows we use the short hand notation

W 1,p
uo

(
Ω,RN

)
:= uo +W 1,p

0

(
Ω,RN

)
,

and as already mentioned the abbreviation v(t) := v(·, t).
Definition 1.1 (Variational Solutions). Assume that the Cauchy-Dirichlet datum
uo fulfills (1.7) and (1.8). A map u : ΩT → R

N , T ∈ (0,∞), from the class

(1.10) u ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

)) ∩ C0
(
[0, T ] ;L2

(
Ω,RN

))
is called a variational solution on ΩT to the Cauchy-Dirichlet problem (1.9) if and
only if the variational inequality

(1.11)

ˆ T

0

F (u(t)) dt ≤
ˆ T

0

[ˆ
Ω

∂tv · (v − u)dx+ F (v(t))

]
dt

+ 1
2‖v(0)− uo‖2L2(Ω,RN ) − 1

2‖(v − u)(T )‖2L2(Ω,RN )

holds true for any v ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

))
with ∂tv ∈ L2

(
ΩT ,R

N
)
. Finally, a

map u : Ω∞ → R
N is termed a global variational solution (or variational solution

on Ω∞) if

u ∈ Lp
(
0, T ;W 1,p

uo

(
Ω,RN

)) ∩ C0
(
[0, T ] ;L2

(
Ω,RN

)) ∀T > 0

and u is a variational solution on ΩT for all T > 0. �

Note that due to (1.7) and (1.8) the time-independent extension of uo to Ω∞,
i.e., the map v (x, t) = uo(x) for (x, t) ∈ Ω∞, is an admissible comparison map in
the variational inequality (1.11) on any finite cylinder ΩT . Therefore, we have the

finite energy assertion
´ T
0
F (u(t))dt <∞ for any variational solution. Throughout

the paper, we abbreviate

(1.12) Eo := κ+

ˆ
Ω

[
gp

′
1 + g2 + |uo|p + |Duo|p

]
dx <∞.

With co we denote the constant from §2.2, (2.3).
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1.2. The main results. Our main results concerning the existence and regularity
of variational solutions are the following:

Theorem 1.1 (Existence of variational solutions). Suppose that the energy func-
tional F and the initial condition uo satisfy the assumptions from Section 1.1.
Then, for any T ∈ (0,∞) there exists a variational solution u on ΩT in the sense
of Definition 1.1.

In the special case μ2, g1, S ≡ 0, our existence result is similar to the one in
[7]. However, in [7] the authors consider directly the differential equation (1.1)
with a continuous and bounded from below and above by positive constants. In
our case, the analog of the function a would be the derivative A′ of A, which does
not necessarily exist. However, we need to assume that A is convex, increasing and
coercive. Therefore, the assumptions here and in [7] are not completely comparable.
Finally, we note that the special case p = 2 has been considered before in [8].
However, due to its variational character our proof would not simplify much in
the case p = 2. The reason for that stems from the use of lower semicontinuity
arguments which allow to pass to the limit in the approximation scheme.

Theorem 1.2 (Uniqueness of variational solutions). Suppose that the energy func-
tional F and the initial condition uo satisfy the conditions from Section 1.1 and in
addition that one of the following assumptions holds true:

i) N ≥ 1 and either A is strictly increasing, or S is strictly convex in the
second variable for almost every x ∈ Ω and K is injective, or (u, ξ) 
→
f(x, u, ξ) is strictly convex for almost every x ∈ Ω.

ii) N = 1 and A ≡ 0 and S ≡ 0.

Then, for any T ∈ (0,∞) the variational solution u on ΩT from Theorem 1.1 is
unique.

From the last two theorems we conclude with the following corollary on the
existence of a unique global variational solution.

Corollary 1.3 (Existence and uniqueness of global variational solutions). Let the
energy functional F and the initial condition uo satisfy the assumptions from Sec-
tion 1.1. Moreover, assume that one of the alternatives i) or ii) from Theorem 1.2
is satisfied. Then there exists a unique global variational solution u in the sense of
Definition 1.1.

Furthermore, we prove the following regularity properties of variational solutions:

Theorem 1.4. Let the energy functional F and the initial condition uo satisfy the
assumptions from Section 1.1. Then, any variational solution u on ΩT in the sense
of Definition 1.1 with T ∈ (0,∞] satisfies

∂tu ∈ L2
(
ΩT ,R

N
)

and u ∈ C0, 12
(
[0, τ ] ;L2

(
Ω,RN

)) ∀ τ ∈ R ∩ (0, T ].

Moreover, the a priori bound for the time derivative of u

(1.13)

ˆ T

0

ˆ
Ω

|∂tu|2 dxdt ≤ F (uo) + coEo
and the energy estimate

(1.14)
1

t2 − t1

ˆ t2

t1

F (u(t)) dt ≤ F (uo)

for any 0 ≤ t1 < t2 ≤ T hold true. In particular, for any τ ∈ R∩ (0, T ] we have the
a priori bound for the Lp−W 1,p-norm of u

(1.15)

ˆ τ

0

ˆ
Ω

(|u|p + |Du|p)dxdt ≤ cτ
[
F (uo) + coEo

]
,
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where the constant c ≥ 1 depends only on n, p, μ1 + μ2 and diamΩ.

Remark 1. The regularity requirement (1.10) from Definition 1.1 could be replaced
by the stronger requirement that u ∈ Lp(0, T ;W 1,p(Ω,RN )) with ∂tu ∈ L2(ΩT ) and
the inequality (1.11) could be replaced byˆ T

0

F (u(t)) dt ≤
ˆ T

0

[ˆ
Ω

∂tu · (v − u)dx+ F (v(t))

]
dt.(1.16)

In this case u ∈ C0([0, T ];L2(Ω∗)) would automatically be satisfied and solutions
of (1.16) satisfying this stronger regularity condition could be termed strong vari-
ational solutions. This terminology should not be mistaken in the sense that the
notion of strong solutions are often connected to classical solutions satisfying the
differential equation pointwise. Since the initial condition is not anymore implic-
itly contained in the variational inequality (1.16), one has additionally to require
u(0) = uo. Theorems 1.1 and 1.4 could be joined to the statement that a unique
strong variational solution exists. However, we prefer the notion of variational
solutions, since the variational inequality (1.11) is well defined under the weaker
regularity assumption (1.10). Then, Theorem 1.4 allows the interpretation of a first
regularity result for variational solutions. This viewpoint is in accordance with the
classical theory for non-linear parabolic equations, in which one always seeks for a
natural notion for solutions under minimal regularity requirements. �

Finally, for some remarks on higher regularity properties of variational solutions
we refer to §6.

1.3. The method of proof and some remarks on previous results. As was
mentioned before, the idea of regarding weak solutions as variational solutions goes
back to the work of Lichnewsky & Temam [16]. In the proof of existence, i.e., the
proof of Theorem 1.1, we present a purely variational approach that has its roots
in a conjecture of De Giorgi [9] on the existence of global weak solutions to the
Cauchy problem for nonlinear hyperbolic wave equations. More precisely, De Giorgi
suggested to infer the existence of these solutions by means of limits of minimizers
of convex variational integrals on R

n × (0,∞). That this conjecture holds true
for wave equations with super-critical nonlinearity of the type utt −Δu = |u|q−2u
at least up to subsequences was solved by Serra and Tilli in [17]. It should be
mentioned that Ilmanen gave a different proof of Brakke’s existence theorem for
motion by mean curvature via elliptic regularization; see [14].

The development of a related theory for evolutionary problems is therefore not
far to seek. For such problems related to variational integrands f : Ω×R

N×R
Nn →

(−∞,∞] (with N ∈ N such that the problem might be a vectorial one), i.e., the
case A ≡ 0 and S ≡ 0, and the corresponding variational functionals

F (u) :=

ˆ
Ω

f (x, u,Du) dx

this has already been achieved in [4]. However, compared to [4] the proofs in the
present paper are different and simplified in several respects; see for instance the
proof of the uniqueness via the comparison principle and the existence of the time
derivative ∂tu in L2. Here f is only assumed to be convex with respect to (u,Du)
for almost every fixed x and coercive in the sense that a growth condition from
below

f (x, u, ξ) ≥ ν |ξ|p − g(x) (1 + |u|) ∀ (x, u, ξ) ∈ Ω× R
N × R

Nn

holds true, where ν > 0, p > 1 and g ∈ Lp′
(Ω, [0,∞]) for p′ the Hölder conjugate

exponent of p. The associated formal parabolic system looks like

∂tu− divDξf (x, u,Du) = −Duf (x, u,Du) ,
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which, on account of the weak assumptions on f , generally does not have a meaning
at all.

Moreover, in [5] this approach was successfully used to treat evolutionary prob-
lems for linear growth functionals in the context of image restoration problems.
More precisely, the authors investigate functionals whose leading term is given by
the total variation and that contain a lower order perturbation, like the general
Rudin-Osher-Fatemi models

F (u) := ‖Du‖(Ω) +
ˆ
Ω

S (x, u(x)) dx,

where S : Ω×R→ [0,∞) is a Carathéodory integrand as above and ‖Du‖(Ω) stands
for the total variation of Du, or like Tikhonov-functionals

F (u) := ‖Du‖(Ω) + κ
2

ˆ
Ω

∣∣K [u]− uo

∣∣2dx,
whereK : L1 (Ω)→ L2 (Ω) is linear, bounded, injective and κ is a large penalization
factor.

The ideas from [4, 5] (see also [2]) can be applied in the context of this paper,
i.e., to functionals with some sort of nonlocal quantities. To be more precise,
we follow De Giorgi’s scheme to prove the existence of solutions to evolutionary
Cauchy-Dirichlet problems as in (1.9), as limit of energy functionals which in a
certain sense can be interpreted as the elliptic regularization of the evolutionary
problem in the spirit of Ilmanen’s approach to Brakke’s mean curvature flow. We
consider mappings u : ΩT → R

N , T > 0, satisfying the initial-boundary condition
u = uo on the parabolic boundary ∂PΩT of ΩT , where uo : Ω → R

N is a given
time independent datum. For ε ∈ (0, 1] and F defined in (1.2), we investigate the
strictly convex variational integrals

Fε (v) :=

ˆ T

0

e−
t
ε

[
1
2

ˆ
Ω

|∂tv|2 dx+ 1
εF (v(t))

]
dt,

to which the existence of unique minimizers uε from a suitable class can be in-
ferred by means of classical methods of the Calculus of Variations. Formally, these
minimizers satisfy the elliptic system

−ε∂ttuε + ∂tuε − div
[
A′

(‖Duε(t)‖pLp(Ω)

)|Duε|p−2Duε +Dξf(x, uε, Duε)
]

= −K∗[DuS(·,K[uε])
]−Duf(x, uε, Duε),

such that the convergence of the Fε-minimizers uε to a solution u to the associated
evolutionary problem (1.9) as ε ↓ 0 seems natural to expect. This argument is
of course purely heuristic since the derivation of the Euler-Lagrange equation is
in general not possible and since it is not clear at all how to pass to the limit
ε ↓ 0. Therefore, remaining on the level of minimizers, one might expect that the
minimization property of the approximating maps uε could assign to the limit u,
and therefore could lead to a solution to the Cauchy-Dirichlet problem (1.9) if the
data (A,S, f,K) are regular enough. In this direction, the notion of variational
solutions is precisely the link between the strictly convex variational functionals Fε

and the evolutionary problem associated to the functionals F .
Clearly, to show subconvergence uε → u in an appropriate weak sense, we are in

need of uniform a priori energy bounds for the sequence (uε)ε∈(0,1] (cf. (5.7), (5.9)
and (5.11)). These estimates will be derived in §5.3 by substantially new arguments,
i.e., by means of direct comparison arguments using a time mollification procedure
(cf. §2.3) to obtain comparison maps sufficiently regular with respect to time.

Acknowledgments. V. Bögelein was supported by the DFG-Project BO3598/1-1
“Evolutionsgleichungen mit p, q-Wachstum” and P. Marcellini is a member of the
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Gruppo Nazionale per l’Analisi Matematica, la Probalità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Notations and Preliminaries

2.1. Notations. For 1 ≤ p ≤ ∞, n,N ∈ N and an open set Ω ⊂ R
n, the

spaces Lp
(
Ω,RN

)
, W 1,p

(
Ω,RN

)
and W 1,p

0

(
Ω,RN

)
denote the usual Lebesgue and

Sobolev spaces, respectively. Moreover, for T ∈ (0,∞] , by ΩT we denote the space-
time cylinder Ω× (0, T ). Further, for a set A the characteristic function of A shall
be denoted by χA.

2.2. A lower bound for the functional. In concern of the coercivity conditions
in (1.3) and (1.5), both A, f and thus F could be negative. Therefore, we are
going to derive a lower bound for the energy F that will be needed several times
throughout the paper. We start with an application of Poincaré’s inequality which
leads to

(2.1)

ˆ
Ω

|v|pdx ≤ cp

[ˆ
Ω

|Dv|pdx+ ‖uo‖pW 1,p

]

for any v ∈W 1,p
uo

(Ω,RN ). The constant cp ≥ 1 in the preceding inequality depends
only on n, p and diamΩ. From S ≥ 0 and the coercivity assumptions (1.3), (1.5)
and (1.6) it follows for any v ∈W 1,p

uo
(Ω,RN ) that

F (v) ≥ (μ1 + μ2)

ˆ
Ω

|Dv|pdx−
ˆ
Ω

g1|v|dx−
ˆ
Ω

g2dx− κ.

The second term can further be estimated by means of Young’s and the Poincaré
type inequality (2.1). For any λ > 0, this yields

ˆ
Ω

g1|v|dx ≤ λ

ˆ
Ω

|v|pdx+ λ−
1

p−1

ˆ
Ω

gp
′

1 dx

≤ cpλ

ˆ
Ω

|Dv|pdx+ cpλ‖uo‖pW 1,p + λ−
1

p−1

ˆ
Ω

gp
′

1 dx.

Setting λ = μ1+μ2

2cp
, the first term on the right-hand side of the previous inequality

can be absorbed in the estimate for F above, i.e.,

(2.2)

F (v) ≥ 1
2 (μ1 + μ2)

ˆ
Ω

|Dv|pdx

− 1
2 (μ1 + μ2)‖uo‖pW 1,p −

( 2cp
μ1 + μ2

) 1
p−1

ˆ
Ω

gp
′

1 dx−
ˆ
Ω

g2dx− κ

≥ 1
2 (μ1 + μ2)

ˆ
Ω

|Dv|pdx− coEo,

for the quantity Eo defined in (1.12) and

(2.3) co := max

{
1, 1

2 (μ1 + μ2),
( 2cp
μ1 + μ2

) 1
p−1

}
.

Note that co ≥ 1 depends only on n, p, μ1 + μ2 and diamΩ. From (2.2) we obtain
the bound

0 ≤ 1
2 (μ1 + μ2)

ˆ
Ω

|Dv|pdx ≤ F (v) + coEo

for any v ∈W 1,p
uo

(Ω,RN ).
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2.3. Mollification in time. In the definition of variational solutions we are not
going to assume any condition on their derivative with respect to time. Therefore,
we are generally not allowed to use them as comparison maps in the variational
inequality (1.11) and a suitable mollification procedure in time is thus needed. To
this end, for X a separable Banach space, an initial datum vo ∈ X and 1 ≤ r ≤ ∞,
let v ∈ Lr(0, T ;X) and define the mollification in time of v for h ∈ (0, T ] and
t ∈ [0, T ] by means of

(2.4) [v]h(t) := e−
t
h vo +

1
h

ˆ t

0

e
s−t
h v(s) ds.

In the application we are going to use for instance X = Lr(Ω,RN ) and the related
parabolic space Lr(0, T ;Lr(Ω,RN )). One of the features of the mollification in time
is that [v]h (formally) solves the ordinary differential equation

(2.5) ∂t[v]h = 1
h

(
v − [v]h

)
with initial condition [v]h(0) = vo. Note that, if [v]h does solve the ordinary
differential equation (2.5) above, then clearly any common membership of both v
and its regularization [v]h to a Banach space is passed also to the time derivative
of [v]h. This fact will be exploited in §5.3 to derive the uniform a priori bounds
for the sequence of Fε-minimizers uε which later on imply in particular that the
variational solution u possesses a time derivative in L2(ΩT ,R

N ).
The basic properties of the mollification in time are summarized in the following

lemma (cf. [15, Lemma 2.2] and [3, Appendix B] for the proofs).

Lemma 2.1. Let X be a separable Banach space and vo ∈ X. If v ∈ Lr(0, T ;X)
for some r ≥ 1, then also [v]h ∈ Lr(0, T ;X), and [v]h → v in Lr (0, T ;X) as h ↓ 0.
Further, for any to ∈ (0, T ] there holds

‖[v]h‖Lr(0,to;X) ≤ ‖v‖Lr(0,to;X) +
[
h
r

(
1− e−

tor
h

)] 1
r ‖vo‖X .

In the case r = ∞, the bracket [. . .]
1/r

in the preceding inequality has to be inter-
preted as 1. Moreover, ∂t[v]h ∈ Lr (0, T ;X) with

∂t[v]h = 1
h

(
v − [v]h

)
.

If additionally also ∂tv ∈ Lr(0, T ;X), then

∂t[v]h = 1
h

ˆ t

0

e
s−t
h ∂sv(s)ds

and

‖∂t[v]h‖Lp(0,T ;X) ≤ ‖∂tv‖Lp(0,T ;X) .

Finally, if v ∈ C0([0, T ];X), then also [v]h ∈ C0([0, T ];X), [v]h(0) = vo and [v]h →
v in L∞([0, T ];X) as h ↓ 0. �

In the following we want to show that the time mollification of the F -energy
satisfies F ([v]h) ≤ [F (v)]h on [0, T ] and [F (v)]h → F (v) in L1(0, T ) for a not
relabeled subsequence as h ↓ 0 if v and vo are chosen properly. The first estimate
will be used frequently throughout the paper, while the convergence is needed to
show that the variational solution u is also a parabolic minimizer in the sense of
Wieser [19]. Concerning the part of F involving the integrand f , we conclude
similarly as in [4, Lemma 2.3] that there holds:

Lemma 2.2. Let T > 0 and f an integrand as in (1.4) and (1.5). Suppose further
that v ∈ Lp(0, T ;W 1,p(Ω,RN )) with f(·, v,Dv) ∈ L1(ΩT ) and vo ∈ W 1,p(Ω,RN )
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with f(·, vo, Dvo) ∈ L1(Ω). Then, [v]h ∈ Lp(0, T ;W 1,p(Ω,RN )), f(·, [v]h, D[v]h) ∈
L1(ΩT ) and

f(·, [v]h, D[v]h) ≤ [f(·, v,Dv)]h on ΩT .

Moreover, we have

f(·, [v]h, D[v]h)→ f(·, v,Dv) in L1(ΩT )

in the limit h ↓ 0.
Proof. In the following, in order to use a variant of Lebesgue’s dominated con-
vergence theorem [12, Chap. 1.3 Thm. 4], we want to show that there exists a
majorizing L1-convergent sequence Gh with

∣∣f(·, [v]h, D[v]h)
∣∣ ≤ Gh. We are going

to show that

Gh :=
∣∣[f(·, v,Dv)]h

∣∣+ |μ2||D[v]h|p + g1|[v]h|+ g2

is an admissible choice, where, as mentioned already above, [f(·, v,Dv)]h is defined
as in (2.4) with vo replaced by f(·, vo, Dvo) and v replaced by f(·, v,Dv). Observe
that Lemma 2.1 implies the convergence

L1(ΩT ) � [f(·, v,Dv)]h → f(·, v,Dv) in L1(ΩT ) as h ↓ 0,
as well as the bound∥∥[f(·, v,Dv)]h

∥∥
L1(ΩT )

≤ ∥∥f(·, v,Dv)
∥∥
L1(ΩT )

+ h
∥∥f(·, vo, Dvo)

∥∥
L1(Ω)

<∞.

Note further that

1

h
(
1−e−

t
h

)
ˆ t

0

e
s−t
h ds ≡ 1,

i.e., the mollification [v]h may be regarded as mean with respect to the measure

e
s−t
h ds modulo a multiplicative factor and therefore allows for an application of

Jensen’s inequality. Exploiting the convexity of (u, ξ) 
→ f(·, u, ξ), Jensen’s in-
equality and (1.5), we conclude with the following pointwise estimate for almost
every x ∈ Ω

−|μ2||D[v]h|p − g1(x)|[v]h| − g2(x)

≤ f(x, [v]h, D[v]h)

≤ e−
t
h f(x, vo, Dvo) +

(
1 + e−

t
h

)
f

(
x, 1

h(1+e−
t
h )

ˆ t

0

e
s−t
h (v,Dv)(x, s) ds

)

≤ e−
t
h f(x, vo, Dvo) +

1
h

ˆ t

0

e
s−t
h f(x, (v,Dv)(x, s)) ds

=
[
f(·, v,Dv)

]
h
.

Since ([v]h, D[v]h) is strongly convergent in Lp
(
ΩT ,R

N × R
Nn

)
to (v,Dv) as h ↓

0, we can extract a not relabelled subsequence such that ([v]h, D[v]h) → (v,Dv)
pointwise almost everywhere on ΩT . Finally, the continuity of (u, ξ) 
→ f(·, u, ξ)
implies the pointwise almost everywhere convergence f(·, [v]h, D[v]h)→ f(·, v,Dv)
and the variant of the dominated convergence theorem from [12, Chap. 1.3 Thm. 4]
is thus applicable. Since the same argument can be applied to any subsequence,
the convergence holds for the whole sequence. �

Concerning the part of F involving the integrand S, we conclude (cf. [5, Lemma
2.5]):

Lemma 2.3. Let T > 0 and suppose that S : Ω × R
N → [0,∞) is a Carathéodory

integrand such that the partial map u 
→ S (x, u) is convex for almost every x ∈ Ω.
Moreover, let K : L1

(
Ω,RN

)→ L1
(
Ω,RN

)
be linear and bounded and assume that
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v ∈ L1
(
ΩT ,R

N
)
with S (·,K [v]) ∈ L1 (ΩT ) and vo ∈ L1

(
Ω,RN

)
with S (·,K [vo]) ∈

L1 (Ω). Then, S (·,K [[v]h]) ∈ L1 (ΩT ) and

S (·,K [[v]h]) ≤ [S (·,K [v])]h on ΩT ,

where [S (·,K [v])]h (t) is defined as in (2.4) with vo replaced by S (·,K [v0]). More-
over, we have

S (·,K [[v]h])→ S (·,K [v]) in L1 (ΩT )

for a not relabeled subsequence of [v]h in the limit h ↓ 0.
Proof. We argue similarly to the proof of Lemma 2.2 by establishing the existence
of a majorizing L1-convergent sequence Gh with |S(·,K[[v]h])| ≤ Gh. We shall show
that Gh :=

∣∣[S(·,K[v])]h
∣∣ is an admissible choice, where, [S(·,K[v])]h is defined as

in (2.4) with vo replaced by S(·,K[vo]) and v replaced by S(·,K[v]). By means of
Lemma 2.1 there hold

L1(ΩT ) � [S(·,K[v])]h → S(·,K[v]) in L1(ΩT ) as h ↓ 0,
and ∥∥[S(·,K[v])]h

∥∥
L1(ΩT )

≤ ∥∥S(·,K[v])
∥∥
L1(ΩT )

+ h
∥∥S(·,K[vo])

∥∥
L1(Ω)

<∞.

Using the convexity of u 
→ S(·, u), the linearity of K and Jensen’s inequality, we
obtain the following pointwise estimate for almost every x ∈ Ω

0 ≤ S(x,K[[v]h(t)])

≤ e−
t
hS

(
x,K[vo]

)
+

(
1 + e−

t
h

)
S

(
x, 1

h(1+e−
t
h )

ˆ t

0

e
s−t
h K[v(s)](x) ds

)

≤ e−
t
hS(x,K[vo]) +

1
h

ˆ t

0

e
s−t
h S(x,K[v(s)]) ds

=
[
S(x,K[v])

]
h
(t).

Since [v]h is strongly convergent in L1(ΩT ,R
N ) to v as h ↓ 0, the continuity of

K implies that also K[[v]h] → K[v] in L1(ΩT ,R
N ). Hence, we can extract a not

relabelled subsequence such that K[[v]h] → K[v] pointwise almost everywhere on
ΩT , and as in the proof of the preceding Lemma the continuity of u 
→ S(·, u)
implies the pointwise almost everywhere convergence S(x,K[[v]h]) → S(x,K[v]).
The variant of the dominated convergence theorem from [12, Chap. 1.3 Thm. 4] is
therefeore applicable and yields the final claim. �

Concerning the part of F involving the map A we conclude (cf. [5, Lemma 2.6]):

Lemma 2.4. Let T > 0 and suppose that A : [0,∞)→ R is convex and increasing,
satisfying (1.3), v ∈ Lp(0, T,W 1,p(Ω,RN )) such that A

(‖Dv(t)‖pLp(Ω)

) ∈ L1(0, T )

and vo ∈W 1,p(Ω,RN ). Then, A
(‖D[v]h(t)‖pLp(Ω)

) ∈ L1(0, T ), and

A
(‖D[v]h(t)‖pLp(Ω)

) ≤ [
A
(‖Dv‖pLp(Ω)

)]
h
(t) ∀ t ∈ (0, T ).

Moreover, we have

A
(‖D[v]h‖pLp(Ω)

)→ A
(‖Dv‖pLp(Ω)

)
in L1(0, T )

for a not relabeled subsequence of [v]h in the limit h ↓ 0.
Proof. For the better readability we waive the reference to the domain Ω and R

Nn

in the occurring Lp-norms. As in the proof of Lemma 2.4 we infer the existence of a
majorizing L1-convergent sequence Gh with

∣∣A(‖D[v]h(t)‖pLp)
∣∣ ≤ Gh(t), to be able

to apply a variant of Lebesgue’s dominated convergence theorem [12, Chap. 1.3,
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Thm. 4]. To this end, note that for any ϕ ∈ Lp′
(Ω,RNn), where p′ is the Hölder

conjugate exponent of p, there holds

〈D[v]h(t), ϕ〉 = e−
t
h 〈Dvo, ϕ〉+ 1

h

ˆ t

0

e
s−t
h 〈Dv(s), ϕ〉 ds

such that by means of the dual characterization of ‖ · ‖Lp , i.e., by taking the supre-

mum over all ϕ ∈ Lp′
(Ω,RNn) with ‖ϕ‖Lp′ ≤ 1, we conclude with the following

bound

‖D[v]h(t)‖Lp ≤ e−
t
h ‖Dvo‖Lp + 1

h

ˆ t

0

e
s−t
h ‖Dv(s)‖Lpds.

Now, the convexity and the monotonicity of Ã(s) := A(sp) on [0,∞), implied by
the convexity and monotonicity of both A and s 
→ sp allow for an application of
Jensen’s inequality (cf. the proof of Lemma 2.4), yielding

μ1‖D[v]h(t)‖pLp − κ

≤ A
(‖D[v]h(t)‖pLp

)
= Ã

(‖D[v]h(t)‖Lp

)
≤ e−

t
h Ã

(‖Dvo‖Lp

)
+

(
1− e−

t
h

)
Ã

(
1

h(1−e−
t
h )

ˆ t

0

e
s−t
h ‖Dv(s)‖Lpds

)

≤ e−
t
h Ã

(‖Dvo‖Lp

)
+ 1

h

ˆ t

0

e
s−t
h Ã

(‖Dv(s)‖Lp

)
ds

=
[
A
(‖Dv‖pLp

)]
h
(t),

where
[
A
(‖Dv‖pLp

)]
h
(t) is defined according to (2.4) with vo and v replaced by

A(‖Dvo‖pLp) and A(‖Dv(·, t)‖pLp), respectively. The claim now follows along the
lines of the proof of Lemma 2.3. �

The last three lemmata imply the following corollary:

Corollary 2.5. Let T > 0, v ∈ Lp(0, T,W 1,p(Ω,RN )) with F (u(t)) ∈ L1(0, T )
and vo ∈W 1,p

(
Ω,RN

)
with S(·,K[vo]), f(·, vo, Dvo) ∈ L1(Ω). Then, F ([v]h (t)) ∈

L1(0, T ), and

F
(
[v]h(t)

) ≤ [F (v)]h(t) ∀ t ∈ (0, T ) .

Moreover, we have

F
(
[v]h(t)

)→ F (v(t)) in L1 (0, T )

for a not relabeled subsequence of [v]h as h ↓ 0. �

2.4. Localization in time. The goal here is to show that a variational solution u
on some cylinder ΩT with T ∈ (0,∞) is also a variational solution on any smaller
cylinder Ωτ with τ ∈ (0, T ). To this end, for θ ∈ (0, τ) consider the cut-off function

ξθ(t) := χ[0,τ−θ](t) +
τ−t
θ χ(τ−θ,τ ](t).

For v ∈ Lp(0, τ ;W 1,p
uo

(Ω,RN )) satisfying ∂tv ∈ L2(Ωτ ,R
N ) and F (v(t)) ∈ L1 (0, τ)

(if F (v(t)) �∈ L1(0, τ) , the variational inequality follows trivially) we choose

vθ := ξθv + (1− ξθ) [u]h

as comparison map in (1.11), where [u]h is defined according to (2.4) with uo and
u instead of vo and v, respectively. Note that by extending ξθv from Ωτ to ΩT by
0, the admissibility of vθ is due to Lemma 2.1, i.e., [u]h ∈ Lp(0, T,W 1,p

uo
(Ω,RN ))

and ∂t[u]h ∈ L2(ΩT ,R
N ). Furthermore, the fact that u ∈ C0([0, T ];L2(Ω,RN )) by



12 V. BÖGELEIN, F. DUZAAR, P. MARCELLINI, AND S. SIGNORIELLO

definition implies via Lemma 2.1 that also [u]h ∈ C0([0, T ];L2(Ω,RN )). From the
minimality condition (1.11) we thus infer

(2.6)

ˆ T

0

F (u(t))dt ≤
ˆ T

0

[ˆ
Ω

∂tvθ ·
(
vθ − u

)
dx+ F (vθ(t))

]
dt

+ 1
2‖v(0)− uo‖2L2 − 1

2‖([u]h − u)(T )‖2L2 .

In the following we want to pass to the limit θ ↓ 0. Note in this direction that

∂tvθ · (vθ − u) = ξ′θξθ|v − [u]h|2 + ξ′θ(v − [u]h)([u]h − u)

+ [ξθ∂tv + (1− ξθ)∂t[u]h][ξθ(v − [u]h)([u]h − u)]

and obviously being equal to ∂tv(v−u) if 0 ≤ t ≤ τ−θ and equal to ∂t[u]h([u]h−u)
if τ < t ≤ T . Therefore, we have to take a look at

´ τ
τ−θ

´
Ω
∂tvθ · (vθ − u)dxdt as

θ ↓ 0. By means of an integration by parts for the first term on the right-hand side
of the previous equation, using Lebesgue’s differentiation theorem for the first two
terms and noting that the last term is in L1, we deduce as in [6, Lemma 3.2] that

lim sup
θ↓0

ˆ T

0

ˆ
Ω

∂tvθ(vθ − u)dxdt

≤
ˆ τ

0

ˆ
Ω

∂tv(v − u)dxdt+

ˆ T

τ

ˆ
Ω

∂t[u]h
(
[u]h − u

)
dxdt

− 1
2‖(v − [u]h) (τ) ‖2L2 +

∥∥([u]h − u
)(
v − [u]h

)
(τ)

∥∥
L1 .

Further, by means of the convexity of F we have

F (vθ) ≤ F (v) + F ([u]h) ∈ L1(τ − θ, τ),

such that
´ τ
τ−θ

F (vθ)dt→ 0 as θ ↓ 0, i.e.,

lim
θ↓0

ˆ T

0

F (vθ(t))dt =

ˆ τ

0

F (v(t))dt+

ˆ T

τ

F
(
[u]h(t)

)
dt.

In the limit θ ↓ 0 the variational inequality (2.6) thus implies

ˆ τ

0

F (u(t))dt ≤
ˆ τ

0

[ˆ
Ω

∂tv · (v − u)dx+ F (v(t))

]
dt

+ 1
2‖v(0)− uo‖2L2 − 1

2

∥∥(v − [u]h)(τ)
∥∥2

L2

+

ˆ T

τ

[ˆ
Ω

∂t[u]h ·
(
[u]h − u

)
dx+ F

(
[u]h(t)

)− F (u(t))

]
dt

− 1
2

∥∥([u]h − u
)
(T )

∥∥2

L2 +
∥∥([u]h − u

) · (v − [u]h
)
(τ)

∥∥
L1 .

The variational inequality (1.11) on the subcylinder Ωτ now follows in the limit
h ↓ 0 by taking into account ∂t[u]h · ([u]h−u) ≤ 0 and the convergences [u]h → u in
L∞(0, T ;L2(Ω,RN )) as well as F ([u]h(t))→ F (u(t)) in L1(0, T ) as h ↓ 0 by means
of Lemma 2.1 and Corollary 2.5. Note that∥∥(v − [u]h

)
(τ)

∥∥2

L2 → ‖(v − u)(τ)‖2L2

as h ↓ 0, while all other terms that depend on h are either nonpositive or vanish
in the limit. Since v was arbitrary, u is therefore a variational solution on the
subcylinder Ωτ .
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2.5. The initial condition. Here we are going to show that variational solutions
in the sense of Definition 1.1 fulfill the initial condition u (0) = uo in the usual
L2-sense. This follows from the fact that the difference ‖u(t) − uo‖2L2(Ω,RN ) grows

at most linearly with respect to t > 0 (cf. the estimate (2.7) below).

Lemma 2.6. Any variational solution u on ΩT for some T ∈ (0,∞] in the sense
of Definition 1.1 satisfies

lim
t↓0
‖u (t)− uo‖2L2(Ω,RN ) = 0.

Proof. From §2.4 we know that u fulfills the variational inequality (1.11) on any
subcylinder Ωτ for τ ∈ (0, T ). Testing (1.11) with the time-independent extension
of uo, i.e., with v (t) = uo for t ∈ (0, τ ], which is admissible due to (1.7), implies

ˆ τ

0

F (u(t))dt+ 1
2‖u (τ)− uo‖2L2(Ω,RN ) ≤

ˆ τ

0

F (uo)dt = τF (uo) <∞

by means of hypothesis (1.8). The lower bound for F in (2.2) thus implies

(2.7) ‖u(τ)− uo‖2L2(Ω,RN ) ≤ 2τ
[
F (uo) + coEo

] ∀ τ ∈ (0, T ).

This proves the claim of the lemma. �

3. The time derivative (Proof of Theorem 1.4)

In the definition of variational solutions we do not make any assumptions on
the existence of the time derivative of u. But since the lateral boundary data are
assumed to be constant with respect to time, we are able to show that the time
derivative ∂tu of any such variational solution u exists in a weak sense and that it
belongs to L2(ΩT ,R

N ).
Recall from §2.4 that a variational solution u on ΩT for T ∈ (0,∞] is also a

variational solution on any subcylinder Ωτ for τ ∈ R∩ (0, T ]. Therefore, testing the
variational inequality (1.11) on Ωτ with the admissible map v = [u]h, where [u]h is
defined according to (2.4) with (vo, v) replaced by (uo, u), implies the estimate

−
ˆ τ

0

ˆ
Ω

∂t[u]h ·
(
[u]h − u

)
dxdt ≤

ˆ τ

0

[
F
(
[u]h(t)

)− F (u(t))
]
dt

≤
ˆ τ

0

[
[F (u)]h(t)− F (u(t))

]
dt

= −h
ˆ τ

0

∂t[F (u)]h(t)dt

= h
[
F (uo)− [F (u)]h(τ)

]
,

where [F (u)]h is defined according to (2.4) with vo and v(t) replaced by F (uo) and
F (u(t)), respectively. Note that we discarded the nonpositive term

− 1
2

∥∥([u]h − u
)
(τ)

∥∥2

L2(Ω,RN )
≤ 0

on the right-hand side of the first inequality, that we used Corollary 2.5 in the
second inequality and the fact that F (u(t)) ∈ L1(0, τ) in the third estimate. Now,
using again Lemma 2.1 we are allowed to rewrite the difference [u]h − u appearing
in the integral on the left-hand side of the previous chain of inequalities. Exploiting
once again the lower bound for F from (2.2), this yields the uniform bound

ˆ τ

0

ˆ
Ω

∣∣∂t[u]h∣∣2dxdt ≤ F (uo) + coEo ∀h ∈ (0, τ ],
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such that the time derivative ∂tu exists with ∂tu ∈ L2(Ωτ ,R
N ) for all τ ∈ (0, T ]

together with the quantitative estimateˆ τ

0

ˆ
Ω

|∂tu|2dxdt ≤ F (uo) + coEo ∀ τ ∈ (0, T ].

Therefore, if T <∞, setting τ = T , or otherwise, if T =∞, letting τ →∞, shows
the claim that ∂tu ∈ L2(ΩT ,R

N ) together with estimate (1.13) for any variational
solution u on ΩT and any T ∈ (0,∞].

Furthermore, for t1, t2 with 0 ≤ t1 < t2 ≤ T we have using Hölder’s inequality,
Fubini’s theorem and the bound from above

‖u(t2)− u(t1)‖2L2(Ω,RN ) ≤ |t2 − t1|
ˆ t2

t1

ˆ
Ω

|∂tu|2dxdt

≤ |t2 − t1|
[
F (uo) + coEo

]
.

Now, taking t1 = 0, it follows for every t ∈ R ∩ (0, T ] that

‖u(t)‖2L2(Ω,RN ) ≤ 2‖uo‖2L2(Ω,RN ) + 2‖u(t)− uo‖2L2(Ω,RN )

≤ 2‖uo‖2L2(Ω,RN ) + 2t
[
F (uo) + coEo

]
,

thus yielding

u ∈ C0, 12
(
[0, τ ];L2

(
Ω,RN

)) ∀τ ∈ R ∩ (0, T ].

The remaining energy estimate (1.14) can be inferred by exploiting the fact ∂tu ∈
L2(ΩT ,R

N ) in the variational inequality (1.11) as follows. For any τ ∈ (0, T ] and
any

v ∈ Lp(0, τ ;W 1,p
uo

(Ω,RN ) with ∂tv ∈ L2(Ωτ ,R
N )

we have ˆ τ

0

ˆ
Ω

F (u(t))dt ≤
ˆ τ

0

[ˆ
Ω

∂tu · (v − u)dx+ F (v(t))

]
dt.

Now, for t1, t2 with 0 ≤ t1 < t2 ≤ τ define the cut-off function

ξt1,t2(t) := χ[0,t1](t) +
t2 − t

t2 − t1
χ(t1,t2)(t)

and choose v = u + ξt1,t2([u]h − u) as comparison map in the preceding minimal-
ity condition on Ωτ . To check that v is admissible is straightforward. Now, the
convexity of F and Corollary 2.5 implyˆ t2

0

F (u(t))dt ≤
ˆ t2

0

ˆ
Ω

ξt1,t2∂tu ·
(
[u]h − u

)
dxdt

+

ˆ t2

0

[
(1− ξt1,t2)F (u(t)) + ξt1,t2 [F (u)]h(t)

]
dt,

which after rearranging terms, using Lemma 2.1 and an integration by parts gives

0 ≤
ˆ t2

0

ˆ
Ω

ξt1,t2∂tu ·
(
[u]h − u

)
dxdt+

ˆ t2

0

ξt1,t2
[
[F (u(t))]h − F (u(t))

]
dt

= −h
ˆ t2

0

ˆ
Ω

ξt1,t2∂tu · ∂t[u]hdxdt− h

ˆ t2

0

ξt1,t2∂t[F (u)]h(t)dt

≤ −h
ˆ t2

0

ˆ
Ω

ξt1,t2∂tu · ∂t[u]hdxdt+ h

ˆ t2

0

ξ′t1,t2 [F (u)]h(t)dt+ hF (uo).

Rearranging again terms, dividing by h > 0 and passing to the limit h ↓ 0 then
shows

1

t2 − t1

ˆ t2

t1

F (u(t))dt ≤ F (uo)−
ˆ t2

0

ˆ
Ω

ξt1,t2 |∂tu|2dxdt ≤ F (uo).
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This proves the claim (1.14). Finally, (1.15) follows from the last inequality, esti-
mate (2.2) and Poincaré’s inequality. This completes the proof of Theorem 1.4.

4. Uniqueness (Proof of Theorem 1.2)

In this section we are going to show that variational solutions as in Definition 1.1
are unique provided that one of the alternatives i) and ii) in Theorem 1.2 hold true.
If i) is in force, then the functional F is strictly convex. This fact will be exploited
in the following lemma.

Lemma 4.1. Suppose that the assumptions of Theorem 1.2 i) are in force. Then,
for any T ∈ (0,∞] and any initial datum uo as in (1.7) and (1.8) there exists at
most one variational solution in the sense of Definition 1.1.

Proof. We first show that under the assumption i), the functional F is strictly
convex. Indeed, this is obvious if A is convex and strictly increasing or (u, ξ) 
→
f(x, u, ξ) is strictly convex. Therefore, it remains to consider the case when K is
injective and S is strictly convex in the second variable. If u1 �= u2, then K being
injective implies K [u1] �= K [u2], whence yielding the strict convexity of F due to
the strict convexity of the lower order term

´
Ω
S(x,K[u](x))dx. Now, let τ = T if

T <∞ or τ ∈ (0,∞) if T =∞ and assume that

u1, u2 ∈ Lp
(
0, τ ;W 1,p

uo

(
Ω,RN

)) ∩ C0
(
[0, τ ] ;L2

(
Ω,RN

))
are two different variational solutions as in Definition 1.1 with initial datum uo.
We add both the variational inequalities (1.11) for u1 and u2 and note that ‖(v −
ui) (τ) ‖2L2 ≥ 0 for i = 1, 2. Therefore, for any comparison function

v ∈ Lp(0, T ;W 1,p
uo

(Ω,RN )) with ∂tv ∈ L2(ΩT ,R
N )

we haveˆ τ

0

[
F (u1(t)) + F (u2(t))

]
dt

≤ 2

ˆ τ

0

ˆ
Ω

[
∂tv ·

(
v − 1

2 (u1 + u2)
)
dx+ F (v(t))

]
dt+ ‖v(0)− uo‖2L2 .

Since Theorem 1.4 assures that ∂tui ∈ L2(ΩT ,R
N ), i = 1, 2, we are allowed to take

the comparison map v = u1+u2

2 . Now, as v (0) = uo, this implies

1
2

ˆ τ

0

[
F (u1(t)) + F (u2(t))

]
dt ≤

ˆ τ

0

F
(
1
2 (u1 + u2)(t)

)
dt

< 1
2

ˆ τ

0

[
F (u1(t)) + F (u2(t))

]
dt.

The last inequality is due to the strict convexity of F . As the last inequality
obviously yields a contradiction, we must have u1 ≡ u2, i.e., the uniqueness of
variational solutions. �

If ii) is in force, then the functional F is not anymore strictly convex. Nev-
ertheless, we are able to prove a comparison principle which in turn implies the
uniqueness of variational solutions.

Lemma 4.2 (Comparison principle). Suppose that the assumptions of Theorem 1.2
ii) are in force and let uo, ũo fulfill the requirements of (1.7) and (1.8) with uo ≤ ũo

a.e. in Ω and u, ũ be variational solutions in the sense of Definition 1.1 on ΩT for
some T ∈ (0,∞] with initial and lateral boundary values uo and ũo, respectively.
Then, we have

u ≤ ũ a.e. in ΩT .
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Proof. Let τ ∈ R ∩ (0, T ]. Due to §2.4 we know that u and ũ are also variational
solutions on the smaller cylinder Ωτ . We define v := min{u, ũ} and w := max{u, ũ}
and note that ∂tv, ∂tw ∈ L2(ΩT ), since ∂tu, ∂tũ ∈ L2(ΩT ) by Theorem 1.4. There-
fore, v is admissible as comparison function in the variational inequality (1.11) on
Ωτ for u and w is admissible in the variational inequality for ũ. Adding the two
resulting inequalities and using that v(0) = uo and w(0) = ũo, we obtain

(4.1)

ˆ τ

0

[
F (u(t)) + F (ũ(t))

]
dt ≤

ˆ τ

0

[
F (v(t)) + F (w(t))

]
dt

+

ˆ τ

0

ˆ
Ω

[
∂tv(v − u) + ∂tw(w − ũ)

]
dxdt

− 1
2‖(v − u)(τ)‖2L2(Ω) − 1

2‖(w − ũ)(τ)‖2L2(Ω).

In the following we estimate the terms on the right-hand side of (4.1). We start
with the integral involving the functional F . Since A ≡ 0 and S ≡ 0, we have that
F (u(t)) =

´
Ω×{t} f(x, u,Du)dx and therefore
ˆ τ

0

[
F (v(t)) + F (w(t))

]
dt ≤

ˆ τ

0

[
F (u(t)) + F (ũ(t))

]
dt.

Next, we treat the integral involving the time derivatives. Here, we first observe
that v − u = −(u− ũ)+ and w − ũ = (u− ũ)+, so that

∂tv(v − u) + ∂tw(w − ũ) = ∂t(w − v)(u− ũ)+

= ∂t(u− ũ)+(u− ũ)+ = 1
2∂t(u− ũ)2+

and henceˆ τ

0

ˆ
Ω

[
∂tv(v − u) + ∂tw(w − ũ)

]
dxdt = 1

2

ˆ τ

0

ˆ
Ω

∂t(u− ũ)2+dxdt

≤ 1
2

ˆ
Ω×{τ}

(u− ũ)2+dx.

Next, we consider the L2(Ω)-terms, i.e., the two terms of the third line of (4.1). As
before, we obtain

− 1
2‖(v − u)(τ)‖2L2(Ω) = − 1

2

ˆ
Ω×{τ}

(u− ũ)2+dx = − 1
2‖(w − ũ)(τ)‖2L2(Ω).

Joining the preceding estimates with (4.1), we find thatˆ
Ω×{τ}

(u− ũ)2+dx ≤ 0.

Since τ ∈ R∩ (0, T ] was arbitrary, this proves the claim that u ≤ ũ a.e. in ΩT . �

5. Proof of Theorem 1.1 and Corollary 1.3

5.1. Convex minimization problems on ΩT . Here, we let T ∈ (0,∞) and
consider for ε ∈ (0, 1] convex variational integrals of the form

Fε(v) :=

ˆ T

0

e−
t
ε

[
1
2

ˆ
Ω

|∂tv|2dx+ 1
εF (v(t))

]
dt.

In the following, for fixed ε we are going to look for a minimizer of this functional
within a suitable function space. To this end, we define

Kε :=
{
v ∈ Lp(0, T ;W 1,p(Ω,RN )) : ∂tv ∈ L2(Ω,RN )

}
and let

‖v‖Kε
:= ‖v‖Lp(0,T ;W 1,p(Ω,RN )) + ‖∂tv‖L2(ΩT ,RN ).
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As already done several times before, we waive the reference to ΩT and R
N in our

notation in cases, where it is clear from the context which spaces are meant. Note
that

e−
T
ε ‖v‖Kε ≤

[ ˆ T

0

e−
t
ε ‖v(t)‖pW 1,pdt

] 1
p

+

[ ˆ T

0

e−
t
ε ‖∂tv‖2L2dt

] 1
2

≤ ‖v‖Kε .

The subclass of those functions v ∈ Kε satisfying v = uo on the parabolic boundary
∂PΩT of ΩT will be denoted by Kε,uo . The boundary conditions must be understood
in the sense of traces on the lateral boundary ∂Ω × (0, T ) and in the usual L2-
sense at the initial time. Note that for such functions v ∈ Kε,u0

the L2-bound

‖∂tv‖L2 < ∞ already implies that v ∈ C0, 12 ([0, T ];L2(Ω,RN )), showing that the
initial condition v(0) = uo can be defined in the usual L2-sense. Further, the time-
independent extension of uo to ΩT , i.e., v (t) = uo for all t ∈ (0, T ], belongs to Kε,uo

with ‖v‖Kε
= T 1/p‖uo‖W 1,p . Finally, the subclass of mappings in Kε,uo

with finite
Fε-energy shall be denoted by

K∗ε,uo
:=

{
v ∈ Kε,uo

: Fε(v) <∞
}
.

Note here, that the time-independent extension v of the initial value uo has finite
Fε-energy

Fε(v) = F (uo)

ˆ T

0

e−
t
ε

ε
dt = F (uo)

(
1− e−

T
ε

)
,

such that K∗ε,uo
�= ∅. The following lemma ensures that minimizers of Fε exist in

the class K∗ε,uo
.

Lemma 5.1. For any ε ∈ (0, 1], the functional Fε admits a unique minimizer
uε ∈ K∗ε,uo

.

Proof. Applying the Poincaré type inequality (2.1) on timeslices, we deduce for
any v ∈ K∗ε,u0

that

(5.1)

ˆ T

0

ˆ
Ω

|v|pdxdt ≤ cp

[ ˆ T

0

ˆ
Ω

|Dv|pdxdt+ T‖uo‖pW 1,p

]
,

with cp ≥ 1 as in (2.1). Next, by means of the lower bound (2.2) we get

ˆ T

0

ˆ
Ω

|Dv|pdxdt ≤ 2e
T
ε

μ1 + μ2

ˆ T

0

e−
t
ε

[
F (v(t)) + coE0

]
dt

≤ 2e
T
ε

μ1 + μ2

[Fε(v) + coE0
]
.

Inserting this into (5.1) yields

ˆ T

0

ˆ
Ω

|v|pdxdt ≤ cp

[
2e

T
ε

μ1 + μ2

[Fε(v) + coE0
]
+ T‖uo‖pW 1,p

]

≤ cpe
T
ε

[
2

μ1 + μ2

[Fε(v) + coE0
]
+ ‖uo‖pW 1,p

]

≤ 2cpe
T
ε

μ1 + μ2

[Fε(v) + 2coE0
]

Combining the last two inequalities leads to the following bound for the Lp−W 1,p-
norm of maps in K∗ε,u0

:

ˆ T

0

ˆ
Ω

|v|p + |Dv|pdxdt ≤ 4cpe
T
ε

μ1 + μ2

[Fε(v) + 2coEo
]
,
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which combined with the L2-bound for the time derivativeˆ T

0

ˆ
Ω

|∂tv|2dxdt ≤ 2e
T
ε

[Fε(v) + coEo
]
,

yields the following bound for the ‖ · ‖Kε
-norm on the class K∗ε,uo

:

‖v‖Kε ≤ 6cpc1e
T
ε

[
Fε(v) + 2coEo + 1

]
.

Here the constant c1 ≥ 1 is given by

c1 := max
{
1,

1

μ1 + μ2

}
.

Consider now a minimizing sequence uj ∈ K∗ε,uo
, j ∈ N, i.e.,

lim
j→∞

Fε(uj) = inf
v∈K∗

ε,uo

Fε(v) ≤ Fε(uo) = F (uo)
(
1− e−

T
ε

)
.

Without loss of generality, we can assume that Fε(uj) ≤ F (uo). The preceding
estimate then shows

‖uj‖Kε ≤ 6cpc1e
T
ε

[
F (uo) + 2coEo + 1

]
∀ j ∈ N,

i.e., the minimizing sequence is uniformly bounded with respect to ‖ · ‖Kε
. Thus,

there exist a map u ∈ Lp(0, T ;W 1,p(Ω,RN )) with ∂tu ∈ L2(ΩT ,R
N ) and a subse-

quence of (uj)j∈N (still denoted this way) such that⎧⎪⎨
⎪⎩

uj ⇀ u weakly in Lp(ΩT ,R
N ) and in L2(ΩT ,R

N ),

Duj ⇀ Du weakly in Lp(ΩT ,R
Nn),

∂tuj ⇀ ∂tu weakly in L2(ΩT ,R
N ).

The limit map u fulfills on the lateral boundary ∂PΩT the condition that u(t) = uo

for almost every t ∈ (0, T ) in the sense of traces in W 1,p(Ω,RN ). Therefore, it
remains to show that the initial condition holds true in the usual L2 sense. To this
end, we observe that

‖uj(t2)− uj(t1)‖2L2(Ω) ≤ (t2 − t1)‖∂tuj‖2L2(ΩT ) ≤ 2e
T
ε

[
F (uo) + coEo

]
(t2 − t1)

holds true for any 0 ≤ t1 < t2 ≤ T . Recalling that uj(0) = uo, the last estimate
with t1 = 0 and the weak convergence uj ⇀ u in L2(ΩT ,R

N ) imply

1
h

ˆ h

0

‖u(t)− uo‖2L2(Ω) dt ≤ lim inf
j→∞

1
h

ˆ h

0

‖uj(t)− uo‖2L2(Ω) dt

≤ e
T
ε

[
F (uo) + coEo

]
h.

This, however, yields limh↓0 1
h

´ h
0
‖u(t) − uo‖2L2(Ω) dt = 0, so that u(0) = uo in the

usual L2-sense. In particular this implies that u ∈ Kε,uo
, and it remains to prove

that u is indeed the unique minimizer of Fε in the class ∈ K∗ε,uo
. This, however,

follows by means of lower semicontinuity arguments for the functional Fε with
respect to the convergences above, i.e., by establishing

Fε(u) ≤ lim inf
j→∞

Fε(uj) = lim
j→∞

Fε(uj) = inf
v∈K∗

ε,uo

Fε(v).

To this end, note that the functional Fε is lower semicontinuous with respect to
strong convergence in the space

X :=
{
v ∈ Lp(0, T ;W 1,p(Ω,RN )) : ∂tv ∈ L2(ΩT ,R

N )
}

by means of the following arguments, similar to those of [13, Thm. 4.2] for the
integrand f . From a strongly converging sequence (vj)j∈N in the Banach space X
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extract a subsequence
(
v∗j

)
j∈N such that on almost every time slice t ∈ (0, T ) there

holds

v∗j (t)→ v(t) in W 1,p(Ω,RN ) and ∂tv
∗
j (t)→ ∂tv(t) in L2(Ω,RN ).

Moreover, we can choose the subsequence such that also Dv∗j (x, t)→ Dv(x, t) and
∂tv

∗
j (x, t)→ ∂tv(x, t) for almost every (x, t) ∈ ΩT and such that

lim
j→∞

Fε

(
v∗j

)
= lim inf

j→∞
Fε (vj) .

Using Fatou’s lemma, the monotonicity and continuity of A it first follows for the
part of Fε involving A that

ˆ T

0

e−
t
εA

(∥∥Dv(t)
∥∥p

Lp(Ω)

)
dt =

ˆ T

0

e−
t
εA

(
lim
j→∞

∥∥Dv∗j (t)
∥∥p

Lp(Ω)

)
dt

=

ˆ T

0

e−
t
ε lim
j→∞

A
(∥∥Dv∗j (t)

∥∥p

Lp(Ω)

)
dt

≤ lim inf
j→∞

ˆ T

0

e−
t
εA

(∥∥Dv∗j (t)
∥∥p

Lp(Ω)

)
dt.

A similar argument shows the lower semicontinuity of the part involving the time
derivative, i.e.,

ˆ T

0

e−
t
ε

ˆ
Ω

|∂tv|2dxdt ≤ lim inf
j→∞

ˆ T

0

e−
t
ε

ˆ
Ω

|∂tv∗j |2dxdt.

By the help of the continuity of K : L1(Ω,RN ) → L1(Ω,RN ), the continuity of
u 
→ S(x, u) for almost every x ∈ Ω and Fatou’s Lemma the same applies to the
part involving S, i.e.,
ˆ T

0

e−
t
ε

ˆ
Ω

S
(
x,K[v](x, t)

)
dxdt ≤ lim inf

j→∞

ˆ T

0

e−
t
ε

ˆ
Ω

S
(
x,K[v∗j ](x, t)

)
dxdt.

As in [13, Thm. 4.3], the lower semicontinuity of Fε with respect to the weak
topology of X now follows from the lower semicontinuity of Fε with respect to the
strong topology of X and the convexity of the functional Fε by means of [11, Thm.
V.13]. This proves that u is a minimizer of Fε in the class K∗ε,uo

.
The uniqueness of the minimizer u follows, because the term involving the time

derivative ensures the strict convexity of the functional Fε. �
At this stage we want to remark that the minimizer uε is not only an element

of Lp−W 1,p but also a 1
2 -Hölder-continuous map from [0, T ] to L2 due to the fact

that ∂tuε ∈ L2(ΩT ,R
N ) and uo ∈ L2(Ω,RN ). This follows as in the proof of

Lemma 5.1 by means of Fubini’s theorem and Cauchy-Schwartz inequality, i.e., for
0 ≤ t1 < t2 ≤ T we have

(5.2) ‖uε(t2)− uε(t1)‖2L2(Ω) ≤ (t2 − t1)‖∂tuε‖2L2(ΩT ),

as well as for any t ∈ [0, T ] by setting t1 = 0 and t2 = t above

(5.3) ‖uε(t)‖2L2(Ω) ≤ 2‖uo‖2L2(Ω) + 2t‖∂tuε‖2L2(ΩT ) <∞,

thus yielding uε ∈ C0, 12 ([0, T ];L2(Ω,RN )).

5.2. The minimality condition revisited. For fixed ε ∈ (0, 1] consider testing

functions ϕ ∈ Lp(0, T ;W 1,p
0 (Ω,RN )) with ∂tϕ ∈ L2(ΩT ,R

N ) and

(5.4)

ˆ T

0

F ((uε + ϕ) (t)) dt <∞.
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Moreover, let ξ ∈ W 1,∞((0, T )) with 0 ≤ ξ ≤ 1, and δ ∈ (0, e−
T
ε ]. Further, define

σ(t) := δe
t
ε ξ(t) as well as

ϕ̃ε,δ(x, t) := σ(t)ϕ(x, t) ≡ δe
t
ε ξ(t)ϕ(x, t), (x, t) ∈ ΩT ,

while assuming either ξ(0) = 0 or ϕ(0) = 0. Then, set

vε,δ(x, t) := uε(x, t) + ϕ̃ε,δ(x, t) ≡ uε(x, t) + δe
t
ε ξ(t)ϕ(x, t)

and observe that vε,δ ∈ Lp(0, T ;W 1,p
uo

(Ω,RN )) with ∂tvε,δ ∈ L2(ΩT ,R
N ). To con-

clude that vε,δ ∈ K∗ε,uo
is an admissible comparison map in the minimality condition

for uε, it remains to show that Fε(vε,δ) < ∞. This follows from the convexity of
the functional F , the fact that vε,δ is a convex combination of uε and uε + ϕ on
every fixed time slice t ∈ [0, T ] and the assumption (5.4). Note in this direction,
that 0 ≤ σ(t) ≤ 1 by the choice of δ above, such that the convexity of F implies
the following estimate for the contribution of the F -part to the Fε-energy:

ˆ T

0

e−
t
εF (vε,δ)dt ≤

ˆ T

0

e−
t
ε

[
(1− σ(t))F

(
uε(t)

)
+ σ(t)F

(
(uε + ϕ)(t)

)]
dt

≤
ˆ T

0

e−
t
εF

(
uε(t)

)
dt+

ˆ T

0

F
(
(uε + ϕ)(t)

)
dt <∞.

The minimality of uε thus shows that

Fε(uε) ≤ Fε(vε,δ) <∞,

which by the convexity of F as before can be rewritten to

δ
ε

ˆ T

0

ξ(t)F
(
uε(t)

)
dt ≤

ˆ T

0

e−
t
ε

ˆ
Ω

[
1
2δ

2
∣∣∂t(e t

ε ξϕ
)∣∣2 + δ∂tuε · ∂t

(
e

t
ε ξϕ

)]
dxdt

+ δ
ε

ˆ T

0

ξ(t)F
(
(uε + ϕ)(t)

)
dt.

Multiplying both sides of the previous inequality by ε/δ and letting δ ↓ 0, yields

(5.5)

ˆ T

0

ξ(t)F
(
uε(t)

)
dt ≤

ˆ T

0

ξ(t)F
(
(uε + ϕ)(t)

)
dt+

ˆ T

0

ˆ
Ω

ξ∂tuε · ϕdxdt

+ ε

ˆ T

0

ˆ
Ω

[
ξ′∂tuε · ϕ+ ξ∂tuε · ∂tϕ

]
dxdt

for any ξ ∈ W 1,∞((0, T )) with 0 ≤ ξ ≤ 1, ϕ ∈ Lp(0, T ;W 1,p
0 (Ω,RN )) with ∂tϕ ∈

L2(ΩT ,R
N ) such that (5.4) holds true and such that either ξ(0) = 0 or ϕ(0) = 0.

5.3. Energy estimates. Here we are going to establish certain energy estimates
for Fε-minimizers uε ∈ K∗ε,uo

which will allow for an extraction of a converging
subsequence in the limit ε ↓ 0. To this end, define [uε]h according to (2.4) with uo

and uε instead of vo and v, respectively. Note, that [uε]h ∈ Lp(0, T ;W 1,p
uo

(Ω,RN ))

with ∂t [uε]h ∈ L2(ΩT ,R
N ) and ∂t [uε]h = 1

h (uε − [uε]h) by means of Lemma 2.1.
The last identity implies even more, as the right-hand side is an element of the
space Lp(0, T ;W 1,p

0 (Ω,RN )) whose time derivative is an element of L2
(
ΩT ,R

N
)
.

Moreover, since [uε] (0) = uo it follows that ∂t [uε] (0) =
1
h (uo − [uε]h (0)) = 0 and

from Corollary 2.5 we conclude that

ˆ T

0

F
(
(uε − h∂t[uε]h)(t)

)
dt =

ˆ T

0

F
(
[uε]h(t)

)
dt <∞.
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In other words, we are allowed to take ϕ = −h∂t [uε]h as testing function in (5.5),
which for any ξ ∈W 1,∞((0, T )) with 0 ≤ ξ ≤ 1 implies

h

ˆ T

0

ˆ
Ω

[
(ξ + εξ′)∂tuε · ∂t[uε]h + εξ∂tuε · ∂tt[uε]h

]
dxdt

≤
ˆ T

0

ξ(t)
[
F ([uε]h(t))− F (uε(t))

]
dt

≤
ˆ T

0

ξ(t)
[
[F (uε)]h(t)− F (uε(t))

]
dt

= −h
ˆ T

0

ξ(t)∂t
[
F (uε)

]
h
(t)dt,

by means of Corollary 2.5 where [F (uε)]h is defined according to (1.11) with vo
and v replaced by F (uo) and F (uε), respectively. The second term on the left-hand
side of the previous inequality can be estimated further as follows

∂tuε · ∂tt [uε]h = ∂t[uε]h · ∂tt [uε]h +
(
∂tuε − ∂t[uε]h

) · ∂tt[uε]h

= 1
2∂t

∣∣∂t[uε]h
∣∣2 + 1

h

∣∣∂t[uε]h − ∂tuε

∣∣2
≥ 1

2∂t
∣∣∂t [uε]h

∣∣2.
Inserting this estimate in the inequality above and dividing by h > 0, we get

(5.6)

ˆ T

0

ˆ
Ω

[
(ξ + εξ′)∂tuε · ∂t[uε]h + ε

2ξ∂t
∣∣∂t[uε]h

∣∣2]dxdt
≤ −

ˆ T

0

ξ(t)∂t
[
F (uε)

]
h
(t)dt.

We are now first going to choose ξ ≡ 1 in (5.6) to obtain by means of Fubini’s
theoremˆ T

0

ˆ
Ω

∂tuε · ∂t[uε]hdxdt

≤ −
ˆ T

0

∂t
[
F (uε(t))

]
h
dt− ε

2

ˆ T

0

ˆ
Ω

∂t
∣∣∂t[uε]h

∣∣2dxdt
=

[
F (uε)

]
h
(0)− [

F (uε)
]
h
(T ) + ε

2

ˆ
Ω

(∣∣∂t[uε]h
∣∣2(0)− ∣∣∂t[uε]h

∣∣2(T ))dx
≤ F (uo) + coEo.

In the last inequality we also used the facts [F (uε)]h(0) = F (uo),∂t[uε]h(0) = 0,
|∂t[uε]h|2(T ) ≥ 0 and the lower bound on F from (2.2). Taking into account that
∂t[uε]h → ∂tuε in L2(ΩT ,R

N ) due to Lemma 2.1, the last inequality therefore
implies the following uniform bound on the time derivative

(5.7)

ˆ T

0

ˆ
Ω

|∂tuε|2dxdt ≤ F (uo) + coEo.

Moreover, due to (5.3) and (5.2) this implies the following uniform L2-bound

(5.8) sup
t∈[0,T ]

‖uε(t)‖2L2(Ω) ≤ 2‖uo‖2L2(Ω) + 2T
[
F (uo) + coEo

]
<∞,

as well as

(5.9) ‖uε(t2)− uε(t1)‖L2(Ω) ≤
√
F (uo) + coEo

√
|t2 − t1|
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for any t1, t2 ∈ [0, T ]. In other words, the estimates (5.8) and (5.9) imply that the
family (uε)ε∈(0,1] of minimizers is uniformly bounded in the spaces L2(ΩT ,R

N ) and

C0, 12 ([0, T ];L2(Ω,RN )).
In the following, by using again (5.6) we are going to show that the family of

minimizers (uε)ε∈(0,1] is also is uniformly bounded in Lp−W 1,p with respect to
ε ∈ (0, 1]. To this end, for 0 ≤ t1 < t2 ≤ T we define

ξt1,t2(t) := χ[0,t1](t) +
t2 − t

t2 − t1
χ(t1,t2)(t)

and take ξ = ξt1,t2 in (5.6). Integrating by parts in the second term of the left-hand
side and in the right-hand side of (5.6) then shows
ˆ T

0

ˆ
Ω

ξt1,t2(t)∂tuε · ∂t[uε]hdxdt ≤ F (uo)

+

ˆ T

0

ξ′t1,t2(t)
[
[F (uε)]h(t) +

ˆ
Ω

[
ε
2

∣∣∂t[uε]h
∣∣2 − ε∂tuε · ∂t [uε]h

]
dx

]
dt,

such that in the limit h ↓ 0 we obtain
ˆ T

0

ˆ
Ω

ξt1,t2(t)
∣∣∂tuε

∣∣2dxdt ≤ F (uo) +

ˆ T

0

ξ′t1,t2(t)
[
F (uε(t))− ε

2

ˆ
Ω

∣∣∂tuε

∣∣2dx] dt.
Therefore, since |∂tuε|2 ≥ 0, it follows that

(5.10)

ˆ t2

t1

F
(
uε(t)

)
dt ≤ (t2 − t1)F (uo) +

ε
2

ˆ t2

t1

ˆ
Ω

∣∣∂tuε

∣∣2dxdt
≤ (

t2 − t1 +
ε
2

)[
F (uo) + coEo

]
holds true for any 0 ≤ t1 < t2 ≤ T , where in the last inequality we used the uniform
bound (5.7). The lower bound on F from (2.2) then implies

ˆ T

0

ˆ
Ω

|Duε|pdxdt ≤
2(T + 1 + ε

2 )

μ1 + μ2

[
F (uo) + coEo

]
.

In combination, the Poincaré type inequality (5.1) and the preceding inequality
lead to an uniform bound, i.e., independent of ε ∈ (0, 1] and the Lp−W 1,p-norm of
uε, that is

(5.11)

ˆ T

0

ˆ
Ω

|uε|p + |Duε|pdxdt < (cp + 1)(2T + 2 + ε)

μ1 + μ2

[
F (uo) + 2coEo

]
.

5.4. The limit procedure. We are now going to pass to the limit ε ↓ 0 in the se-
quence of Fε-minimizers (uε)ε>0 on ΩT . By means of the estimates (5.7), (5.8), (5.9)

and (5.11) the sequence (uε)ε>0 is uniformly bounded in the spaces L2(ΩT ,R
N ),

C0, 12 ([0, T ];L2(Ω,RN )) and Lp(0, T ;W 1,p(Ω,RN )), respectively, and the sequence
of the corresponding time derivatives (∂tuε)ε>0 is uniformly bounded in the space
L2(ΩT ,R

N ). Therefore, there exists a map

u ∈ L2(ΩT ,R
N ) ∩ C0, 12

(
[0, T ];L2(Ω,RN )

) ∩ Lp
(
0, T ;W 1,p(Ω,RN )

)
with ∂tu ∈ L2(ΩT ,R

N ) and a subsequence of uε (still denoted this way) such that

(5.12)

⎧⎪⎨
⎪⎩

uε ⇀ u weakly in L2(ΩT ,R
N ) and Lp(ΩT ,R

N ),

Duε ⇀ Du weakly in Lp(ΩT ,R
Nn),

∂tuε ⇀ ∂tu weakly in L2(ΩT ,R
N ).
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By lower semicontinuity with respect to weak L2-convergence and the uniform
bound (5.7) it holds that

(5.13)

ˆ T

0

ˆ
Ω

|∂tu|2dxdt ≤ lim inf
ε↓0

ˆ T

0

ˆ
Ω

|∂tuε|2dxdt ≤ F (uo) + coEo.

Moreover, the lower semicontinuity of the functional F (see the argument in the
proof of Lemma 5.1) and (5.10) as well as the lower semicontinuity of the Lp-norm
with respect to weak convergence in Lp and the uniform bound (5.11) imply

(5.14)

ˆ t2

t1

F (u(t))dt ≤ lim inf
ε↓0

ˆ t2

t1

F (uε(t))dt ≤ (t2 − t1)
[
F (uo) + coEo

]
and

‖u‖pLp(0,T ;W 1,p(Ω)) ≤ lim inf
ε↓0

‖uε‖pLp(0,T ;W 1,p(Ω)) ≤ c(T + 1)
[
F (uo) + coEo

]
(5.15)

for a constant c depending only on n, p, μ1 + μ2 and diamΩ. Further, from the
uniform Hölder estimate (5.9) and uε(0) = uo we conclude as in Lemma 5.1 that
also u(0) = uo holds in the usual L2-sense. Since also u(t) = uo on ∂Ω in the
sense of traces for almost every t ∈ (0, T ), for u to be a variational solution as
in Definition 1.1 it just remains to show, that u satisfies the minimality condition
(1.11). To this end, consider without loss of generality v ∈ Lp(0, T ;W 1,p

uo
(Ω,RN ))

with ∂tv ∈ L2(ΩT ,R
N ) and ˆ T

0

F (v(t)) dt <∞,

since otherwise (1.11) trivially holds due to (5.14) for t1 = 0 and t2 = T . For fixed
θ ∈ (0, T/2) let

ξθ(t) :=
t

θ
χ[0,θ](t) + χ(θ,T−θ)(t) +

T − t

θ
χ[T−θ,T ](t)

denote a cut-off function with respect to time. Now, fix ε ∈ (0, 1] and consider

ϕ = v− uε. The properties of v and uε imply that ϕ ∈ Lp(0, T ;W 1,p
0 (Ω,RN )) with

∂tϕ ∈ L2(ΩT ,R
N ) and since also ξθ(0) = 0 we are allowed to take both ϕ and

ξ = ξθ in the inequality (5.5). Adding
´ T
0
F (uε(t))dt <∞ on both sides shows

ˆ T

0

F (uε(t))dt

≤
ˆ T

0

(1− ξθ(t))F (uε(t))dt+

ˆ T

0

ˆ
Ω

ξθ∂tuε · (v − uε) dxdt

+

ˆ T

0

ξθ(t)F (v(t))dt+ ε

ˆ T

0

ˆ
Ω

[
ξ′θ∂tuε · (v − uε) + ξθ∂tuε · ∂t(v − uε)

]
dxdt

=: Iε + IIε + IIIε + IVε,

where the meaning of the terms Iε − IVε is obvious in this context. Note that IIIε
is actually independent of ε. In the following we are first going to pass to the limit
ε ↓ 0. Therefore, if θ ≥ ε, using the estimate (5.10) it follows for the term Iε that

Iε ≤
ˆ
[0,θ)∪(T−θ,T ]

F (uε(t))dt ≤ (2θ + ε)
[
F (uo) + coEo

] ≤ 3θ
[
F (uo) + coEo

]
.

The term IIε can be rewritten as

IIε =

ˆ T

0

ˆ
Ω

ξθ∂tv · (v − uε)dxdt− 1
2

ˆ T

0

ˆ
Ω

ξθ∂t |v − uε|2 dxdt

=

ˆ T

0

ˆ
Ω

ξθ∂tv · (v − uε)dxdt
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+ 1
2θ

ˆ θ

0

ˆ
Ω

|v − uε|2dxdt− 1
2θ

ˆ T

T−θ

ˆ
Ω

|v − uε|2dxdt,

where in the last equality we performed an integration by parts. For the second
term on the right-hand side Minkowski’s inequality and (5.9) allow us to estimate

1
2θ

ˆ θ

0

ˆ
Ω

|v − uε|2dxdt

≤
[(

1
2θ

ˆ θ

0

ˆ
Ω

|v − uo|2dxdt
) 1

2

+

(
1
2θ

ˆ θ

0

ˆ
Ω

|uε − uo|2dxdt
) 1

2

]2

≤
[(

1
2θ

ˆ θ

0

ˆ
Ω

|v − uo|2dxdt
) 1

2

+
(

θ
4

[
F (uo) + coEo

]) 1
2

]2

.

Therefore, by means of the weak convergence in L2 we can pass to limit ε ↓ 0 in
IIε, yielding

lim inf
ε↓0

IIε ≤
ˆ T

0

ˆ
Ω

ξθ∂tv · (v − u)dxdt− 1
2θ

ˆ T

T−θ

ˆ
Ω

|v − u|2 dxdt

+

[(
1
2θ

ˆ θ

0

ˆ
Ω

|v − uo|2dxdt
) 1

2

+
(

θ
4

[
F (uo) + coEo

]) 1
2

]2

.

Finally, note that the integral making up the term IVε is uniformly bounded with
respect to ε due to the uniform L2-bounds on ∂tuε and uε in (5.7) and (5.8),
respectively. Therefore, IVε → 0 as ε ↓ 0. The previous estimates and the lower

semicontinuity of the functional
´ T
0
F (v(t))dt with respect to the weak convergences

in (5.12) thus showˆ T

0

F (u(t))dt ≤ lim inf
ε↓0

ˆ T

0

F (uε(t))dt

≤
ˆ T

0

ξθ(t)

[ˆ
Ω

∂tv · (v − u)dx+ F (v(t))

]
dt+ 3θ

[
F (uo) + coEo

]

+

[(
1
2θ

ˆ θ

0

ˆ
Ω

|v − uo|2dxdt
) 1

2

+
(

θ
4

[
F (uo) + coEo

]) 1
2

]2

− 1
2θ

ˆ T

T−θ

ˆ
Ω

|v − u|2dxdt,

where θ ∈ (0, T/2) is arbitrary. We may therefore pass to the limit θ ↓ 0, such thatˆ T

0

F (u(t))dt ≤
ˆ T

0

[ˆ
Ω

∂tv · (v − u)dx+ F (v(t))

]
dt

+ 1
2‖v(0)− uo‖2L2(Ω) − 1

2‖(v − u)(T )‖2L2(Ω),

i.e., u is indeed a variational solution on ΩT as in Definition 1.1. Since T > 0 was
arbitrary, this finishes the proof of Theorem 1.1.

Remark 2. If p > 2n
n+2 the proof can be simplified due to the fact that in (5.12) we

could conclude strong convergence uε → u as ε ↓ 0 strongly in L2(ΩT ,R
N ). This

follows by an application of [18, Theorem 1].

The proof of Corollary 1.3 now follows from Theorem 1.1 on the existence of
variational solutions on ΩT , from Theorem 1.2 on the uniqueness of variational
solutions on ΩT and from the localization principle in §2.4. Thus, given 0 < T1 <
T2 <∞ and denoting by u1 and u2 the unique variational solutions on ΩT1

and ΩT2
,
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respectively, by means of the localizing principle in §2.4 it follows that u2 is also a
variational solution on ΩT1

which then has to coincide with u1 on ΩT1
. Therefore,

this allows for a construction of a unique global variational solution.

6. Regularity of variational solutions

In this chapter we are interested in the regularity properties of solutions to
nonlocal parabolic problems.

6.1. C1,α-regularity. As a first model case we consider functionals of the type

F (v) := A

( ˆ
Ω

|Dv|pdx
)
−
ˆ
Ω

hvdx, where A(s) :=

ˆ s

0

a(σ)dσ,

where p > 2n
n+2 , a : [0,∞) → [μ,L] for some 0 < μ < L < ∞ is continuous and

increasing and h ∈ Lq(Ω,RN ) for some q ≥ p
p−1 . Moreover, we consider an initial

datum uo as in (1.7). Due to Theorems 1.1 – 1.4 there exists a unique variational
solution u ∈ Lp(0, T ;W 1,p

uo
(Ω,RN )) ∩C0([0, T ];L2(Ω,RN )) with ∂tu ∈ L2(ΩT ,R

N )

in the sense of Definition 1.1. Since the function A defined above is of class C1,
we deduce that the variational solution u satisfies the following Cauchy-Dirichlet
problem

(6.1)

{
ut − div

[
ã(t) |Du|p−2

Du
]
= h in ΩT ,

u = uo on ∂PΩT ,

where we have abbreviated

(6.2) ã(t) := a
(‖Du(t)‖pLp(Ω)

)
.

We note that ã is a measurable function on (0, T ) with values in [μ,L]. Therefore,
(6.1)1 is a parabolic system of p-Laplacian type with coefficients ã : (0, T )→ [μ,L]
independent of x. From [10, Chapters IX.1 and IX.14] we infer that Du is locally
Hölder continuous in ΩT with some Hölder exponent α ∈ (0, 1), provided that
q > n+ 2.

6.2. Global Calderón-Zygmund theory. Our second regularity result is con-
cerned with a global Calderón-Zygmund theory for variational solutions. Therefore,
as a second model case we consider functionals of the type

F (v) := A

( ˆ
Ω

|Dv|pdx
)
−
ˆ
Ω

|F |p−2F ·Dvdx,

with p > 2n
n+2 , A as in §6.1 and F ∈ Lq(Ω,RNn) for some q ≥ p. Moreover,

we assume that the initial datum uo satisfies uo ∈ W 1,q(Ω,RN ) ∩ L2(Ω,RN ).
From Theorems 1.1 – 1.4 we infer the existence of a variational solution u ∈
Lp(0, T ;W 1,p

uo
(Ω,RN )) ∩ C0([0, T ];L2(Ω,RN )) with ∂tu ∈ L2(ΩT ,R

N ) in the sense
of Definition 1.1, which solves the following Cauchy-Dirichlet problem{

ut − div
[
ã(t) |Du|p−2

Du
]
= div(|F |p−2F ) in ΩT ,

u = uo on ∂PΩT ,

where ã is defined as in (6.2). Then, from [1, Theorem 2.3] (recall that ã is inde-
pendent of x) we conclude that Du ∈ Lq(Ω × (δ, τ),RNn) for any δ, τ ∈ R with
0 < δ < τ .

Moreover, there exists ρo > 0 depending on n,N, μ, L, p, q, ∂Ω such that for any
zo = (xo, to) ∈ Ω × (0, T ) and any parabolic cylinder Qρ(zo) := Bρ(xo) × (to −
ρ2, to + ρ2) with Q2ρ(zo) ⊂ R

n × (0, T ) and ρ ∈ (0, ρo] there holds

−
ˆ
Qρ(zo)∩ΩT

|Du|qdz
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≤ c

[(
−
ˆ
Q2ρ(zo)∩ΩT

|Du|pdz
) q

p

+−
ˆ
B2ρ(xo)∩Ω

(|Duo|+ |F |)qdx+ 1

]dCZ

,

where we have abbreviated

dCZ := d− p
q (d− 1) with d :=

{ p
2 , if p ≥ 2,

2p
p(n+2)−2n , if 2n

n+2 < p < 2.

Note that the constant c depends on n,N, μ, L, p, q, ∂Ω.
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Verena Bögelein, Fachbereich Mathematik, Universität Salzburg, Hellbrunner Str.

34, 5020 Salzburg, Austria

E-mail address: verena.boegelein@sbg.ac.at

Frank Duzaar, Department Mathematik, Universität Erlangen–Nürnberg, Cauer-

strasse 11, 91058 Erlangen, Germany

E-mail address: duzaar@math.fau.de

Paolo Marcellini, Dipartimento di Matematica e Informatica “U.Dini”, Università di
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