Doctopic: Partial Differential Equations YJMAA:20134

J. Math. Anal. Appl. e e e (e s ee) s o e—0oe

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Classical solutions to the Fokker-Planck-BGK equation with
infinite energy

Zili Chen

Department of Mathematics, School of Science, Nanchang University, Nanchang, Jiangzi 330031,
People’s Republic of China

ARTICLE INFO ABSTRACT

Article history: We consider the BGK equation perturbed by Fokker—Planck operator, which is
Received 3 December 2014 important in the kinetic theory of rarefied gases. This model equation, which we
Available online xxxx call the Fokker—Planck—BGK equation, has many physical features that the Fokker—

Submitted by D.M. Ambrose Planck—Boltzmann equation possesses. By establishing a new moments lemma and

L*° bounds for macroscopic quantities without the boundedness of energy, we get

Keywords:

FolgkerfPlanckaGK equation several global existence and uniqueness results to the Cauchy problem of the Fokker—
Global existence Planck—-BGK equation under various circumstances with infinite energy.
Uniqueness © 2016 Elsevier Inc. All rights reserved.

Classical solution
Infinite energy

1. Introduction

We are concerned with global existence and uniqueness of solutions of the Fokker-Planck—-BGK equation
having infinite energy. Let f(t,z,v) € [0,00) x R? x R3 — [0, o] be the microscopic density of particles at
time ¢ > 0, position z € R? and moving with velocity v € R3. In this model describing the evolution of
rarefied gas, f is governed by

O f +v-Vuf = Bdivy(vf) — oA, f = J(f),

f(0,2,v) = fo(z,v), (1.1)

where § > 0 is the friction coefficient and o > 0 is the diffusive coefficient. The BGK collision operator
J(f) = M[f]— f is a relaxation model of the Boltzmann collision operator, which contains most of the basic
properties [1,9,10]. The nonlinear term M|f] is the following local Maxwellian:

_ p(t,x) v — u(t, z)|?
M[f](tvxav)—mexp{—w}, (1.2)
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where p(t,z),u(t,z) and (¢, z) respectively represent the mass density, bulk velocity and temperature of
the gas at time ¢ and position x, which are defined by

0 1
U (t,x) = v | flt,z,v)dv, t>0, xR (1.3)
plul? + 3p0 gs \ o]

In this system, the collision term J(f) models two-body interactions in the gas. It is simpler than the
Boltzmann operator with binary collisions, however, it is still very complicated in the mathematical sense due
to the occurrence of an occurrence of exponential nonlinearity in (1.2). The linear partial differential operator
—pdiv, (vf) — cA, f is the so-called Fokker—Planck operator. It describes the fact that the gas molecules
interact with background medium and their paths between two interactions obey Brownian motion.

For the Fokker—Planck—Boltzmann equation, by using renormalization and the regularizing effects of A, f,
Diperna and Lions [11] established a global existence of renormalized solutions to the Cauchy problem, if
the positive initial datum satisfies

/ (1 + [v]? + |z> + | In fo|) fodvdz < cc. (1.4)

R3 xR3

The complete Fokker—Planck operator —fdiv,(vf) — 0A, f also has similar mild regularizing effects, which
were previously used by many authors, such as [2-7,17,25,26] for the Vlasov—Poisson—Fokker—Planck system
and [14,20,27] for the Vlasov—Maxwell-Fokker-Planck system. Without Fokker-Planck operator, we pay
attention to the existence and uniqueness results of the Cauchy problem of BGK equation (the equation
(1.1) with 5 =0, 0 = 0). Assuming (1.4) holds, Perthame [21] established the global existence of solutions to
the Cauchy problem of BGK equation in 1989. Then, Perthame and Pulvirenti [24] developed an weighted
L™ method to get the uniqueness of polynomially decaying solutions for z in a periodic domain. Mischler
generalized this result to the whole space by further assuming that the initial datum polynomially decays
in z (not only in v) in [15]. By establishing weighted LP estimates of the hydrodynamical quantities, the
existence of L? solutions and propagation properties of L moments were obtained in [29]. Then, combining
the techniques used in the BGK equation with the regularizing effects of A, f, the existence of L? solutions
of the Cauchy problem (1.1) was established in [28], however, the friction term is not considered (8 = 0)
and an extra assumption of the velocity moment of the initial data is added ([ |v]|*T° fodzdv < o).

Notice that for the Vlasov-Poisson system, the Vlasov-Poisson-Fokker—Planck system, the Boltzmann
equation, one can build solutions with infinite energy [7,8,13,16,18,19,22.30]. For example, Perthame
[22] established the existence of infinite energy solution to the Vlasov—Poisson system by assuming
Mo sgs (1 + [2]?) fodvdz < 0o and fo € L>. Castella [7] built a solution with infinite energy to the Vlasov—
Poisson-Fokker-Planck system by assuming fo € L™ and [[os, ps (1 + [2]* + [v]%) fodvdz < oo with & > 0
(can be arbitrarily small). Mischler [16] established the existence of infinite energy solution to the Cauchy
problem of the Bolzmann equation by assuming [[ps, ps(1 + [z — 0> + [2]® + |In fo]) fodvdz < oo with
e > 0. Compared with (1.4), these initial datums don’t decrease so rapidly or just decrease in “one” special
direction. So we wonder whether there exist infinite energy solutions of the Cauchy problem (1.1) under
similar assumptions. We say that a solution f(¢,z,v) of (1.1) has finite energy if for all t > 0

lv|? f(t, z,v)dzdv < .

R3 xR3
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In this paper, we get some special kinds of infinite energy solution of the Cauchy problem (1.1). Specifically
speaking, we always assume that the initial datum satisfies [[ps, ps(1 + |2 — av]?) fodzdv < oo for some
a > 0, and construct a solution f(t,z,v) verifying

t

// (1 + |z — w(t)v]?) f(t)dadv = // (1+ |z — ol )fodzdv+60/w(s)2ds||f0||1

R3xR3 R3 xR3 0

for any t > 0, where w(t) = (e’ — 1)/ + aef’. This equality only yields local integrability of
Jgs [v2f(t,z,v)dv for any ¢ > 0. So, generally speaking, this kind of solution has infinite energy. When
establishing existence and uniqueness results in this situation, the critical issues are improving the integra-
bility of microscopic density and estimating the macroscopic quantities without the boundedness of energy.
We will deal with these problems in Proposition 2.2 and Proposition 3.1.

Our main existence results (including uniqueness) concerning the Fokker—Planck-BGK equation are the
following:

(1) If the initial datum fo > ﬁX{Iz—avlge} for some « > 0 and some §, ¢ > 0 (can be arbitrary small),
and satisfies that for some ¢ > 5,7 > 3

sup(1 + |z — av|)) (1 + |z|" + |z — av|") fo(z,v) < 0. (1.5)
x,v
Then there exists an unique polynomially decaying solution to the Cauchy problem (1.1).

Note that (1.5) implies the boundedness of [[ps. gs (1 + |2 — aw|?) fodzdv, and the above result can be
easily extended to the N-dimensional case by assuming ¢ > N + 2,7 > N. The lower bound of f; will be
used to deduce a lower bound of p and then 6, which is indispensable to prove the uniqueness. But this
assumption implies that the gas cannot contain vacuum (p = [ fdv = 0 in some Q C R?® with || > 0).
However, we can use the above result to construct approximate solutions, and establish some much more
general existence results in the three-dimensional case (also in the N-dimensional case), that is,

(2) If the initial datum fu > 0 satisfies that for some o > 0 and 1 < p <

(14 |z — aw]?) fodvdz < 00, || follLr(rs xr3) < 0, (1.6)

R3 xRR3

or

(14 |z — av]* + In(1 + |2|) + | In fo]) fodvdz < oo, (1.7)

R3xR3

then one can build a global classical solution of the Cauchy problem (1.1).

More complete statements can be found in the main text. We emphasize that the case of 5 = 0 is not
specially discussed in the whole paper, since all the results in this case are in parallel with that in the case
of 3 > 0, and can be obtained by taking § — 0. And we do not require [[ |z — av|?*t0 fodrdv < oo in the
assumptions (1.6) and (1.7).

The rest of this paper is organized as follows: In Section 2, we give a new moments lemma to transport
equation with Fokker—Planck operator. Section 3 is devoted to giving new estimates of the macroscopic
quantities and then proving an existence and uniqueness result to the Cauchy problem (1.1), where the
initial datums are polynomially decaying but could have infinite energy. In Section 4, we use the results in
Section 2 and Section 3 to prove some general existence results. In this paper, the letter C' denotes a generic
positive constant which changes from line to line. || - ||, always denotes the norm of the space L?(R3 x R3)
for 1 < p < co. For the sake of simplicity we will denote the integral [[ps. ps - - - dvdz by [[ ---dvdz.

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J.
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2. A velocity-spatial moments lemma
Firstly, we consider the following linear evolution equation

{ Oif +v-Vuf — Bdiv,(vf) — oA f = g, 1)

f(O,.’IJ,’U) = fO(x’v)a

where fp and g are assumed to be known. It is well-known that there exists a fundamental solution
G(t,x,v,y,n) of (2.1), which can be expressed by

G(t,z,v,y,m) = Golt,x —y —n(l — e P")/B,v — e Ply),

where x,v,y,7 € R3¢t > 0 and

1 — Py (t,z,v) /4o
Go(t,z,v) = —(47T0‘)3D(t)3/26 0 ;
11— e 26t 1—e Bt | 2
Dy (t = — 2
O( 71'71)) D(t) 26 € 5(1 +€—ﬂt)v + 1— e—2,8t|v| ’

1 [1- 20t 1—eBt\?
D(t) = — ‘- ( ° ) .
g 2 B
The fundamental solution G(t,x,v;y,n) has many important properties (see, for example, [2-5,7,11,28]),
some of which are included in the following lemma.

Lemma 2.1. The following properties hold for the fundamental solution G(t,z,v;y,n):

(1) For any z,v,y,n € R3, ¢t >0
// G(t,z,v,y,n)dxdo = 1, / G(t, z,v,y,n)dydn = €
R3 xR3 R3 xR3

(2) For any positive integers n,k, any 6 dimensional multi-indices «,v, and any 0 < h < T < oo, there
exists a positive constant C = C(n,k,a,, 8,0,h,T) such that

(1 + [yl + )"
(1+ |z| + \v|)n+2(\a|+\v\+2k)

|afa§vagnG<tﬂx7vayun)‘ S 07 te [h7T]7 T,0,Y,1n € RS-

(8) For any T > 0, there exists a positive constant C = C(p,8,0,T) such that

sup // (t,z,v,9,m) f(y,n)dydn|| < C| fllp, (2.2)

te[0,T]
p

where 1 < p < co. Furthermore, the inequality is sharp with C =1 if p=1 and f > 0.

With the fundamental solution G(¢,x,v;y,n), the solution of (2.1) can be represented by

f(t,z,v) / Gtxvyn)foyndydn+/ds//Gt—smvyn) (s,y,n)dydn. (2.3)

R3 xR3 R3 xR3
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For simplicity, we define a linear operator G(t) by

fla,v) = // G(t,2,0,9,1) (4, n)dydn. (2.4)

From the above lemma, we know that G(t) maps f € LP(R3 xR3) into C([0, c0), LP(R3 x R?))NC>°((0, 00) x
R3 x R?) for any 1 < p < co. And (2.3) is equivalent to

t
ft,z,v) = G(t) fo(z,v +/Gt—s s, x,v)ds.
0

As we know, moments lemma is one of the most important tools in kinetic equations, which is used to
improve the obvious integrability. Perthame [21] gave a classical “velocity moments lemma” for transport
equation, that is, the solution of transport equation has three order of velocity moments locally in space
under the boundedness of kinetic energy. Using the methods in [21,23], we are able to give a new moments
lemma for the equation (2.1), which is not about velocity moments but about velocity-spatial moments.

Proposition 2.2. Suppose that f € L1+([07T] x R3 x R3) is the unique distributional solution of the Cauchy
problem (2.1) with fo,9 > 0. Assume there exists a positive constant C(T') such that

T
//(1 + |z — aw|?) fo(z, v)dxdv + O/ //(1 + |z — w(t)v|?)g(t, z, v)dzdvdt < C(T),

where w(t) = (e —1)/8 + aePt with a > 0. Then for any R > 0 we have

/ // |z — w(t)v|]* f(t,z,v)dzdvdt < C(T, R).

0 BrxR3

Proof. Define a C? function

o(t, z,v) = (14222, (2.5)

where z = 2 — w(t)v. Let @, = (X|zj<2n * Mn) (Xjv|<2n * Mn)¥n(t), where x is the cutoff function and 7 is
the mollifier. The function ¥, (t) € C°|0, T) satisfies that ¢, (t) = 1if t € [0,T — 1], and ¢, (t) = 0 if
t € [T —4.,T)and |4}, (t)] < Cnon [T — 1, T — ;L. Note that w(t)¢p, € C2([0,T) x R® x R?), by the
definition of distributional solution we have

T
// (O +v-Vu—pv-V,+0A,) [w(t)pe,] fdedvdt
0

T
+//Oz¢(0,x7u)90n(0,x,v)fodxdv+O///w(t)¢g0ngda:dvdt:0. (2.6)

Define (-) = (1 4+ -|?)'/2, a basic computation gives

MZ—UJ’ Hu:_&wz—w, T-zZU-2
<x><> (t) (z) —w'(t)

06 = —u' (1) rEvz
(z) (2) wt) (z) (z) (2)
Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J.
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and

(x+2)-v x-zv-z (x-2)(z-v)
(z)
1 |2]? — |o)? T2V 2 1 |z (2 2) — (2 2)?

W) (@)

’Uvz(b:

Similarly, we have

—Bv - Vi = Buw(t) (%m “v+ %z . v)
_gllfmziz g EEY R
o 4 )T

and

Adding the above equalities together, we have from w’(t) = fw(t) + 1 that

Oy +v-Vy—Pv-Vy+0Ay) o

R W e ) Bl M e G20 A LE SIS
SRR
N °oow()

1 z 2 aw 2

since |z|?|2]? — (z-2)? > 0. By the definition of ¢,,, we obtain that |v- V,@,l, [v- Vyenl, |Aven| and [V,e,|
are uniformly bounded, and by (2.5) we have |V,¢| < 2(z)2, |¢| < (2)2. Thus, the above arguments give

(at +v-Vy—=pv-Vy+ UAU) [w(t)dxpn}
= w(t)% (at +v-Vy—=pv-V, + UAU) ¢+ w(t)(b(v Ve —Bv-V,+ O'AU)QOn
+20w(t)Vpd - Von + donw’ (t) + w(t)ddspn

2®
< B Xl - 2Xlsl<nXjul<n + O+ WL (D))",

where C' is a positive constant dependent upon «, 3,0, T. From (2.6) and the above inequality we have

T
3
z
/// Xte[O,T—%]XLr<an|<n%fd$dvdt
0

< // ad(0,z,v) fodzdv + /T // w(t)pgdrdvdt + C /T // (14 [, (1)) (2)? fdadvdt

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck-BGK equation with infinite energy, J.
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L

< C sup //< 2 fdadv + C’/// 2gdxdvdt + Cn //(z}Qfdxdvdt
te[0,T]
T
< C sup // (2)? fdxdv + C / // (2)%gdzduvdt, (2.7)
t€[0,T] 0

since ¢/, (t)] < Cnoon [T — L, T — ;1]. On the other hand, from (2.1) we can easily deduce

3=

T
sup [[f()llx < [[folla +/||9(8)||1d5 (2.8)
t€[0,T] 5
and
sup / lz — w(t)v|>f(t,z,v)dzdv
t€[0,T)
< // |z — av]? fo(x,v)dzdv + 3o0w(T)? sup ||f(t)|1
t€[0,T]

// |z — w(t)v|?g(t, z, v)drdvdt

T
< / & — vl fo(, v)dado + 30w(T)? | | foll + / lg(®)ldt
0

/ / e — w(t)oPg(t, 2, v)dwdvdt. (2.9)

Combining (2.7) with (2.8), (2.9) and letting n — oo we can obtain

/// N ﬁ; 7 fdedvdt < Copor <//(1 + e — avl?) fo(z, v)dzd
T
+0///(1+ JU—w(t)v2)g(t,x,v)d:zcalvdt),

which gives our conclusion. O
Using the above method, we can give a velocity moments lemma to the equation (2.1).

Remark 2.1. If there exists a positive constant C'(T') such that

T
//(1 + [v]?) fo(z, v)dzdv +O///(1 + [v|?)|g(t, x, v)|dzdvdt < C(T),

then for any R > 0, the positive solution of (2.1) satisfies

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J.
Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.01.042
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T
/ // |v|? fdzdvdt < C(T, R).
0 BrxR3

Proof. Choosing

o(t,z,v) = m 1

and repeating the proof of the above lemma we can get this conclusion. 0O

Following from conservation laws and the above moments lemma we can give some a priori estimates
permitting infiniteness of energy for the Fokker—Planck-BGK equation.

Lemma 2.3. Let o > 0 and let the initial datum fo > 0 be given with

// (14 |z — aw]?) fodvdz < +o0.

Assume f € C([0,T); L*(R3 x R®)) is a solution of the Cauchy problem (1.1), then

sup // (14 |z — w(t)v]?) f(t,z,v)dvdz < C(T) (2.10)

te[0,T]

for anyt >0, and

/ // 2 — w(t)Pf(t, 2, v)dzdvdt < C(T, R) (2.11)

0 BrxR3

for any R > 0. Moreover, the following macroscopic quantities are conserved:

1 0
r—w(t)v | f(t z,v)dvde = 0 . (2.12)
d“ﬂ‘ — w(t)f? 60w(t)’ | foll

Proof. Following from invariants of collision operator J(f):

1 1
x—wt) | flt,z,v)dv= / z—w(t)v | M[f](t, z,v)dv.
&\ Jz - w(tpl &\ Uz —w(tpl

Then we can easily deduce

// v) f(t,x,v)dvdz =0

% (% // |z - W(t)v|2f(t,x,v)dvdx>
/\x— Yo[20, fdvda — o (¢ //m_w of dvds

and

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J.
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= // @ — w(t)o]*[~diva(vf) — Bdiv,(vf) + oA, fldvdz — // . vfduda

//[ w(t)v] - vfdvda + Buw(t //x—w ~vfdvdz
+ 3owl(t //fdvda:—w //ax— ) - vfdvdx

= 30w(t)® [[ fdvds = 30wt ol
which yield (2.12) and then (2.10). By Proposition 2.2 we easily obtain (2.11). O

3. Existence and uniqueness in weighted L°° space

For establishing an existence and uniqueness result to the Cauchy problem (1.1), it is crucial to give

some proper estimates of the macroscopic quantities and the local Maxwellian M|[f]. A rather general L>

bounds for the macroscopic quantities had been established in [24], however, these estimates are based on

the boundedness of weighted velocity L>° norms of the microscopic density, which is not satisfied under the

assumption of infinite energy. The following proposition is devoted to establishing some similar estimates

in terms of the weighted velocity-spatial LP norms of f > 0.

Proposition 3.1. Let 1 < p < +o0 and 1_13 + ]% =1 and a > 0, the following estimates hold:

p(t, o
(7)3 < C|f(t,2,0)| Lr(ws)-
0(t, z)%’
If0<q< % or q > %4‘2; then
()7 p(t, )
w P pll,x
7 < Cllle = 0ol F (¢ 2. 0)|| o g

[|lx — w(t)u(t, z)|? 4+ 3w(t)?6(t, 1:)]2—13’
If ¢ > 1, then
_plt.)le = wtutt,z) |
0(t,x) 2 [|x — w(t)u(t, z)|? + 3w(t)20(t, z)]

If1<q<—,orq> >+ 2, then

pt, )|z — wt)u(t, z)|? < C|lz — w(t)o]? f(

0t 1) B0 o agy:

and

q
—S;q/p CH|£E— ) |qf(t’x’v)HLP(]R%)'

Moreover, if g =0 0r1<q<— orq> 3 12, then

H|x—o.)(t)v|qM[f]HLP(Rd <C’H|ac— (t)vlef (t,x,v)HLP(R%).

< CH|$— (t)v |qf(t,x,v)HLp(R%).

(3.1)

(3.2)

(3.4)

Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.01.042
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Proof. The proofs are similar to those stated in [24], we include them here for completeness. For any R > 0,

we have

pta) = [ ftavdo= [ faodr [ feaod
lv—u(t,®)|[<R l[v—u(t,z)|>R
3 1
SCRMU@xmmmmp+E§/w—quWf@mev

3p(t,x)0(t, ) .

3
< CRY ||f(t,(E,U)||LP(]R%) + R2

By choosing R = p(t, x)0(t, z)|| f (¢, x, U)HE;(RS), we can obtain (3.1).
For the proof of (3.2), we firstly consider the case 0 < ¢ < %.

p(t,z) = /f(t,x,v)dv = / ft,z,v)dv + / f(t, z,v)dv

lt—w(t)v|<R lz—w(t)v|>R

]

<l = w®)olf (¢ 2, 0)l| g, / [ — wo(t)o] = dv

le—w(t)v|<R
/|x7 |2 f(t, z,v)dv

< Cw(t)_%R% [[lz —w(t)ol£(t, xvv)HLP(Rg)

+ R72p(t,z)(|lz — wt)u(t,z)|* + 3w(t)?0(t, ).

Denote z = |z — w(t)u(t, z)|? + 3w(t)?0(¢, x), then by choosing

Rt 4

— w(t)?

-1
|z = w()v|*f(t, 2, 0)| L gg P (L )2,

we can obtain (3.2). For the case of ¢ > 3 12, we have

pltsa)z = [ | = wlt)oft,2,0)do

< / |z — w(t)v|>f(t,z,v)dv + / |z — w(t)v|*f(t,z,v)dv

lz—w(t)v|<R lt—w(t)v|>R

< R0(10) + o~ O sy | [ el e

lz—w(t)v|>R

_ 3 3 _
< R2p(t,2) + Cuw(t)™ 7 RY 7l — w(tol? £t 2,0)||

By choosing R?™ 7 = w(t)_%p(t,x)_lmx —w(t)|if(t,z, v)HLP(R3) we also have (3.2).

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck-BGK equation with infinite energy, J.
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Similarly,
oty 2| — w(t)u tx|</|a:— Yol F(t, 2, v)dv
< | —w(t)v|f(t, xz,v)dv + |z — w(t)v|f(t, z,v)dv
lv—u(t,z)|<R lv—u(t,z)|>R
< & — w(t)ol2f (t,z,v)dv | plt,z)7
lv—u(t,a)| <R
+ % / v —u(t, z)||x — w(t)v|f(t, z,v)dv
< CHW‘ ()l f(t, 2, v HLP(]RS R’ p(t )
1 3
-5 (/ o u<t,x)|2f<t,x,v)dv> (/ 2 — w2 £ (t,,v) )
1 3 1 1 1 1
< Ol = (@01t 2, )| 1y g R p(ts2) ¥ + 0(t,2) b4 plt, )
Choosing
Ra7 ™ = p(t, @) 10(t, )2 22 || |lo = w(&)v|"f (£, 2,0)|| L g
we have (3.3).
Now, we treat (3.4) and (3.5). When 1 < ¢ < ,, if |2 — w(t)u(t,z)|? > 3w(t)?0(t,z), it follows from (3.3)
that
(3w(8)*0(t, ) p(t,x) _ plt,x)|a — w(t)ult, z)|f
0(t, x T B 0(t, x)%
3+qp’
< p(t, z)|z — w(t)u(t, z)|
(0(t,)2/2)
(3.7)

<C’H|x— (t)vldf (t,x,v)HLP(R%).

If |2 — w(t)u(t, z)]? < 3w(t)?0(t, x), it follows from (3.2) that

plt,z)|z — wit)u(t,2)|? _ (3w(t)?0(t,2))* p(t,x)
o(t, z) - o(t, z)
_ Cw(t)f’jg/t, z)

< CH\x —w(t)vl?f(t, Z‘,’U)HLP(R%)-
When ¢ > 3 + 2, if |z — w(t)u(t, z)|? > 3w(t)?0(t, z), a similar computation as (3.7) gives the conclusion

)
If |2 — w(t)u(t,z)]? < 3w(t)?0(t, x), by using (3.2) again we have
Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J
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pt, @)z —wtult,2)|? _ (Bw(t)*6(t,2)) * p(t, )
o(t, x) - 0(t, x)

3 '—3
/

< (VBuw(t) ¥ plt,x)= 57

< Clllz = w®ol? 2 0)| 1o g

Consequently, we obtain (3.4) and (3.5).
At last, we prove (3.6).

H|a:—w v|*M[f ||LP R3)

ap x—w(t)ult, )% + w(t)Plv — u(t qpp(t,—x)pex _M v
<27 [ o=ttt ot — (e 2)) ATy { AR g
=2% (wa(t)( )IqM> + 20 <w(t)qf’(t7’f)qp/>

O(t,x)2" o(t,x) >

By (3.1) with ¢ =0 and (3.4), (3. )Wlth1<q<—orq> + 2, we get (3.6). O

From the above lemma we can get the following corollary. Since the proof is only an interpolation of the
above estimates, we omit it.

Corollary 3.2. Let 1 < p < +o0 and % + 1% =landa>0.Ifq> 1% +2anda € [—%,q— 1%], then
W) p(t, 2)0(t,2)5 < C|(1+ 2 — w(t)o]) f (£ 2,0) | Lo (ra)- (3.8)

Ifg>2+2,8€1-21] and vy €[0,q— 2(1— B)], then

3(1-8)

w(t) 7 plt, )l — w(tyu(t, ) 0(t2) " < C(L+ |z - w(t)|)f (¢, z, 0)llLr(rs)- (3.9)

Inspired by the thoughts in [15,24,28], we will use Proposition 3.1 and its corollary to show that there
exists a unique solution of the Cauchy problem (1.1) with bounded velocity-spatial weighted L* norms. To
this end, we firstly define precisely those weighted L norms and give some estimates of the operator G(t)

with such norms.

Definition 3.1. Let ¢, > 0, define
Hy(f(t) = sup (14 [z—w(t)o|)|f({t z,v)],
(z,v)ER3 XR3

Hor(f(t) = sup (14 |2|")(1+[e—w(t)o|)|f(t 2, 0)|.
(z,v)ER3 XR3

Lemma 3.3. There exist two positive continuous functions Cyyr o p,6(t) and Cqr o p.o(t) such that for any
0 < s <t and any nonnegative and measurable function g(s,x,v),

Hy(G(t = s)g(s,2,v)) < Cqap.0(t)Hq(g(s)), (3.10)

Hyr(G(t = 5)g(s,2,0)) < Cyrap.0()[Horr(9(5) + Her(9(s))]- (3.11)

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck-BGK equation with infinite energy, J.
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Proof. Let j =z —y — 176_;“_5) n— B(ﬂf@_ﬁ@fi)) (v—e Pt=)p) 5 =v—e Py we have
~ e—Blt—s) _ 1 _ 4
1t o —wltpl? < 1+ 11+ iz + o)) 1+ 1y — (e
< Cyaot(1+ [y —w(s)n*) (1 + [y]*) (1 + |7]). (3.12)

Then,

(1+ |z —w(t)v|)G(t = s,z,v,y,1m)9(s,y,n)dydn
R3xR3

<Capot) sup  (L+]y—w(s)n?g(s,y,m)
(y,m) ER3 xR3

~ ~ ~ 1] — e Blt=s)
: //(1 + 1yl (X + 7] Go(t — s,y + mn,ﬁ)dydn

< Cq,a,ﬁ,o’(t)Hq(g(s))7
which implies (3.10). On the other hand,

1—eBl=s) ] e hBlt=s
e L e
< Crapo®)X+ 17"+ 7)1 + [y —wls)nl" + [yl").

) ]_ — e_B(t_S) _|_ Bw S r
Iy — w(s)n + ( )|y|)

Lo < (i + 5 Bals)

Combining the above estimate with (3.12), we have

(L4 [z[") (1 + |z — w(t)o|?)
< Crapo®)L+ (g1 + 7)1+ [y —w(s)n" +[yl")
“Coapoi(l+ ]y —wls)n|®) (1 +[g|") (1 +[7]7)
< Corapo®[L+ |y —w(s)n| ™ + (L+ |y — w(s)n| Dyl (1 + g1 ) + 7)),

and then

| 410+ ke = el )Gt = s, v, .5,y n)dydn
R3 xR3

=Cyrapo) sup  [1+]y—w(s)n™ + 1+ |y —w(s)n)yl ] g(s,y,m)
(y,m) ER3 xR3

: // (L+ (77 (1 + [7{77)Golt — 5.5+

S Cq,r,a,ﬁ,a(t)[Hq-H’(g(S)) + Hqﬂ’(g(s))]a

1 — ¢ Bt=s)

.
ﬂ(He,g(t,S))nm) ydn

which yields (3.11). O
At last, we give the existence and uniqueness result, that is,
Theorem 3.4. Let the initial datum fo(x,v) > 0 satisfies

Hq-i-r(fO) < o0, Hq,r(fO) <0

Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.01.042
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for some g > 5,7 > 3 and a > 0. Assume further (1+|z|") fo(x,v) > ¢(x—aw) for almost all (z,v) € R3xR3,
where ¢(z) € LY(R3) and ¢(z) > § with some positive constant § when |z| < €. Then there exists an unique
solution 0 < f(t,z,v) € C([0,00); L*(R3 x R3)) N C=((0,00) x R3 x R3) to the Cauchy problem (1.1).
Moreover, there are positive functions A(t), B(t) such that for almost all (t,z) € [0,00) x R3

Hy (f(t),  Hgyr(f(1) < At) < o0,
p(t,x), |u(t,x
(L+[2|")p(t, z

Proof. A mild solution of the Cauchy problem (1.1) can be written as

Ft2,0) = e G(E) fo (2, v) + / LGt — $)Mf](s, , v)ds. (3.13)
0

Let T f be the right hand side of (3.13). So we need to show that the operator T has a positive fixed point
in L>°([0,T]; L*(R? x R3, (1 + |z — w(t)v|?)dvdz)) for any T > 0, and this fixed point is unique and satisfies
all the estimates. Set

X = {f Z 0: Hq+7“(f(t)) S Cleclth+r(f0)a (314)
Hq,r(f(t)) < C’2602t (Hq+r(f0) + Hq,r(fo))v (3~15)
(1 + |2[")p(t, x) = Cs}, (3.16)

where the positive constants C1, Co, C3 will be given later on.

Step 1. We firstly prove that 7 f maps X into itself. It is obvious that 7f > 0 if f > 0. Using (3.10), we
have

(1+ |z = w)o| "N T f)(t, z,v)
=e 1+ |z — w)v|TG®) fo(z,v) + /esft(l + )z — wt)v|TTG(t — s)M[f](s,z,v)ds
0

t
< CquT,a,ﬁ,a(t) e_thJrr(fO) + /es_th+rM[f](s)ds
0

By (3.6) with p = co we know that for any 7' > 0 there exists a positive constant C; > 1 dependent of
q+r,0,a,83,T such that

t
Hoo(TH®) < Cy | Hyor (o) + / Hyof(s)ds|, VO<t<T.
0

So we have that for any ¢ € [0, 7]

Hyo(TF(t) < CLe“"" Hypr(fo) i Hepr(f(2) < Cre” Hyyr(fo)- (3.17)

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck-BGK equation with infinite energy, J.
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Similarly, using (3.11) and (3.6) with p = oo, we have

(L +[2[") (1 + |z — w(®)o|")(T £, 2,v)
S Cq#’,oﬁﬁ,ﬂ(t) Hq+r(f0) + Hq,r(fO) + /6S (Hq+rM[f](s) + quM[f](S))dS
0

t
< Corapo(t) | Hyrr(fo) + Hyr(fo) + / (Hyar f(5) + Hy f(5))ds
0

Combining this estimate with (3.17), there exists a positive constant Cy > 1 dependent of ¢,r,0,, 3,T
such that

Hq,T(Tf)(t) < (s Hq-i-?“(fO) + Hq,r(fO) + /Hq,Tf(S)dS , vO0<t<T.
0

So we have that for any ¢ € [0, 7]

Hoir(T(8)) < Coe®' [Hyyr(fo) + Hor(fo)] if f € X. (3.18)
Now we prove (3.16). Note that

1 le—y—wq (t)n|?

- e_ 10 [§ wo(1)2dT ,
(4o [ wo(T)2dr)3/?

/G(t7 z,v,y,n)dv =
RS

1—e Pt

where wo(t) = =5—. Let § =2 —y —wo(t)n,7 = y/o —n, then y = (1 + wo(t)/a) L (x — § + wo(t)7) and

p(TH)(t,x) > e‘t/ // G(t,z,v,y,m) foly,n)dydndv
R3 R3xR3
Py — an)

dydndv
L4yl

> e*t/ // G(t,2,v,y,m)
R3 R3 xR3
_t 0
2 € G(tax,vayan)idydndv

L+ [y|"
RS |y—an|<e

- 912
| — e T . ajai
(4ma [, wo(T)2dT)3/2 L+ |z — g+ wo(t)n]"
1

7| <e/a

_‘2
Z eft/ - e 40 [E wo(r)2dr 6~ dy / 1 _ dn
J (4mo fo wo(7)2dr)3/2 1+ |g]™) e L+ |z + wo(t)n|”
n<e/a

Thus, there exists a positive constant C3 dependent of r, «, 3, d, €, T such that

C
ATI2) > 1 fx‘r, v telo,T). (3.19)

Step 2. We now prove that M[f] : X — L*>([0,T]; L*(R® x R3, (1 + |z — w(t)v|?)dzdv)) is Lipschitz. Let
9o, g1 € X and gy = (1 — N)go + Ag1, where A € [0, 1], and then g, € X. For convenience, the macroscopic

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck—BGK equation with infinite energy, J.
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density, bulk velocity and temperature of g are denoted by py, uy and 0 respectively, and let My := M[gy].
Thus,

1 1
d d
_ — el < el

| My — My| = / Y ,/ld)\M,\\d)\
0 0
_ ’ _ 2| p/
<C/ AL ] Dol oY
0 02

Multiplying by (1 + |z — w(#)v|?) and integrating against velocity variable v, we have

/ My — Mo|(1+ |z — w(t)o]2)dv

R3

1
/
<c | <"’A' AL} l}‘bl) 1+ 2 — w(tyual? + w(t)26,)dA (3.20)
0 A

by a tedious computation. Taking the derivative of A on both sides of the following identities

/gxdv = P,

R3

/(x —w(t)v)grdv = prlz — w(t)un],

R3

[ o= w(OuPosds = palle — wltyusl? + 3(063,

and using gy = (1 — A)go + Ag1, we can obtain

oA = | / g1 — go)dv] < / (1+ |z — w(t)ol)lgr — goldv,

RS
= | ~ Joa @ — w(Ou)on — o)
by ( )PA
SW/ + |z — w(t)v]*)]g1 — goldv,

03] = 37 w(t) 23" / |z — w(t)v*(g1 — go)dv — pi[lz — w(t)us|®
R3

+ 3w(t)20,] + 2w(t)pa (T — w(t)uy)uh

1 —w(t)uyl? + 2|z — w(t 3w(t)?6
< Itz —w®ual + 2z — w(t)ua] + 3w(t) )‘/(1—|—|x—w(t)v|2)|g1—go|dv.

- 3w(t)?pa
R3

Please cite this article in press as: Z. Chen, Classical solutions to the Fokker—Planck-BGK equation with infinite energy, J.
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Combining the above inequalities with (3.20) we have

/ My — Mo|(1 + |2 — w(t)o]?)do

R3
1
_ 4 492
< C/ 1+ |1’ OJ(t)’Uz)\| +W(t) 9>‘d>\/(1 + ‘fﬂ fw(t)v\2)|gl 790‘dv. (321)
w(t)20
0 R3
Note that gy € X, by (3.16) we have
0 = (14 |z|")prb R S
* PO T+ 2
< C(l + |CC|T)p>\9)\, (322)
. 1
|z —w(t)ux| = (1 + [z]")palz — w(t)ual - A+ 2
<O+ |z|")palz — w(t)uxl (3.23)
and
2/3
1 p 1
Lt VT S S
6)\ ( | | ) 9)\ (1 + |x‘r)2/3pi/3
2/3
< O+ [P B, (3.24)
A

For the bound of (3.22), we use (3.8) with p = 0o, a = 2 and (3.15) to obtain
WP (1 + [27)pa0r < CHoyr(ga(®)) < O (Hys o (fo) + Hop(fo)),
which means
w(t)?0x(t,z) < COr (3.25)

for any t € [0, T, since @ > 0. For the estimate (3.23), from (3.9) with p = 00, 5 =0, vy =1 and (3.15) we
get

w(t)* (L + [z pale — w(tyus| < CHyr(ga(1) < Cre™ (Hypr(fo) + Hy.r(fo))
for any t € [0, T, which implies
|z —w(t)us| < Cr (3.26)
for any t € [0, T]. For the estimate of (3.24), by (3.1) with p = oo and (3.15) we have
(14 [a)r83 * < CHyr(93(6) < Cre® (Hypo(fo) + Hyu(fo)

for any t € [0, 71, so

1 < Crw(t)? (3.27)
0
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for any t € [0,7T]. Combining (3.21) with (3.25)—(3.27), we have

|M[g1] — M[go]|(1 + |z — w(t)v]?)dvdz

R3xR3
< Cr // (14 |z — w(t)v]?)|g1 — go|dvdz (3.28)
R3 xR3
for any t € [0, T].
Step 3. Lastly, we prove that 7 has a unique positive fixed point. Let 2 = z — y A,l:z%gf:iln _
B(l_f;—ﬁza(:js)>) (v— eiﬁ(tis)n)a V=0 675(1&78)77, we have

1—e—Blt—9)

2
L+ —w(oP _ 1+ 121+ (5hesstmsy +w(®) 18] + Iy — w(s)ml]
L+ ly —w(s)n[* — 1+ |y — w(s)nf?
< Copo(l+ 2 +17%)

for any 0 < s < ¢t. Combining it with (3.28) we obtain
//(1 + o — w(t)v|?)|G(t — s)M[g1] — G(t — 5)M|go]|(s, z, v)dzdv

1+ |z — w(t)v]?
G(t—s,x,v,y,
//Hly wsnl2 ( B

- / M g1] — Mlgol (5,3, m)(1 + ly — w(s)n[?)dydndady

12, 112 1 — e Bt=s)
< Ca 0,1 //(1 + ‘:U| + |U| )Go(t — s, & m )dacdv

. / lg1 — gol(s, 2z, v)(1 + |z — w(s)v|*)dzdv
for any 0 < s <t < T. Thus, there exists a positive constant L dependent of «, 3,0, T such that

JJa+ ke = c@eP)Ta - Tonl(tydzde < £ / [+ 1o = wlo)0P )l ~ gol(s)doduds,

which yields

// (1 + o — P T g — T gol()dadv < © 1 sup // 1+ [z — w(s)ol?)lgr — gol(s)dad.

s€[0,]
Choosing N large enough such that L < 1, we can obtain from the Banach fixed point theorem that
the operator 7V has a positive and unlque fixed point f in L>°([0,T]; L*(R? x R3, (1 + |z — w(t)v|?)dvdz)).
Note that T f is also a fix point of TV, we get from the uniqueness of 7V that f is the unique fixed
point of 7. That is, f is the unique nonnegative solution to (1.1). Since G(¢) maps f € L*(R® x R?) into
C([0,00), LY (R xR3))NC>((0, 00) x R? xR3), so f belongs to C ([0, 00); L} (R* xR3))NC>((0, 00) x R3 x R?)
and then it is easy to verify the desired estimates. O
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Remark 3.2. If » > 5, it is obvious that the solution has finite energy. However, if we further assume
3 < r <5, the above theorem can deal with some kinds of initial datum with infinite energy. For example,
fo = (1+]2[")7*1 + |z — av|?*")~! satisfies all conditions of the theorem, but its energy is infinite.
Consequently, the solution launched by the initial datum has infinite energy due to [[ |v|?f(t)dzdv =
=2 [ |o]? foddv + 30| fol |1 =55

4. Some general existence results

In order to give our general existence results, we firstly use Theorem 3.4 to construct approximate
solutions, and then use compactness arguments to take the limits. The key is how to get strong compactness
of the macroscopic quantities. We will need not only Proposition 2.2 but also the following compactness of
the Fokker—Planck operator, which was established by Diperna and Lions in [11].

Lemma 4.1. For n € N, let g" € L*([0,T] x R? x R3) and f§ € L'(R3 x R3) such that

hm Sup/ // "(t,z,v)|dzdvdt =0
R— o0 n

0 |z]?+[v]*>R?

and

lim sup // | fo(z, v)|dedv = 0.

R—oo p
|z]?+|v[>> R?

Suppose that f™ are solutions to

Of" vV f" = Bdivy(vf") — oAy f" = g7,
[0, 2,0) = f3' (z, ).

Then the sequence {f™ : n € N} is relatively compact in L*([0,T] x R3 x R3).
Then, we can give the following existence results:

Theorem 4.2. Let 1 < p < oo, > 0 and let the initial datum 0 < fo € LP(R® x R?) be given with

// (14 |z — aw]?) fodvdz < +o0.

Then there exists a solution 0 < f(t,z,v) € C([0,00); L} (R? x R3)) N C>°((0,0) x R? x R3) to the Cauchy
problem (1.1) such that

//(1, 2 — w(t)o) f () dwdv = //(1, 2 — w(t)) fodad, (4.1)

t

/ |z — w(t)v2f(t)drdv = / |z — w(t)v|? fodzdv + Ga/w 2ds|| foll1 (4.2)

0

for anyt >0, and ||f(t)|l, < Cr for any 0 <t <T < co.
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Proof. Similar to those regulation in [29], we regularize the initial datum fy as follows:

f(? = X|z|2+|v[2<n? min{fo,n} + lwv
= n 1+ x|

where r > 3 and x is the cutoff function. Then we immediately obtain

115 llpy < [l follps +C, ¥ p1 € [1,p], (4.3)

// |z — aw|? fi (@, v)dvdr < // |z — av]? fo(x,v)dvdr + C, (4.4)
and
//(1 e — aw)|f = foldvdz + | £ = follp = 0, n— 0.

Note that Hgir(f8"), Hgr(f§') < 00 and (1 + |z|") f§ > -L for |z — av| < 1, so by Theorem 3.4 there is
an unique global solution f™(¢,x,v) to the following Cauchy problem

O f" +v -V f" — pdivy (vf™) — oAy f* = M[f"] — f",
n n (4.5)
f (O,.Z‘,U) = fO (m,v),
where
n pn(t,l‘) { |vun(t7x)|2}
M t,x,v) = ————————expy —————— 4.6
0600 = G e | (4.6)
and
p" 1
pru” (t,x) = v | Mtz v)de, t>0, e R (4.7)
pn|un|2 +3pn0n B3 |’U|2
By Lemma 2.3 and (4.4), we have
//(1 + |z — w(t)|?) (¢, z,v)dvde < Cp, Y0<t<T < 0. (4.8)
Now we show
1", <Cr, VY0<t<T < oo. (4.9)

A mild solution of the Cauchy problem (4.5) can be represented by

t

[t z,v) = e PG{) f (z,v) + /esftG(t —s)M[f"](s,z,v)ds.
0

Using (2.2) in Lemma 2.1 and (3.6) with ¢ = 0 we can obtain
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t
1@l < e " IG@) [ 1l + /es_tllG(t — ) M[f")(s)llpds
0

t
< Cre~t|fll, + Cr / e~ £7(5) | pds.
0

From Gronwall’s inequality and (4.3) we obtain (4.9). Then using (3.6) with ¢ = 0 we can deduce
MOy < CIF" Ol < Cry VO<E<T <00, (4.10)

and from (4.6), (4.7), (4.8) we have

//(1 + |o — w(t)v|P)M[f"](t)dvdx = //(1 + |z — w(t)v]?) f"(t)dvdx < Cp (4.11)

for any 0 <t < T < oo. Combining (4.10) with (4.11), we get that the sequence M|[f"] is weak compact in
LY([0,T] x Bg x R3) for any R > 0.

On the one hand, by (4.8), (4.11) and a sight changed version of Lemma 4.1 as stated in [28] we can
get that the sequence f™ is compact in L([0,T] x Br x R2). On the other hand, from (4.8), (4.11) and
Lemma 2.3 we have

/ // |z — w(t)v|®f*(t, z,v)dzdvdt < C(T, R).

0 BrxR3
The above arguments give
/ (L2 —w(t)v, |z — w(t)v]?) frdo — / (Lz —w(t)v, |x —w(t)v]?) fdv in L'([0,T] x Bg),
R3 R3
where f is the limit of f in L1([0,7] x Br x R?) (choosing a subsequence if necessary). As a consequence,
p" = p, in L'([0,T] x Bg);

p"u™ — pu, in L'([0,T] x Bgr);
P u™ 2 + 30" — plul? +36, in L'([0,T] x Bg).

Combining the above arguments with the weak compactness of M[f"] in L'([0,T] x Br x R2), we can use
the standard procedure developed in [21] to show

M[f"] — M][f], in L'([0,T] x Bg x R3),

which yields that the sequence M[f"] converges to M[f] in the distributional sense.

Finally, passing to the limits in the approximate equation (4.5) for n — oo, we know that f(¢,z,v) is a
distributional solution of the Cauchy problem (1.1). It is easy to show the smoothness of f and verify the
desired conservation laws. O

Theorem 4.3. Let the initial datum fo > 0 be given with

// (14 |z — aw* + In(1 + |z|) + | In fo]) fodvdz < +o0,
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where a > 0. Then there exists a solution 0 < f(t,x,v) € C(R*; L}(R® x R?)) to the Cauchy problem (1.1)
such that for any T >0

sup // (14 |z — w(t)v]* + In(1 + |z|) + |In f(t, 2, v)|) f(t, 2, v)dvdz < Cr.
t€[0,T]

Furthermore, (4.1), (4.2) hold and

//f(t)lnf(t)da:dv+35||f0||1t+200// |V1,\/E|2dxdfuds§/ foln fodzdv.

Proof. Similar to those regulation in [11,12], we regularize the initial datum fy as follows:

1 e—\ac—ow\

fo' = 15, * (X|z|2+v2<n2fo) + ZW’

where r > 3 and 7 is the mollifier. We can choose §,, such that
//(1 +In(1 +|2]) + |z — av/H)|fF — foldvdz — 0, n — 0 (4.12)
and

//fgl\lnfgﬂdxdv <C. (4.13)

Furthermore, by classical arguments we can get

lim //f(? lnf(?dacdv:/ foln fodzdv.
n—oo

Note that Hyqr(f3), Her(f§') < 00 and (1 + |2|7) fi > -L for |2 — aw| < 1, so by Theorem 3.4 there is
an unique global solution f"(t,z,v) € C([0,T]; L*(R® x R?)) to (4.5) (4.7). Now, we try to show that for
any T > 0, there exists a positive constant C'r such that

//(1 (1 + [2]) + & — w(t)ol® + |In fA ()] f7(¢)dado < Cp, ¥t € [0,T]. (4.14)
Firstly, by Lemma 2.3 and (4.12), we have
//(1 + |z — w(t)v]?) f(t, z,v)dvde < Cp,  YO<t<T. (4.15)
Secondly, we show
//m(l + |z (¢t z,v)dedy < Cp, YOSt <T. (4.16)

From (4.5)—(4.7) we have

%//ln(l + |z f" (¢, x, v)dedv = //(1 + \x|)_1%f"dmdv
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-1 //(1 + |z (2| + |z — w(t)v]) frdzdy

w07 (IOl + [[ 1o = wtlsasar).

then by (4.12) we get (4.16).
Lastly, we prove the uniform boundedness of entropy of f™. A classical computation gives

%//fn(t) In f™(t)dwdv + 35| " (t) |1 +20/ Vo /T ()2 ddo
- 7//(M[fn] — FY(In M) — In f)dado < 0,
which implies

//f"(t) In f*(t)dzdv < //f(? In fidzdv < C.

Following from (4.15) and (4.16), we can get the uniformly boundedness of [[ f™(¢)In~ f"(¢)dazdv for 0 <
t < T, since

/ () In™ f(t)dxdv

= // () 1In dzdv

1
fr(t)
fr(t)<e—8 In(14|z|)—|z—w(t)v|2

+ // () In f%(t)dxdv

e—8 ln(1+\z\)7\sz(t)v\2<fn(t)<1

// V() dzdo

Fr(t)<e—8 MWtz —lz—w(t)v|?

+ // (8In(1 + |z|) + |z — w(t)v|?) f*(t)dxdv

e—8In(1+|z|)—|z—w(t)v|2 <fr(t)<1

e~ 2|1: w(t)v b
// L dxdv+//(81n(1+\xl)+|x—w(t)v| )f" (t)dzdo. (4.17)

IA

Thus, there exists a positive constant Cp such that

/ £ In f7(8)|dado
S/ fn(t) In fn(t)da:dv+2/ f"(t) In~ f"(t)dxdv <Cr (418)

for any ¢t € [0,T]. As a consequence, using (4.15)-(4.18) we obtain (4.14).
For proving that the sequence M[f"] is weakly compact in L([0,7] x R3 x R3), we show

//(1 FIn(1+ [z]) + o — w(t)o]? + |In M) M]f)(H)dedv < Cp, ¥t € [0,T]. (4.19)
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By (4.6), (4.7) and (4.14) we can easily get

//(1 Fin(1+ o)) + 2 — w(t)o2) M () dwdy
= //(1 +1In(1 + |2]) + |z — w(t)v?) f(t)dzdv < Cr (4.20)

for any t € [0,T]. And from Gibbs’s lemma we have

[ 1wty @ dade
- / In ML (6) ML (E)dwdv + 2 // I~ MLF™)(6) MF™)(¢)dadv
< / £ In () dado + 2 // I~ MF™)(6) M) (t) dzdo
<Crv2 [ W MIPIOMI) O dade

for any t € [0, T]. Following from (4.20) and the proof of (4.17), we can obtain
//m— MU ML) (8)dado < Cp, ¥t € [0,T].

Thus, we have the uniform boundedness of [ |In M[f"](¢)|M[f"](t)dzdv on [0, T]. Combining it with (4.20)
we obtain (4.19).

Using (4.14), (4.19) and Lemma 4.1, we can get that the sequence f™ is compact in L*([0,T] x R3 x R3).
According to the weak compactness of the sequence M[f"] in L*([0,T] x R x R?) and (2.11) in Lemma 2.3,
we can totally repeat the remaining steps in the above theorem and deduce the desired results. O
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