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In this article, we define and study property T for continuous homomorphisms 
between topological groups. If G is a locally compact group, we show that λG :
G → U(L2(G)) has property T if and only if either G is compact or G is non-
amenable. Moreover, the abelianization Gab := G/[G,G] is compact if and only 
if every continuous homomorphism from G to any abelian topological group has 
property T . Moreover, we show that G has property (T, FD) if and only if any 
continuous homomorphism from G to any compact group has property T . In the 
case when G is almost connected, the above is also equivalent to the canonical 
map from G to its Bohr compactification being a quotient map. We also give some 
new equivalent forms of the strong property T of a locally compact group. As a 
consequence, if G is a second countable and has strong property T and H is a 
closed subgroup of G, there exist at most one G-invariant mean on G/H.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and notations

Motivated by the notion of strong property T of a topological group G (namely, there exists a Kazhdan pair 
for G with the compact set being finite), we consider in this article property T of a continuous homomorphism 
ϕ : H → G between topological groups. This notion is slight stronger than the relative property T of 
(G, ϕ(H)), and coincides with the strong property T of G when H is the group G equipped with the 
discrete topology. We show in Proposition 2.4 that if G is a locally compact group and λG is its left regular 
representation, then λG : G → U(L2(G)) has property T (when U(L2(G)) is equipped with the SOT) if and 
only if either G is compact or G is non-amenable. In the case when H and G are locally compact and ϕ(H)
is dense in G, we give in Theorem 2.9 several equivalent forms for the property T of ϕ, which are analogues 
of the property T of a locally compact group. Moreover, we will consider three special cases.

We first study the situation when the range group is abelian. In this case, we have the following result 
(see Theorem 3.2).
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Theorem 1.1. Let G be a locally compact group.

(a) The abelianization Gab := G/[G,G] is compact if and only if the canonical homomorphism βG :
G → Gab has property T .

(b) If G is second countable and connected, the above are also equivalent to G having property (T�p) (in the 
sense of [3]) for some (and equivalently, for all) p ∈ (1, ∞) \ {2}.

Secondly, we consider the case when the range group is compact, and obtain the following result (see 
Theorem 3.6 and Corollary 3.7).

Theorem 1.2. Let G be a locally compact group and (bG, σG) be its Bohr compactification.

(a) The following statements are equivalent.
1) G has property (T, FD) (in the sense of [10]).
2) σG : G → bG has property T .
3) Any continuous homomorphism from G to any compact group has property T .

(b) If G is almost connected, the above are also equivalent to the following two statements.
4) σG is a quotient map from G onto bG.
5) For any continuous homomorphism ϕ from G to any compact group, one has ϕ(H) being compact 

and ϕ : H → ϕ(H) being a quotient map.
(c) Suppose that G is almost connected. Then G has property T if and only if G has property (T, FD) and 

kerσG has property T .

Finally, we consider the case when the domain group is discrete. This situation is closely relation to the 
strong property T of G, and we obtain the following equivalent formulations for strong property T (see 
Corollary 3.12).

Theorem 1.3. The following statement are equivalent for a locally compact group G.

1) G has strong property T (in the sense of [13]).
2) G has property (T, FD), and for any continuous action α of G on a von Neumann algebra N without 

α-invariant normal state, there is no α-invariant state.
3) G has property (T, FD) and for any ε > 0, one can find a finite subset Q ⊆ G and δ > 0 such that if 

α is a continuous action of G on a von Neumann algebra N and ω is a normal state on N satisfying 
‖ω ◦ αt − ω‖ < δ for any t ∈ Q, there exists an α-invariant normal state τ with ‖ω − τ‖ < ε.

Note that (Q, δ) in the above can be viewed as a kind of Kazhdan pair for actions (on von Neumann 
algebras). This theorem produces the following corollary (see Corollary 3.13).

Corollary 1.4. Let G be a σ-compact locally compact group with strong property T , and H ⊆ G be a closed 
subgroup. There exists at most one G-invariant mean on G/H.

Let us fix some notations. Throughout this article, G and H are Hausdorff topological groups and 
ϕ : H → G is a continuous group homomorphism. We set N0 := N ∪ {0}. For a Hilbert space H, we denote 
by S1(H) and U(H) the set of unit vectors in H and the group of unitary operators on H respectively. 
We let Ĝ (respectively, Rep(G)) be the collection of unitary equivalence classes of continuous irreducible 
(respectively, continuous) unitary representations of G and use the notation ĜFD to denote the set of all 
finite dimensional irreducible representations. We equip subsets of Rep(G) with the Fell topology. For any 
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(π, H), (μ, K) ∈ Rep(G), we denote μ ⊆ π if there exists an isometry Ψ : K → H such that Ψ ◦ μt = πt ◦ Ψ
for any t ∈ G. On the other hand, we denote μ ≺ π if for any ξ ∈ K, compact subset K ⊆ G and ε > 0, there 
exists a finite subset F ⊆ H such that supt∈K

∣∣〈μt(ξ), ξ〉 −
∑

η∈F 〈πt(η), η〉
∣∣ < ε. Moreover, we write μ ∼ π if 

μ ≺ π and π ≺ μ. Furthermore, we put suppπ := {μ ∈ Ĝ : μ ≺ π}. We recall that if (π, H) ∈ Rep(G), then 
a net {ξi}i∈I in S1(H) is an almost π-invariant unit vector if supt∈K ‖πt(ξi) − ξi‖ → 0, for any compact 
subset K ⊆ G.

2. Property T of continuous group homomorphism

Definition 2.1. A continuous group homomorphism ϕ : H → G (or simply ϕ, when G and H are understood) 
is said to have property T if there exist a compact subset C ⊆ H and κ > 0 such that for any (π, H) ∈ Rep(G), 
whenever

Vπ(ϕ(C), κ) := {ξ ∈ S1(H) : ‖πϕ(t)ξ − ξ‖ < κ,∀t ∈ C} �= ∅,

one has Hπ◦ϕ := {ξ ∈ H : πϕ(s)ξ = ξ, ∀s ∈ H} �= (0). In this case, (C, κ) is called a Kazhdan pair for ϕ.

The following are some strict-forward facts.

Lemma 2.2. Let F , G and H be topological groups and let ϕ : H → G and ψ : G → F be continuous 
homomorphism.

(a) If ϕ has property T , then so does ψ ◦ ϕ.
(b) If ϕ(H) = G and ψ ◦ ϕ has property T , then so does ψ.
(c) If H is locally compact, ϕ : H → G is a quotient map and G has property T , then ϕ has property T .
(d) If H has property T , then ϕ has property T .
(e) If ϕ has property T , then (G, ϕ(H)) has relative property T .
(f) ϕ have property T if and only if for any (π, H) ∈ Rep(G), the existence of an almost π ◦ ϕ-invariant 

unit vector in H will imply Hπ◦ϕ �= {0}; in other words, 1H ≺ π ◦ ϕ will imply 1H ⊆ π ◦ ϕ.
(g) If H is discrete, ϕ(H) = G and ϕ have property T , then G have strong property T (in the sense of [13, 

Definition 5.2]). Furthermore, if H = Gd (i.e. H is the group G equipped with the discrete topology) 
and ϕ is the identity map, then ϕ have property T if and only if G have strong property T .

We recall that (φ, H) ∈ Rep(H) is said to have a spectral gap if there is no almost φ-invariant unit vector 
in (Hφ)⊥, where Hφ is the subspace of all φ-invariant vectors. Notice that Lemma 2.2(f) is weaker than 
the property that π ◦ ϕ has a spectral gap for every π ∈ Rep(G), since Hπ◦ϕ needs not be a π-invariant 
subspace of H (see Theorem 2.9 below).

The following are some other easy facts, which are not needed in this article.

• If G and H are locally compact with H being amenable, ϕ(H) = G and ϕ has property T , then G is 
compact.

• If G is a locally compact amenable group and ϕ has property T , then m(ϕ(H)) < ∞, where m is 
the Haar measure on G. In fact, since 1H ≺ λG ◦ ϕ (where λG is the left regular representation), the 
T -property of ϕ produces a unit vector ξ ∈ L2(G) such that for any t ∈ H, one has ξ(ϕ(t)−1s) = ξ(s)
for almost all s ∈ G, which gives the conclusion.

From now on, ϕ̂ : Rep(G) → Rep(H) is the correspondence given by π �→ π ◦ϕ. For any set X ⊆ Rep(G), 
we put

Xϕ := {π ∈ X : 1H � π ◦ ϕ}.
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Lemma 2.3.

(a) ϕ has property T if and only if 1H is an isolated point in ϕ̂(Xϕ) ∪ {1H} for any subset X ⊆ Rep(G).
(b) Suppose that H is locally compact and every object in Rep(G) is a direct sum of elements in Ĝ. Then 

ϕ has property T if and only if 1H is an isolated point in ϕ̂(Ĝϕ) ∪ {1H}.

Proof. (a) ⇒). Suppose on the contrary that 1H is not isolated in ϕ̂(Xϕ) ∪{1H} for a subset X ⊆ Rep(G). 
Let (π, H) :=

⊕
(μ,Hμ)∈Xϕ(μ, Hμ). Then there is a net {ξi}i∈I in S1(H) such that sups∈K ‖πϕ(s)ξi−ξi‖ → 0

for any compact subset K ⊆ H. Hence Lemma 2.2(f) produces an element η ∈ S1(H) satisfying πϕ(s)η = η

for any s ∈ H. This gives the contradiction that 1H ⊆ μ ◦ ϕ for some μ ∈ Xϕ.
⇐). Suppose that (π, H) ∈ Rep(G) satisfying 1H � π ◦ ϕ. By the hypothesis, 1H is an isolated point in 
{1H , π ◦ϕ}, which means that there does not exist an almost π ◦ϕ-invariant unit vector in H. Consequently, 
ϕ has property T because of Lemma 2.2(f).

(b) By part (a), we only need to show the sufficiency. Suppose that (π, H) ∈ Rep(G) such that Hπ◦ϕ = (0). 
Let S(π) := {μ ∈ Ĝ : μ ⊆ π}. By the hypothesis, π ∼

⊕
μ∈S(π) μ. Moreover, as S(π) ⊆ Ĝϕ, we know 

that 1H /∈ ϕ̂(S(π)). These imply that 1H ⊀
⊕

μ∈S(π) μ ◦ ϕ ∼ π ◦ ϕ (note that H is locally compact), and 
Lemma 2.2(f) tells us that ϕ has property T . �

Part (b) above applies to the case when either G is a compact group or G = U(�2) equipped with the 
SOT (notice that we do not assume that ϕ has dense range).

Let us recall some well-known facts on U(�2) (see e.g. [11]). As U(�2) (equipped with SOT) is separable 
and metrizable, it is second countable. Any representation of U(�2) is a direct sum of separable representa-
tions and hence is a direct sum of irreducible representations. Any irreducible representation of U(�2) is a 
subrepresentation of some ρ⊗k ⊗ ρ̄⊗l, where k, l ∈ N0 and ρ : U(�2) → B(�2) is the inclusion.

On the other hand, if λH is the left regular representation of H and (π, H) ∈ Rep(H), then by considering 
u ∈ U(L2(H; H)) given by uξ(t) := π(t)ξ(t), one can show that λH ⊗ π is unitary equivalent to λH ⊗ idH. 
This fact is called the Fell absorption principle in some literature (e.g. [4]). As a consequence,⊕

k,l∈N0
k+l≥1

λ⊗k
H ⊗ λ̄⊗l

H
∼= λα

H (2.1)

for some non-zero cardinal α (note that λ̄H
∼= λH).

Proposition 2.4. Let H be a second countable locally compact group. The following statements are equivalence.

L1) λH : H → U(L2(G)) has property T .
L2) λH ⊗ λ̄H : H → U(L2(G) ⊗ L̄2(G)) has property T .
L3) Either H is compact or H is non-amenable.

Proof. L1) ⇒ L2). Consider the homomorphism Ψ : U(L2(G)) → U(L2(G) ⊗L̄2(G)) given by Ψ(u) = u ⊗ū∗. 
It is not hard to check that Ψ is SOT-continuous. As λG ⊗ λ̄G = Ψ ◦ λG, the implication follows from 
Lemma 2.2(a).

L2) ⇒ L3). Suppose that H is amenable. Then 1H ≺ λH ⊗ λ̄H = ρ ◦ (λH ⊗ λ̄H) by [1, Theorem 2.2]
(where ρ is the canonical injection as above). Now, Lemma 2.2(d) and the absorption principle implies that 
1H ⊆ λH ⊗ id and hence 1H ⊆ λH which means that H is compact.

L3) ⇒ L1). If H is compact, then Lemma 2.2(d) implies that λH has property T . On the other hand, 
suppose that on the contrary that H is non-amenable but λH does not have property T . By Lemma 2.2(f), 
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there exists (π, H) ∈ Rep(U(L2(H))) satisfying 1H ≺ π ◦ λH and 1H � π ◦ λH . Let π =
⊕

i∈I μi with 

μi ∈ ̂U(L2(H)) (i ∈ I). For every i ∈ I, since μi ◦ λH �= 1H , one can find ki, li ∈ N0 with ki + li ≥ 1 such 

that μi ⊆ ρ⊗ki ⊗ ρ̄⊗li . Thus, one can find a cardinal β with π ⊆
(⊕

k,l∈N0
k+l≥1

ρ⊗k ⊗ ρ̄⊗l
)β

. Now, (2.1) tells us 

that 1H ≺ λαβ
H and hence 1H ≺ λH , which is a contradiction. �

Proposition 2.5. Let (ψ, H) ∈ Rep(H).

(a) ψ : H → U(Hψ) ⊕ U((Hψ)⊥) has property T if and only if the induced homomorphism from φ : H →
U((Hψ)⊥) has property T . In this case, ψ has a spectral gap.

(b) ϕ : H → G has property T if and only if for any (π, H) ∈ Rep(G) with Hπ◦ϕ = (0), the homomorphism 
π ◦ ϕ : H → U(H) has property T .

(c) Suppose that ψ : H → U(H) has property T . Then ψ is an amenable representation (in the sense of [1]) 
if and only if ψ contains a finite dimensional subrepresentation.

Proof. (a) Let H1 := (Hψ)⊥. Consider P : U(Hψ) ⊕ U(H1) → U(H1) to be the projection onto the second 
coordinate and J : U(H1) → U(Hψ) ⊕ U(H1) to be the injection that sends u ∈ U(H1) to u ⊕ 1. Since 
φ = P ◦ ψ and ψ = J ◦ φ, Lemma 2.2(a) gives the first statement. The second statement follows from the 
first one and Lemma 2.2(f).

(b) Suppose that ϕ does not have property T . Then Lemma 2.2(f) produces a representation (π, H) ∈ Rep(G)
with 1H ≺ π◦ϕ and Hπ◦ϕ = (0). As π◦ϕ does not have a spectral gap, part (a) tells us that π◦ϕ : H → U(H)
does not have property T . The converse follows from Lemma 2.2(a).

(c) Clearly, ψ is amenable if it contains a finite dimensional subrepresentation. Conversely, suppose that 
1H ≺ ψ⊗ ψ̄. If π : U(H) → B(H⊗H̄) is the unitary representation given by π(u) := u ⊗ ū∗, then 1H ≺ π ◦ψ
which implies that 1H ⊆ ψ ⊗ ψ̄ (by Lemma 2.2(f)) and ψ contains a finite dimensional subrepresentation 
(see e.g. [2, Proposition A.1.12]). �

Note, however, that even one dimensional representation with dense range need not have property T (see 
part (b) of the following).

Example 2.6. For any θ ∈ R+, we define (φθ, C) ∈ Rep(Z) by φθ(k) := ekθπi (k ∈ Z). Clearly, φ̂θ

(
Û(1)

)
⊆ Ẑ. 

In fact, φ̂θ

(
Û(1)

)
can be identified with {enθπi : n ∈ Z} ⊆ U(1).

(a) If θ is rational, then φ̂θ

(
Û(1)

)
is a finite set and hence φθ : Z → U(1) has property T because of 

Lemma 2.3(b) (one may also obtain this fact by a more direct argument).

(b) If θ is irrational, then φ̂θ

(
Û(1)

)
is dense in U(1) and φθ : Z → U(1) does not have property T because 

of Lemma 2.3(b).

(c) Suppose that θ is irrational. Consider (ψ, C2) ∈ Rep(Z) defined by

ψ(k) =
(

1 0
0 ekθπi

)
(k ∈ Z).

Part (b) and Proposition 2.5(a) tell us that ψ : Z → U(1) ⊕ U(1) does not have property T .

In the remainder of this section, we mainly concern with the more manageable situation when ϕ(H) = G. 
Let us start with the following result, which follows from the argument of [2, Proposition 1.1.9] (observe 
that Hπ◦ϕ = Hπ for any (π, H) ∈ Rep(G), when ϕ(H) = G).
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Proposition 2.7. Suppose that ϕ(H) = G. If (C, κ) is a Kazhdan pair for ϕ, then for any α > 0, (π, H) ∈
Rep(G) and ξ ∈ Vπ(ϕ(C), ακ), one has ‖ξ − Pπξ‖ ≤ α, where Pπ : H → Hπ is the orthogonal projection. 
Consequently, if ϕ has property T , then ‖ξi − Pπ(ξi)‖ → 0 for any (π, H) ∈ Rep(G) and any almost 
π ◦ ϕ-invariant unit vector {ξi}i∈I in H.

Notice also that if ϕ(H) = G, then ϕ̂−1(1H) = {1G} and ϕ̂ restricts to a continuous injection from Ĝ
to Ĥ. Thus, Ĝϕ = Ĝ \ {1G}.

Lemma 2.8. Suppose that G is locally compact and ϕ(H) = G.

(a) For any countable subset X ⊆ ĜFD, the set ϕ̂(X) is open in ϕ̂(Ĝ) if and only if for any π ∈ Rep(G)
with ϕ̂(X) ∩ ϕ̂(suppπ) �= ∅, there exists μ ∈ X with μ ⊆ π.

(b) Suppose that H is locally compact as well. If μ ∈ ĜFD, then ϕ̂(μ) is an isolated point in ϕ̂(Ĝ) if and 
only if for any π ∈ Rep(G) with ϕ̂(μ) ≺ ϕ̂(π), one has μ ⊆ π.

Proof. (a) ⇒). Since ϕ̂(X) is open in ϕ̂(Ĝ), the assumption on π implies that ϕ̂(X) ∩ ϕ̂(suppπ) �= ∅. As 
ϕ̂ is a continuous injection, we know that X is open in Ĝ and X ∩ suppπ �= ∅. Now, we can apply [15, 
Theorem 1.8] to obtain μ ∈ X satisfying μ ⊆ π.
⇐). Suppose on the contrary that ϕ̂(X) is not open in ϕ̂(Ĝ). Then ϕ̂(X) ∩ϕ̂(Ĝ \X) �= ∅. Let π :=

⊕
ν∈Ĝ\X ν. 

As Ĝ \X ⊆ suppπ, we know that ϕ̂(X) ∩ ϕ̂(suppπ) �= ∅ and the hypothesis produces μ ∈ X with μ ⊆ π, 
which is a contradiction.

(b) By [2, Proposition F.2.7], we know that ϕ̂(μ) ≺ ϕ̂(π) if and only if ϕ̂(μ) ≺
⊕

ν∈supp π ϕ̂(ν), which is the 

same as ϕ̂(μ) ∈ ϕ̂(suppπ) (as H is locally compact). One may apply part (a) to obtain the conclusion. �
Theorem 2.9. Let G and H be locally compact groups. If ϕ : H → G is a continuous group homomorphism 
with ϕ(H) = G, the following statements are equivalent.

(S1) ϕ has property T .
(S2) 1H is an isolated point in ϕ̂(Ĝ).
(S3) ϕ̂(μ) is an isolated point in ϕ̂(Ĝ), for any μ ∈ ĜFD.
(S4) For any subset X ⊆ ĜFD and π ∈ Rep(G) with ϕ̂(X) ∩ ϕ̂(suppπ) �= ∅, there exists μ ∈ X satisfying 

μ ⊆ π.
(S5) There exists μ ∈ ĜFD such that for any π ∈ Rep(G) with ϕ̂(μ) ≺ ϕ̂(π), one has μ ⊆ π.
(S6) π ◦ ϕ has a spectral gap for any (π, H) ∈ Rep(G).

Proof. (S1) ⇒ (S2). As Ĝϕ = Ĝ \ {1G}, the implication follows directly from Lemma 2.3(a).

(S2) ⇒ (S3). Suppose that π ∈ Rep(G) with ϕ̂(μ) ∈ ϕ̂(suppπ). Then ϕ̂(μ) ≺
⊕

ν∈supp π ϕ̂(ν). By [2, 
Proposition A.1.12], we have 1H ⊆ ϕ̂(μ) ⊗ ϕ̂(μ) ≺

⊕
ν∈supp π ϕ̂(ν ⊗ μ). Thus, Lemma 2.8(b) and Statement 

(S2) gives 1G ⊆
⊕

ν∈supp π ν ⊗ μ ∼ π ⊗ μ. Therefore, [2, Proposition A.1.12] tells us that μ ⊆ π. Now, 
Lemma 2.8(b) implies that μ is an isolated point in ϕ̂(Ĝ).

(S3) ⇒ (S1). By Statement (S3), 1H is an isolated point in ϕ̂(Ĝ). Since ϕ̂ is a continuous injection, 1G is an 
isolated point in Ĝ and G has property T . Let (π, H) ∈ Rep(G) such that H contains an almost π◦ϕ-invariant 
unit vector. Thus, [2, Proposition F.2.7] tells us that 1H ≺

⊕
σ∈supp π σ ◦ϕ, or equivalently, 1H ∈ ϕ̂(suppπ). 

As 1H is an isolated point of ϕ̂(Ĝ), we see that 1H ∈ ϕ̂(suppπ) and 1G ∈ suppπ. Consequently, 1G ⊆ π

(because G has property T ) and we have 1H ⊆ π ◦ ϕ. Now, Lemma 2.2(f) tells us that ϕ has property T .
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(S3) ⇒ (S4). Since ϕ̂(X) ∩ ϕ̂(suppπ) �= ∅, there exists a non-empty countable subset Y ⊆ X with ϕ̂(Y ) ⊆
ϕ̂(suppπ). Moreover, Statement (S3) implies that ϕ̂(Y ) is open in ϕ̂(Ĝ) and we may apply Lemma 2.8(a) 
to obtain Statement (S4).

(S4) ⇒ (S5). This follows from Lemma 2.8.

(S5) ⇒ (S2). This implication follows from the argument of (iv) ⇒ (ii) of [2, Theorem 1.2.5]. More precisely, 
suppose on the contrary that 1H is not isolated in ϕ̂(Ĝ). If μ ⊗ μ̄ = μ1 ⊕ · · · ⊕ μn with μk ∈ Ĝ, there 
exists a net {σi}i∈I in Ĝ \ {μ1, . . . , μn} with μ ◦ ϕ ≺

⊕
i∈Iσi ◦ ϕ ⊗ μ ◦ ϕ. Statement (S5) tells us that 

μ ⊗ μ̄ ⊆
⊕

i∈Iσi ⊗ μ ⊗ μ̄. Thus, 1G ⊆ σi0 ⊗ μ ⊗ μ̄ for some i0 ∈ I, and [2, Proposition A.1.12] produces the 
contradiction that σi0 ⊆ μ ⊗ μ̄.

(S1) ⇔ (S6). Notice that Hπ◦ϕ = Hπ and the equivalent follows from Lemma 2.2(f). �
3. Some specials cases

Let G and H be locally compact groups and ϕ : H → G be a continuous homomorphism. In the following, 
we will consider three special situations.

Special case 1: G is an abelian group

Our first special case is the situation when G is abelian. Let us start with the following result, which 
shows in particular that if G is abelian, then one may replace G by ϕ(H) when considering the T property 
of a morphism.

Proposition 3.1. Let G and H be locally compact groups, and Z(G) be the center of G.

(a) If ϕ : H → G has property T and ϕ(H) ⊆ Z(G), then ϕ : H → N := ϕ(H) has property T (and hence 
N is compact).

(b) If N is a closed subgroup of Z(G), the inclusion map j : N → G has property T if and only if N is 
compact.

Proof. (a) Suppose on the contrary that ϕ : H → N does not have property T . By Theorem 2.9, we have 

1H ∈ ϕ̂(N̂) \ {1H}. Thus, for any compact subset C ⊆ H and ε > 0, there exists νC,ε ∈ N̂ \ {1N} such that

|1 − νC,ε(ϕ(t))| < ε (t ∈ C). (3.1)

On the other hand, for any ν ∈ N̂ \ {1N} and t ∈ H, we have

(IndG
Nν)ϕ(t)ξ = ν(ϕ(t))ξ (ξ ∈ L2(G/N)),

which shows that 1H � π for any π ∈ X :=
{
IndG

Nν : ν ∈ N̂ \ {1N}
}
. By choosing any unit vector 

ξ ∈ L2(G/N), we know from (3.1) that 1H ∈ ϕ̂(X), which contradicts Lemma 2.3(a).

(b) This follows from part (a) and Lemma 2.2(d). �
In the following, we will give an alternative description of the compactness of Hab := H/[H,H] through 

the T -property of the canonical map βH : H → Hab (which is a generalization of [10, Corollary 2.7]). Let 
us first set some more notation.

In the spirit of [10], we say that a topological group H has property (T, 1) if 1H is an isolated point in 
the subset Ĥ1 of all one dimensional irreducible representations.
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Theorem 3.2. Let H be a locally compact group.

(a) The following statements are equivalent.
(O1) Hab is compact.
(O2) H has property (T, 1).
(O3) βH has property T .
(O4) Continuous homomorphisms from H to abelian topological groups have property T .

(b) If H has property (T, 1), then H is unimodular.
(c) If H is connected and second countable, then (O1)–(O4) are also equivalent to the following.

(O5) H having property (T�p) (in the sense of [3]) for one (and equivalently, for all) p ∈ (1, ∞) \ {2}.

Proof. (a) (O1) ⇔ (O2). Notice that βH : H → Hab induces a homeomorphism β̂H : Ĥab → Ĥ1. Thus, H
have property (T, 1) if and only if Hab has property T .

(O2) ⇔ (O3). This follows from Theorem 2.9.

(O3) ⇔ (O4). This follows from Lemma 2.2(a).

(b) By part (a), the image of the modular function is a compact subgroup of R+ \ {0} and hence is trivial.

(c) This follows directly from [3, Corollary 3]. �
Our next result follows from Theorem 3.2, [2, Theorem 1.7.1] and [2, Proposition 1.7.6].

Corollary 3.3.

(a) Suppose that H is either σ-compact or discrete. Then H has property T if and only if H has property 
(T, 1) and the topological subgroup [H, H] has property T .

(b) If H has property (T, 1) and ϕ : H → G has dense range, then G has property (T, 1).

Example 3.4. (a) As Fab
2 = Z2, we know that F2 does not have property (T, 1).

(b) As in [2, Example 1.3.7], if n ≥ 1, the fundamental group of an orientable closed surface of genus greater 
than n does not have property (T, 1).

(b) Let H := SL(2, Z). Since Hab = Z12, we know that H has property (T, 1). On the other hand, [H, H] ∼= F2
does not have property (T, 1) (see part (a)). These tells us that the corresponding result of [2, Theorem 1.7.1]
does not holds for property (T, 1).

Special case 2: G is a compact group

Secondly, we consider the case when G is compact. We recall from [10] that a topological group H has 
property (T, FD) if 1H is an isolated point in ĤFD. Clearly, if H has property (T, FD), then it has property 
(T, 1).

We denote by bH the Bohr compactification of H and by σH : H → bH the canonical map. Recall that 
kerσH = {t ∈ H : μ(t) = 1, for any μ ∈ ĤFD}. Moreover, any continuous group homomorphism ϕ : H → G

induces a continuous group homomorphism bϕ : bH → bG satisfying bϕ ◦ σH = σG ◦ ϕ.

Lemma 3.5.

(a) If σH has property T and ϕ : H → G is a continuous homomorphism with dense range, then σG has 
property T .

(b) If G is a Moore group, then it has property (T, FD) if and only if it is compact.
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Proof. (a) This part follows from Lemma 2.2(a)&(b) as well as the fact that bϕ ◦ σH = σG ◦ ϕ.

(c) Since G is a Moore group, ĜFD = Ĝ. Thus, if G has property (T, FD), then it has property T and hence 
is compact (as Moore groups are amenable). �
Theorem 3.6. Let H be a locally compact group and consider the following statements.

(F1) σH is a quotient map from H onto bH.
(F2) For any continuous homomorphism ϕ from H to any compact group G, the subgroup ϕ(H) is compact 

and ϕ : H → ϕ(H) is a quotient map.
(F3) σH has property T .
(F4) Any continuous homomorphism from H to any compact group G has property T .
(F5) H has property (T, FD).

(a) (F1) ⇔ (F2) ⇒ (F3) ⇔ (F4) ⇔ (F5).
(b) If, in addition, H is almost connected, then (F5) ⇒ (F1).

Proof. (a) (F1) ⇔ (F2). Suppose that Statement (F1) holds and set G0 := ϕ(H). Then bϕ : bH → bG0 is 
surjective (because ϕ(H) is dense in G0) and hence is a quotient map. Since σG0 ◦ ϕ = bϕ ◦ σH and σG0 is 
a homeomorphism, we know that ϕ : H → G0 is a quotient map. The converse is clear.

(F1) ⇒ (F3). This follows from Lemma 2.2(c).

(F3) ⇔ (F4). This follows from Lemma 2.2(a).

(F3) ⇔ (F5). As σ̂H(b̂H) = ĤFD, the equivalence follows from Theorem 2.9.

(b) Let F := H/ kerσH and q : H → F be the quotient map. Notice that bq is surjective because bq(bH) is 
compact and contains a dense subset of bF . If σ̌H : F → bH is the canonical injection, then bq ◦ σ̌H = σF . 
Furthermore, if ψ : bF → bH is the continuous homomorphism with ψ ◦ σF = σ̌H , then ψ ◦ bq ◦ σ̌H = σ̌H , 
which shows that bq is injective (since σ̌H has dense range).

On the other hand, suppose s ∈ H satisfying q(s) ∈ kerσF . For any (π, H) ∈ ĤFD, there exists (π̃, H) ∈
F̂FD with π = π̃ ◦ q, which implies that π(s) = π̃(q(s)) = 1 (as π̃ is finite dimensional). Hence, s ∈ kerσH

and kerσF is trivial. This means F is an almost connected maximally almost periodic group and hence is a 
Moore group (see e.g. [12, p. 698]). By part (a) and Lemma 3.5(a), we see that F has property (T, FD) and 
hence is compact by Lemma 3.5(b). Consequently, σF is a homeomorphism, and Statement (F1) follows 
from bq ◦ σH = σF ◦ q. �

The two results above show, in particular, that if there exist a non-compact Moore group G and a 
continuous homomorphism from H to G with dense range, then H cannot have property (T, FD). Moreover, 
the following corollary follows from Theorem 3.6 and [2, Theorem 1.7.1].

Corollary 3.7. Let H be an almost connected locally compact group. Then H has property T if and only if 
H has property (T, FD) and kerσH has property T .

The argument of Theorem 3.6(b) also implies that if H is an almost connected maximally almost periodic 
group with property (T, FD), then it is compact. Part (b) of the following tells us that this is not true without 
the almost connectedness assumption.

Example 3.8. (a) Let A be an abelian discrete group and F is a finite group acting on A by group auto-
morphisms. Then the semi-direct product H := A · F is a Moore group. Thus, by Lemma 3.5(b), H has 
property (T, FD) if and only if A is finite.
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(b) It is well-known that SL3(Z) has property T and is maximally almost periodic. Consequently, bSL3(Z)
is not a finite group. Thus, the almost connectedness assumption in Theorem 3.6(b) is essential.

(c) Let H := SL(2, Z), G := [H, H] and F := [G, G]. As G ∼= F2, we have G/F ∼= Z2. Moreover, since 
H/G ∼= Z12, we see that H/F is an infinite virtually abelian group. Therefore, Lemma 3.5 and Theo-
rem 3.6(a) tells us that H does not have property (T, FD) (see the discussion following Theorem 3.6).

Special case 3: H is a discrete group

Finally, we consider the case when H is discrete. Let us first study the situation when H = Gd, i.e. 
when G has strong property T . In the following, F(G) is the set of non-empty finite subsets of G. Moreover, 
C∗(G) is the (full) group C∗-algebra of G with uG : G → M(C∗(G)) being the canonical map. We consider 
ϕ̃ : C∗(H) → M(C∗(G)) to be the ∗-homomorphism induced by ϕ, and π̃ : C∗(H) → B(H) to be the 
∗-representation induced by π ∈ Rep(G). We denote by pG ∈ C∗(G)∗∗ the support projection of 1̃G.

Lemma 3.9. Concerning the following statements, one has (sT1) ⇒ (sT2) ⇒ (sT3) and (sT1) ⇒ (sT4) ⇒
(sT5) ⇒ (sT3).

(sT1) G has strong property T .
(sT2) For any continuous action α of G on a von Neumann algebra N , any α-invariant state is a 

weak-∗-limit of a net of α-invariant normal states.
(sT3) For any continuous action α of G on a von Neumann algebra N without any α-invariant normal 

state, there is no α-invariant state.
(sT4) For any ε > 0, one can find (Q, δ) ∈ F(G) × R+ such that if α is a continuous action of G on a 

von Neumann algebra N and ω is a normal state on N which is (Q, δ)-invariant (in the sense that 
‖ω ◦ αt − ω‖ < δ for any t ∈ Q), there is an α-invariant normal state τ satisfying ‖ω − τ‖ < ε.

(sT5) There exists (Q, δ) ∈ F(G) ×R+ such that for any continuous action α of G on a von Neumann alge-
bra N , the existence of a (Q, δ)-invariant normal state on N will imply the existence of a α-invariant 
normal state.

Proof. (sT1) ⇒ (sT2). Let (N, H, J, P) be the standard form of N and uαt
∈ U(H) be the unitary imple-

mentation of the automorphism αt (t ∈ G) as in [7, Theorem 3.2]. Then uα is a continuous representation 
of G. As G has strong property T , we know from Theorem 2.9 that the representation uα of Gd has a spectral 
gap. Thus, α has a spectral gap in the sense of [9], and [9, Theorem 2.2] gives the required conclusion.

(sT2) ⇒ (sT3). This implication is obvious.

(sT1) ⇒ (sT4). Let (Q, δ0) ∈ F(G) × R+ be a Kazhdan pair for G and set δ := ε2δ2
0/4. Suppose that 

(N, H, J, P) is the standard form of N and uα is the unitary implementation of α. Consider ξ ∈ P to be the 
unique element with ω = ωξ,ξ. By the Power–Stormer type inequality as in [7, Lemma 2.10], we know that

‖uαt
(ξ) − ξ‖ < εδ0/2 (t ∈ Q).

Thus, [2, Proposition 1.1.9] tells us that ‖ξ−P (ξ)‖ < ε/2, where P : H → Huα is the orthogonal projection. 
Now, if we set τ := ωP (ξ),P (ξ) ∈ MN,α ∩N∗, then ‖ω − τ‖ < ε.

(sT4) ⇒ (sT5). This implication is clear.

(sT5) ⇒ (sT3). Suppose on the contrary that one can find a von Neumann algebra N and a continuous 
action α of G on N without α-invariant normal state but N has an α-invariant state f . Let {ωi}i∈I be a net 
of normal states that weak-∗-converges to f . Since ωi(αt(x)) −ωi(x) → 0 for any x ∈ N and t ∈ G, one can 
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find, by using the “convergence to invariance” type argument, a net {τj}j∈J in the convex hull of {ωi}i∈I

such that ‖τj ◦ αt − τj‖ → 0 for any t ∈ G. Thus, τi is (Q, δ)-invariant for large enough i, and Statement 
(sT5) gives the contradiction of the existence of an α-invariant normal state. �
Remark 3.10. In the case when G is countable and discrete, [9, Theorem 5.1] tells us that (sT1) ⇔ (sT3)
and hence (sT1) ⇔ (sT4) ⇔ (sT5). This yield new characterizations of property T of countable discrete 
groups. In this case, one may regard (Q, δ) in (sT5) as a Kazhdan pair for group actions on von Neumann 
algebras (instead of unitary representations).

Moreover, we have the following operator algebraic characterizations for the T -property of ϕ in the case 
when H is discrete. For the notation of (D2), we refer the readers to [8].

Theorem 3.11. Suppose that H is discrete and G is locally compact.

(a) The following statements are equivalent.
(D1) ϕ has property T .
(D2) There exist a non-empty finite subset F ⊆ C∗(H) and κ > 0 such that for any unital ∗-bimodule 

H of C∗(G) with VH(ϕ̃(F ), κ) �= ∅, one has Hϕ̃(C∗(H)) �= (0).
(b) If ϕ(H) = G, then (D1) and (D2) are also equivalent to the following.

(D3) pG ∈ ϕ̃(C∗(H)).
(D4) σG ◦ ϕ has property T and G has strong property T .
(D5) σG ◦ ϕ has property T and G satisfies one (and equivalently, all) of the conditions (sT2)–(sT5).

Proof. (a) (D1) ⇒ (D2). If (Q, κ) is a Kazhdan pair for ϕ and F is the image of Q in C∗(H), then a 
standard argument will show that (D2) holds.

(D2) ⇒ (D1). Note first of all that, by a simple approximate argument and suitably reducing κ, one 
may assume that K = {x1, . . . , xm} with xk =

∑Nk

i=1 λi,ku
H
si,k

for some λi,k ∈ C and si,k ∈ H. Let 
(π, H) ∈ Rep(G). We regard H as a ∗-bimodule of C∗(G) by setting

yξ = π̃(y)ξ and ξy = 1̃G(y)ξ (y ∈ C∗(G); ξ ∈ H).

Suppose that {ξα}α∈I is an almost π ◦ ϕ-invariant unit vector in H. Then

‖ϕ̃(xk)ξα − ξαϕ̃(xk)‖ =
∥∥∑Nk

i=1
λi,k

(
πϕ(si,k)ξα − ξα

)∥∥ → 0 (k = 1, . . . ,m).

Thus, ξα ∈ VH(ϕ̃(K), κ) when α is large enough. This shows that Hπ◦ϕ = Hϕ̃(C∗(H)) �= (0).

(b) (D1) ⇒ (D3). This implication basically follows from the argument of [14, Theorem 3.2]. More precisely, 
if π :=

⊕
μ∈Ĝ\{1G} μ̃, then π̃⊕ 1̃G induces a faithful representation of M(C∗(G)). Let (F, κ) be the Kazhdan 

pair for ϕ and a := 1
2|F |

∑
t∈F uH

t +(uH
t )∗ ∈ C∗(H). Clearly, ‖ϕ̃(a)‖ ≤ 1. The argument of [14, Theorem 3.2]

implies that ‖π̃(ϕ̃(a)) − 1‖ > κ2

2|F | . Moreover, as 1̃G(ϕ̃(a)) = 1̃H(a) = 1, we know that 1 is an isolated point 
in σϕ̃(C∗(H))(ϕ̃(a)) and hence p := χ{1}(ϕ̃(a)) ∈ ϕ̃(C∗(H)). Since pxp = 1G(x)p (x ∈ C∗(G)), one deduces 
from [14, Lemma 3.1] that p = pG (note that G has property T because of Lemma 2.2(e)).

(D3) ⇒ (D1). Let x ∈ C∗(H) such that pG = ϕ̃(x). It is clear that Ĥx := {ν ∈ Ĥ : ν̃(x) = 0} is closed in Ĥ. 
Thus,

ϕ̂(Ĝ) \ {1H} = ϕ̂
(
{μ ∈ Ĝ : μ̃∗∗(pG) = 0}

)
= ϕ̂

(
{μ ∈ Ĝ : (μ ◦ ϕ)̃ (x) = 0}

)
= ϕ̂(Ĝ) ∩ Ĥx,
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which is closed in ϕ̂(Ĝ). Consequently, 1H is isolated in ϕ̂(Ĝ) and one can apply Theorem 2.9 to conclude 
that ϕ has property T .

(D1) ⇒ (D4). This follows from Lemma 2.2(a) and Lemma 2.2(g).

(D4) ⇒ (D5). This follows from Lemma 3.9.

(D5) ⇒ (D1). By Lemma 3.9, it suffices to show that if σG ◦ϕ has property T and G satisfies (sT3), then ϕ
has strong property T . It is well-known that the image of σ̂G : b̂G → Ĝ is precisely ĜFD. Thus, Theorem 2.9
tells us that 1H is an isolated point of ϕ̂(ĜFD). Now, the implication follows from the argument of [9, 
Proposition 4.3]. To be a bit more precise, suppose on contrary that 1H is not an isolated point of ϕ̂(Ĝ)
(see Theorem 2.9). As ϕ̂ is injective, the above tells us that one can find a net {(πi, Ki)}i∈I in Ĝ \ ĜFD and 
a unit vector ξi ∈ Ki for each i ∈ I satisfying

‖πi
ϕ(t)ξi − ξi‖ → 0 (t ∈ H).

Let N :=
⊕

i∈I B(Ki) and set π :=
⊕

i∈I π
i as well as α := Adπ. Then the Hilbert space H for the standard 

form of N is 
⊕

i∈I Ki ⊗Ki with the representation of N on H being the canonical one. Now, the argument 
of [9, Proposition 4.3] gives Huα = (0), which means that there is no α-invariant normal state on N (see, 
e.g., [9, Lemma 2.3(a)]; note that one may regard α as an action of Gd on N). However, the σ(N∗, N)-limit 
of a subnet of {ωξi}i∈I will produce a state f on N such that f ◦ αϕ(t) = f for any t ∈ H, which implies 
that f is α-invariant (since ϕ(H) is dense in G). This contradicts (sT3). �

Consequently, if G has strong property T and ϕ is a group homomorphism from a discrete group H to 
G with dense range, then ϕ has property T if and only if 1H is an isolated point of ϕ̂(ĜFD).

Moreover, part (b) of the above and Theorem 3.6 give the following equivalent forms of the strong 
property T , which seems to be new (except that those concerning (sT2) and (sT3) are extensions of [9, 
Proposition 4.3]).

Corollary 3.12. A locally compact G has strong property T if and only if G has property (T, FD) and G
satisfies one (and hence, all) of the statements (sT2)–(sT5).

Let G be a locally compact group, F ⊆ G be a closed subgroup. There exists a strongly quasi-invariant 
measure μ on G/F , which is unique up to equivalence (see, e.g., [6, p. 58]). In the following, we write 
L∞(G/F ) for L∞(μ).

Corollary 3.13. Let G be either a discrete group with property T or a σ-compact locally compact group with 
strong property T , and let F ⊆ G be a closed subgroup. Then there exists at most one G-invariant state on 
L∞(G/F ).

Proof. Let ρ be the rho-function corresponding to μ with ρ(e) = 1. Suppose that α is the canonical action 
of G on L∞(μ) and β is the action of G on L1(μ) induced by α. For each g ∈ G and ω ∈ L1(μ), one has 
βg(ω)(yF ) = ω(g−1yF )ρ(g

−1y)
ρ(y) μ-a.e. Thus, if ω ∈ L1(μ)β and g ∈ G, then

ρ(gy)ω(gyF ) = ω(yF )ρ(y) (3.2)

for μ-almost-all yF ∈ G/F . Using the argument of [2, Theorem E.3.1] (note that we assume G is σ-compact 
if it is non-discrete), one may assume that (3.2) holds for all y ∈ G. Hence, ω(gF ) = ω(F )

ρ(g) for every g ∈ G

and dimL1(μ)β ≤ 1. Now, Statement (sT2) gives the conclusion. �
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Note that if G is second countable group, the existence of a G-invariant mean on L∞(G/F ) is one 
equivalent form of the amenability of the homogeneous space G/F (see the main theorem in Section 4 of 
Chapter 2 in [5]). Since the amenability of G/F is equivalent to 1G ≺ λG/F , we know from [2, Theorem E.3.1]
that if G has property T and G/F is amenable, then there exists a finite G-invariant regular measure on 
G/F . Corollary 3.13 tells us that if we assume that G has strong property T , then the only G-invariant 
mean on L∞(G/F ) (if exists) is given by this finite G-invariant measure.

On the other hand, it is well-known that there are more than one invariant means on the circle. Therefore, 
one cannot relax the assumption of strong property T in Corollary 3.13 above to property T .
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