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This paper is devoted to the study of the wave propagation in a reaction-convection 
infectious disease model with a spatio-temporal delay. Previous numerical studies 
have demonstrated the existence of traveling wave fronts for the system and obtained 
a critical value c∗, which is the minimal wave speed of the traveling waves. In the 
present paper, we provide a complete and rigorous proof. To overcome the difficulty 
due to the lack of monotonicity for the system, we construct a pair of upper and lower 
solutions, and then apply the Schauder fixed point theorem to establish the existence 
of a nonnegative solution for the wave equation on a bounded interval. Moreover, 
we use a limiting argument and in turn generate the solution on the unbounded 
interval R. In particular, by constructing a suitable Lyapunov functional, we further 
show that the traveling wave solution converges to the epidemic equilibrium point 
as t = +∞.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 2009, Li and Zou [8] used an SIR model to derive the following reaction-convection infectious disease 
model with a spatio-temporal delay⎧⎪⎪⎨⎪⎪⎩

St(t, x) = DSSxx(t, x) + μ− dS(t, x) − rI(t, x)S(t, x),

It(t, x) = DIIxx(t, x) − βI(t, x) + εr

+∞∫
−∞

fα(x− y)I(t− τ, y)S(t− τ, y)dy, (1.1)

where S and I represent the densities of the susceptible and infective individuals at time t and position 
x ∈ R, respectively, DS and DI are the corresponding diffusion rates. μ > 0 is a constant recruiting 
rate, d is the natural death rate, r > 0 denotes the infection rate, ε measures the proportion of infected 
individuals that can survive the latent period, and the delay τ represents the latency length of the infective 
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disease. β = σ + γ + d, σ, and γ are the disease-induced mortality rate and the recovery rate, respectively, 
fα(x) = 1√

4παe
− x2

4α . Readers may refer to [8] for a precise interpretation of the biological implications for 
system (1.1).

Based on an abstract treatment, Li and Zou [8] addressed the existence, uniqueness and positivity of 
solutions of system (1.1). In addition, in view of the numeric simulations, they explored the existence of 
traveling wave fronts for system (1.1), and obtained a critical value c∗, which is the minimal wave speed c
of the traveling wave fronts, i.e., system (1.1) admits traveling waves with wave speed c ≥ c∗ but no such 
traveling waves with wave speed c < c∗. In this paper, we provide the first rigorous mathematical proof of 
the existence of traveling wave solutions for system (1.1).

Since system (1.1) does not satisfy the comparison principle and possess monotone properties, it is 
difficult to apply the general theory regarding the existence of traveling wave solutions for monotone system 
developed by Huang and Zou [7], Liang and Zhao [10], Ma [11], Wang, Li and Ruan [14], Wu and Zou 
[15], and the references cited therein. In this paper, motivated by previous works [1–4,9,13,16], we use an 
iteration process [1] (see also [2–4,9,13,16]) to construct a pair of upper and lower solutions (S, I) and (S, I). 
Using the constructed pair of upper and lower solutions, we build an appropriately invariant cone ΓX of 
initial functions defined on a bounded interval, and we then apply the Schauder fixed point theorem for this 
cone to establish the existence of a nonnegative solution of (2.2) on the bounded interval, which serves as 
a candidate for the traveling wave solution for (2.2) on the unbounded interval R. Furthermore, following 
the idea proposed in [17] (also see [2–4,13]), we employ a limiting argument to generate the solution on R.

We should stress that according to the construction of the upper and lower solutions, the obtained 
traveling wave (S, I) is a nonnegative solution for (2.2) on R with (S, I)(−∞) = (1, 0). To demonstrate the 
existence of a traveling wave connecting the disease-free and endemic equilibrium, we need to prove that 
(S, I)(+∞) = (S∗, I∗). It is well known that the method of Lyapunov functionals [5] is a direct and effective 
approach for studying the global stability of delayed differential systems. However, it is challenging and 
difficult to construct a suitable Lyapouov functional for the differential systems with delay. In the present 
paper, inspired by the ideas proposed by [2–4,9], we successfully construct a Lyapunov functional and then 
show that (S, I)(+∞) = (S∗, I∗). We also comment that the construction of the Lyapunov functional is 
nontrivial and difficult because the corresponding wave profile system (2.2) is a second order functional 
differential system of mixed type (i.e., with both advanced and non-local delayed arguments).

The remainder of this paper is organized as follows. In Section 2, we give an important lemma and state 
the main results. In Section 3, we derive the preliminary results, including the construction of the upper and 
lower solutions, and the existence of the solution to (2.2) on a bounded interval. The proof of Theorem 2.1
is given in Section 4. Finally, we provide a brief discussion.

2. Main results

In this section, we state the main results. For simplicity, let

S̃(t, x) = d

μ
S(t, x

√
DI), Ĩ(t, x) = d

μ
S(t, x

√
DI),

and

d̃ = DS

DI
, r̃ = rμ

d
, k = εrμ

d
.

By dropping the tilde for convenience, we then consider the following system⎧⎪⎪⎨⎪⎪⎩
St(t, x) = dSxx(t, x) + μ(1 − S(t, x)) − rI(t, x)S(t, x),

It(t, x) = Ixx(t, x) − βI(t, x) + k

+∞∫
fα(x− y)I(t− τ, y)S(t− τ, y)dy. (2.1)
−∞
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By a simple calculation, (2.1) always has a disease-free equilibrium E0(1, 0). In addition, if R0 := k
β > 1, 

then (2.1) admits a unique endemic equilibrium E∗(S∗, I∗) with

S∗ = β

k
, I∗ = μ

r

(k
β
− 1

)
.

Motivated by the work [8], we mainly consider the existence of traveling waves for system (2.1) that connect 
the disease-free equilibrium E0(1, 0) and endemic equilibrium E∗(S∗, I∗). A traveling wave solution of (2.1)
is a special type of the solution of system (2.1) with the form (S(t, x), I(t, x)) = (S(x + ct), I(x + ct)), where 
c > 0 is the wave speed, and we let x + ct by t, which satisfies the following wave equation⎧⎪⎪⎨⎪⎪⎩

dS′′(t) − cS′(t) + μ(1 − S(t)) − rS(t)I(t) = 0,

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy = 0, (2.2)

on R with the boundary conditions

S(−∞) = 1, I(−∞) = 0, S(+∞) = S∗, I(+∞) = I∗. (2.3)

Consequently, showing the existence of a traveling wave solution of system (2.1) that connects the equilibria 
E0 and E∗ is equivalent to showing the existence of a nonnegative solution of systems (2.2) and (2.3).

Before stating our main results, let us give an important lemma. Linearizing the second equation of (2.2)
at E0(1, 0) gives

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)I(t− y − cτ)dy = 0.

If we let J(t) = eλt, then we obtain a characteristic equation

Δ(λ, c) = λ2 − cλ− β + keαλ
2−λcτ = 0.

It is easy to show the following lemma (see [12, Lemma 4.4]).

Lemma 2.1. Assume that R0 := k
β > 1. Then there are two constants c∗ > 0 and λ∗ > 0 such that

Δ(λ∗, c∗) = 0 and ∂

∂λ
Δ(λ, c)|(λ∗,c∗) = 0.

Furthermore,

(i) if 0 < c < c∗, then Δ(λ, c) > 0 for all λ ∈ [0, ∞);
(ii) if c > c∗, then the characteristic equation Δ(λ, c) = 0 has two positive roots λ1(c) and λ2(c) with 

0 < λ1(c) < λ∗ < λ2(c) such that

Δ(λ, c)
{

> 0 for all λ ∈ [0, λ1(c)) ∪ (λ2(c),∞),
< 0 for all λ ∈ (λ1(c), λ2(c)).

In the sequel, we always assume that R0 > 1. In addition, we fix c > c∗ and always denote λi(c) by λi, 
i = 1, 2. Then, the main results regarding the existence of traveling waves for system (2.1) can be stated by 
the following theorem.
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Theorem 2.1. For c > c∗, system (2.1) has a nonnegative traveling wave solution (S(x + ct), I(x + ct)) such 
that

(i) 0 < S(t) < 1 and I(t) > 0 on R;
(ii) lim

t→−∞
(S(t), I(t)) = (1, 0), lim

t→+∞
(S(t), I(t)) = (S∗, I∗), i.e., the traveling wave solution connects the 

disease-free equilibrium E0(1, 0) and the endemic equilibrium E∗(S∗, I∗);
(iii) lim

t→−∞
I(t)e−λ1t = 1 and lim

t→−∞
(S′(t), I ′(t)) = lim

t→+∞
(S′(t), I ′(t)) = (0, 0).

The proof of Theorem 2.1 is completed by Propositions 4.1 and 4.2, which are provided in Section 4.

3. System (2.2) on a bounded interval

In this section, we use an iteration process [1] (also see [2–4,9,13,16]) to construct a pair of upper and 
lower solutions of (2.1) with c > c∗. Using the constructed pair of upper and lower solutions, we build an 
appropriately invariant cone ΓX of initial functions defined on a bounded interval [−X, X] for any X > 0, 
and we apply the Schauder fixed point theorem to this cone ΓX to establish the existence of a nonnegative 
solution of (2.2) on the interval [−X, X], which serves as a candidate of the traveling wave solution for (2.2)
on R.

3.1. Upper and lower solutions

Since λ1 is the root of Δ(λ, c) = 0, it is natural to obtain the following lemma.

Lemma 3.1. The function Ī(t) = eλ1t satisfies the equation

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)I(t− y − cτ)dy = 0.

We select σ ∈ (0, min{c/(2d), λ1}), then dσ2−cσ−μ < 0 and λ1−σ > 0. Since e(λ1−σ)t → 0 as t → −∞, 
then there is a t1 < 0 such that

e(λ1−σ)t <
1
r
(cσ + μ− dσ2), t < t1,

which gives

(cσ + μ− dσ2)eσt > reλ1t, t < t1. (3.1)

Then, we choose M := e−σt1 > 1 since σ > 0 and t1 < 0.

Lemma 3.2. Let σ ∈ (0, min{c/(2d), λ1}) and M > 1. Then the function S(t) = max{0, 1 −Meσt} satisfies 
the inequality

dS′′(t) − cS′(t) + μ(1 − S(t)) − γS(t)Ī(t) ≥ 0 (3.2)

for all t �= t1 := − 1
σ lnM .

Proof. For t > t1, the inequality (3.2) holds immediately since S(t) = 0 in [t1, ∞). For t < t1, S(t) = 1 −Meσt

and 0 ≤ S(t) < 1. Thus, by (3.1), a simple computation yields,
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dS′′(t) − cS′(t) + μ(1 − S(t)) = M(cσ + μ− dσ2)eσt

> reλ1t > r(1 −Meσt)Ī(t) = rS(t)Ī(t).

Then, (3.2) holds, which completes the proof. �
Let 0 < η < min{σ, λ1 − λ2}. Then, Δ(λ1 + η, c) < 0. Let

K > M max
{

1,−keα(λ1+σ)2−cτ(λ1+σ)

Δ(λ1 + η, c)

}
, (3.3)

and t2 := − 1
η lnK. Then t2 < t1 < 0 since K > M .

Lemma 3.3. Let η ∈ (0, min{σ, λ1−λ2}) and K satisfy (3.3). Then the function I(t) = max{0, eλ1t(1 −Keηt)}
satisfies the inequality

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy ≥ 0 (3.4)

for all t �= t2.

Proof. Obviously, we can see that the inequality (3.4) holds since I(t) = 0 in [t2, ∞). For t < t2, I(t) =
eλ1t(1 −Keηt) > 0 and S(t) = 1 −Meσt > 0. Then, recalling that I(t) ≥ eλ1t(1 −Keηt) for t ∈ R, we have

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)I(t− y − cτ)dy

≥ Δ(λ1, c)eλ1t −KΔ(λ1 + η, c)e(λ1+η)t

= −KΔ(λ1 + η, c)e(λ1+η)t.

In view of the fact that 0 ≥ S(t) − 1 ≥ −Meσt and 0 ≤ I(t) ≤ eλ1t for all t ∈ R, then

+∞∫
−∞

fα(y)I(t− y − cτ)(S(t− y − cτ) − 1)dy

≥ −M

+∞∫
−∞

fα(y)eλ1(t−y−cτ)eσ(t−y−cτ)dy

= −Meα(λ1+σ)2−cτ(λ1+σ)e(λ1+σ)t

= −Meα(λ1+σ)2−cτ(λ1+σ)e(σ−η)te(λ1+η)t

≥ −Meα(λ1+σ)2−cτ(λ1+σ)e(λ1+η)t,

since e(σ−η)t < 1 for t < t2 < 0. Therefore, for t < t2,

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
fα(y)S(t− y − cτ)I(t− y − cτ)dy
−∞
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= I ′′(t) + cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)I(t− y − cτ)dy

+ k

+∞∫
−∞

fα(y)I(t− y − cτ)(S(t− y − cτ) − 1)dy

≥ e(λ1+η)t(−KΔ(λ1 + η, c) − kMeα(λ1+σ)2−cτ(λ1+σ))
> 0,

and thus (3.4) holds. The proof is complete. �
3.2. Verification of the Schauder fixed point theorem

In this subsection, we consider system (2.2) in a bounded domain [−X, X] for any X > 0. First, we give 
the following two lemmas.

Lemma 3.4 (See [4, Lemma A.1]). Let A be a positive constant and let f and h be continuous functions on 
[a, b]. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation

w′′(t) −Aw′(t) + f(t)w(t) = h(t) (3.5)

in (a, b) and w(a) = w(b) = 0. If

−C1 ≤ f ≤ 0 and |h| ≤ C2 on [a, b],

for some constants C1, C2, then there exists a positive constant C3 that depends only on A, C1, and the 
length of the interval [a, b] such that

||w||C([a,b]) := max
{
|w(t)| : t ∈ [a, b]

}
≤ C2C3.

Lemma 3.5 (See [4, Lemma A.2]). Let A, f , and h be as given in Lemma 3.4. Suppose that w ∈ C([a, b]) ∩
C2((a, b)) satisfies (3.5) in (a, b). If ||w||C([a,b]) ≤ C0 for some constant C0, then there exists a positive 
constant C4 that depends only on A, C0, C1, C2, and the length of the interval [a, b] such that

||w′||C([a,b]) ≤ C4.

Let X > 1
η lnK, and

ΓX =

⎧⎪⎨⎪⎩(S0, I0) ∈ C([−X,X]) :
S0(±X) = S(±X), I0(±X) = I(±X),
S(t) ≤ S0(t) ≤ 1, I(t) ≤ I0(t) ≤ I(t),
for all t ∈ [−X,X].

⎫⎪⎬⎪⎭ .

Then, ΓX is a nonempty closed and convex set in C([−X, X]) with the norm

||(ϕ1, ϕ2)||X = ||ϕ1||C([−X,X]) + ||ϕ2||C([−X,X]).

Now, for any (S0, I0) ∈ ΓX , define

φ(t) =
{

S0(t), |t| ≤ X,

S(t), |t| > X,
ψ(t) =

{
I0(t), |t| ≤ X,

I(t), |t| > X.
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Consider the following two-point boundary value problem⎧⎪⎪⎨⎪⎪⎩
dS′′(t) − cS′(t) + μ(1 − S(t)) − rS(t)I0(t) = 0,

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)φ(t− y − cτ)ψ(t− y − cτ)dy = 0, (3.6)

in [−X, X] with

(S(−X), I(−X)) = (S(−X), I(−X)), (S(X), I(X)) = (S(X), I(X)). (3.7)

Note that system (3.6) comprises two non-coupled inhomogeneous linear equations since S0(t), I0(t), and 
thus φ(t) and ϕ(t) are given, so the existence and uniqueness of the solutions of (3.6) for the boundary value 
problem (3.7) can be obtained easily by standard fundamental theory (e.g., see Theorem 3.1 on page 419 
in [6]). Then, the problem (3.6)–(3.7) admits a unique solution (S, I)(t) that satisfies (S, I) ∈ C2([−X, X]). 
Consequently, we define an operator F = (F1, F2) : ΓX → C([−X, X]) by, for any (S0, I0) ∈ ΓX ,

F (S0, I0) = (S, I),

where the pair of functions (S, I) ∈ C2([−X, X]) satisfies (3.6)–(3.7).
In the following, we verify that the mapping F satisfies the conditions of the Schauder fixed point theorem.

Lemma 3.6. The mapping F maps ΓX into ΓX .

Proof. First, we claim that 0 ≤ S(t) ≤ 1 on [−X, X]. Obviously, 0 is a lower solution of the first equation 
of (3.6), which follows from the maximum principle that S(t) ≥ 0 for all t ∈ [−X, X]. Similarly, we obtain 
S(t) ≤ 1 for all t ∈ [−X, X]. Note that S(t) = 1 − Meσt for all t ∈ [−X, X1] with X1 = − 1

σ lnM and 
satisfies (3.2). It follows that

0 ≤ dS′′(t) − cS′(t) + μ(1 − S(t)) − rS(t)Ī(t)

≤ dS′′(t) − cS′(t) + μ(1 − S(t)) − rS(t)I0(t)

for all t ∈ [−X, X1]. Thus, S(t) is a lower solution of the first equation of (3.6). Note that S(−X) = S(−X)
and S(X1) ≥ S(X1) = 0. Then, the comparison principle implies that S(t) ≤ S(t) for all t ∈ [−X, X1]. 
Hence, S(t) ≤ S(t) ≤ 1 for all t ∈ [−X, X].

Next, we consider I(t). We can easily see that I(t) ≥ 0 for all t ∈ [−X, X], and

S(t) ≤ φ(t) ≤ 1, I(t) ≤ ψ(t) ≤ Ī(t), ∀ t ∈ R.

Now, let us show that I(t) ≤ I(t) for all t ∈ [−X, X]. Indeed, since I(t) = eλ1t(1 − Meηt) for all 
t ∈ [−X, X2] with X2 = − 1

η ln 1
M , then by Lemma 3.3, we have

0 ≤ I ′′(t) − cI ′(t) − βI ′(t) + k

∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

≤ I ′′(t) − cI ′(t) − βI ′(t) + k

∞∫
−∞

fα(y)φ(t− y − cτ)ψ(t− y − cτ)dy.



JID:YJMAA AID:20904 /FLA Doctopic: Real Analysis [m3L; v1.194; Prn:28/12/2016; 11:39] P.8 (1-19)
8 Z. Xu / J. Math. Anal. Appl. ••• (••••) •••–•••
In view of the fact that I(X2) ≥ I(X2) = 0 and I(−X) = I(−X), it follows from the comparison principle 
that I(t) ≤ I(t) for all t ∈ [−X, X2], which implies that I(t) ≤ I(t) for all t ∈ [−X, X].

Next, we need to verify that I(t) ≤ I(t) for all t ∈ [−X, X]. In fact, noting that I(t) = eλ1t for all t ∈ R, 
by Lemma 3.1, we get

0 = I
′′(t) − cI

′(t) − βI(t) + k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

≥ I
′′(t) − cI

′(t) − βI(t) + k

+∞∫
−∞

fα(y)φ(t− y − cτ)ϕ(t− y − cτ)dy.

Since I(−X) = I(−X) ≤ I(−X) and I(X) = I(X) ≤ I(X), then by using the comparison principle again, 
we have I(t) ≤ I(t) for all t ∈ [−X, X]. Thus, we deduce that I(t) ≤ I(t) ≤ I(t) for all t ∈ [−X, X]. This 
completes the proof. �
Lemma 3.7. The mapping F : ΓX → ΓX is a continuous mapping.

Proof. For the given (S0, I0) and (S̃0, Ĩ0) in ΓX , let

(S, I) = F (S0, I0) and (S̃, Ĩ) = F (S̃0, Ĩ0).

First, we consider the function w1 := S − S̃. It is easy to see that w1(−X) = w1(X) = 0, and

w′′
1 (t) − c

d
w′

1(t) + f(t)w1(t) = h1(t), t ∈ [−X,X],

where

f(t) = −1
d
(μ + rI0(t)) and h1(t) = r

d
S̃(t)(I0(t) − Ĩ0(t)).

Note that

−1
d
(μ + reλ1X) ≤ f(t) ≤ 0 and |h1(t)| ≤

γ

d
||I0 − Ĩ0||C([−X,X]).

In addition, from the definition of λ1, we know that the value of λ1 depends only on c. Then, Lemma 3.4
asserts that there exists a positive constant C1 (which depends only on d, c, μ, r, and X) such that

||w1||C([−X,X]) ≤ C1||I0 − Ĩ0||C([−X,X]),

which, together with definition of w1, implies that

||S − S̃||C([−X,X]) ≤ C1||I0 − Ī0||C([−X,X]). (3.8)

Next, we consider the function w2 := I − Ĩ. It is easy to verify that w2(−X) = w2(X) = 0, and

w′′
2 (t) − cw′

2(t) − βw2(t) = h2(t), t ∈ [−X,X],

where
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h2(t) = −k
( +∞∫
−∞

fα(y)φ(t− y − cτ)ψ(t− y − cτ)dy

−
+∞∫

−∞

fα(y)φ̃(t− y − cτ)ψ̃(t− y − cτ)dy
)
.

Note that
+∞∫

−∞

fα(y)φ(t− y − cτ)ψ(t− y − cτ)dy

=
+∞∫

−∞

fα(t− z − cτ)φ(z)ψ(z)dz

=
−X∫

−∞

fα(t− z − cτ)S(z)I(z)dz +
X∫

−X

fα(t− z − cτ)S0(z)I0(z)dz,

and
+∞∫

−∞

fα(y)φ̃(t− y − cτ)ψ̃(t− y − cτ)dy

=
−X∫

−∞

fα(t− z − cτ)S(z)I(z)dz +
X∫

−X

fα(t− z − cτ)S̃0(z)Ĩ0(z)dz.

Therefore,

h2(t) = −k

X∫
−X

fα(t− z − cτ)(S0(z)I0(z) − S̃0(z)Ĩ0(z))dz.

Consequently,

|h2| ≤ keλ1X
(
||S0 − S̃0||C([−X,X]) + ||I0 − Ĩ0||C([−X,X])

)
.

Then, Lemma 3.4 asserts that there is a positive constant C2 that depends only on c, k, β, and X such that

||w2||C([−X,X]) ≤ C2(||S − S̃||C([−X,X]) + ||I0 − Ĩ0||C([−X,X])),

and thus

||I − Ĩ||C([−X,X]) ≤ C2(||S0 − S̃0||C([−X,X]) + ||I0 − Ĩ0||C([−X,X])). (3.9)

Finally, we use (3.8) and (3.9) to deduce that

||F (S0, I0) − F (S̃0, Ĩ0)||X = ||(S, I) − (S̃, Ĩ)||X
= ||S − S̃||C([−X,X]) + ||I − Ĩ||C([−X,X])

≤ C3||(S0, I0) − (S̃0, Ĩ0)||X ,

where C3 = C1 + C2. This shows that F is a continuous mapping, which completes the proof. �
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Lemma 3.8. The mapping F : ΓX → ΓX is precompact.

Proof. For a given {(S0,n, I0,n)}n∈N in ΓX , let (Sn, In) = F (S0,n, I0,n). Since 0 ≤ S(t) ≤ S(t) ≤ S(t) = 1
and 0 ≤ I(t) ≤ I(t) ≤ I(t) ≤ eλ1t on [−X, X], then from the definition of the set ΓX and Lemma 3.6, 
we can easily see that the sequences {S0,n}, {I0,n}, {Sn}, and {In} are uniformly bounded in [−X, X]. 
Then, by Lemma 3.5, we know that {S′

n} and {I ′n} are also uniformly bounded in [−X, X]. Therefore, we 
use the Arzelá–Ascoli theorem and a nested subsequence argument to obtain a subsequence (still denoted) 
{(Sn, In)}, which tends toward a function (S, I) ∈ ΓX such that (Sn, In) → (S, I) uniformly in [−X, X] as 
n → ∞. Hence, the mapping F : ΓX → ΓX is precompact. This completes the proof. �

By Lemmas 3.6–3.8, according to the Schauder fixed point theorem, we can see that F has a fixed point, 
which is a non-negative solution for system (3.6)–(3.7). Hence, we have the following lemma.

Lemma 3.9. If c > c∗, then there exist a pair of functions (S, I) ∈ C([−X, X]) that satisfy (2.2) on [−X, X]. 
Moreover,

0 ≤ S(t) ≤ S(t) ≤ 1 and 0 ≤ I(t) ≤ I(t) ≤ I(t) (3.10)

on [−X, X].

4. Proof of Theorem 2.1

In this section, we present a proof of Theorem 2.1. First, we give the following results.

Proposition 4.1. If c > c∗, then system (2.2) admits a solution (S, I) that satisfies

lim
t→−∞

(S(t), I(t)) = (1, 0), lim
t→−∞

(S′(t), I ′(t)) = (0, 0).

Moreover, lim
t→−∞

I(t)e−λ1t = 1, and

0 < S(t) < 1, I(t) > 0, t ∈ R. (4.1)

Proof. Let {Xn}n∈N be an increasing sequence with Xn > 1
σ lnK and lim

n→∞
Xn = +∞, and let (Sn, In), 

n ∈ N, be a solution of the following system with X = Xn,⎧⎪⎪⎨⎪⎪⎩
dS′′(t) − cS′(t) + μ(1 − S(t)) − rS(t)I(t) = 0,

I ′′(t) − cI ′(t) − βI(t) + k

+∞∫
−∞

fα(y)φ(t− y − cτ)ψ(t− y − cτ)dy = 0 (4.2)

in [−X, X] with

φ(t) =
{

S(t), |t| ≤ X,

S(t), |t| > X,
ψ(t) =

{
I(t), t ≤ X,

I(t), |t| > X.

For any fixed N ∈ N, since I(t) is bounded above in [−XN , XN ], from (3.10), it follows that the sequences

{Sn}n≥N , {In}n≥N , {SnIn}n≥N
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are uniformly bounded in [−XN , XN ]. Then, we can use Lemma 3.5 to infer that the sequences {S′
n}n≥N

and {I ′n}n≥N are uniformly bounded in [−XN , XN ]. Therefore, we can see that {Sn}n≥N and {In}n≥N are 
equicontinuous in [−XN , XN ].

Using (4.2), we can express {S′′
n} and {I ′′n} in terms of {Sn}, {In}, {S′

n}, and {S′
n}. Thus, the sequences 

{S′′
n} and {I ′′n} are also uniformly bounded in [−XN , XN ]. Therefore, we get that the sequences {S′

n}n≥N

and {I ′n}n≥N are also equicontinuous in [−XN , XN ]. Let

M := max
t∈[−X,X]

{
S(t), I(t), |S′(t)|, |I ′(t)|, |S′′(t)|, |I ′′(t)|

}
.

Next we claim that the sequences {S′′
n}n≥N and {I ′′n}n≥N are equicontinuous in [−XN , XN ]. In fact, it 

follows from the first equation of (4.2), that for any ξ, η ∈ [−XN , XN ],

d|S′′(ξ) − S′′(η)| ≤ c|S′(ξ) − S′(η)| + μ|S(ξ) − S(η)|

+ r
(
S(ξ)|I(ξ) − I(η)| + I(η)|S(ξ) − S(η)|

)
≤ M(c + μ + 2rM)|ξ − η|. (4.3)

In addition, from the second equation of (4.2), it follows that for any ξ, η ∈ [−XN , XN ],

|I ′′(ξ) − I ′′(η)| ≤ c|I ′(ξ) − I ′(η)| + β|I(ξ) − I(η)|

+ k
∣∣∣ +∞∫
−∞

fα(y)φ(ξ − y − cτ)ψ(ξ − y − cτ)dy

−
+∞∫

−∞

fα(y)φ(η − y − cτ)ψ(η − y − cτ)dy
∣∣∣. (4.4)

We note that

+∞∫
−∞

fα(y)φ(ξ − y − cτ)ψ(ξ − y − cτ)dy

−
+∞∫

−∞

fα(y)φ(η − y − cτ)ψ(η − y − cτ)dy

=
+∞∫

−∞

[fα(ξ − z − cτ) − fα(η − z − cτ)]φ(z)ψ(z)dz

=
−X∫

−∞

[fα(ξ − z − cτ) − fα(η − z − cτ)]S(z)I(z)dz

+
X∫

−X

[fα(ξ − z − cτ) − fα(η − z − cτ)]S(z)I(z)dz. (4.5)

A direct computations leads to
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∣∣∣ −X∫
−∞

[fα(ξ − z − cτ) − fα(η − z − cτ)]S(z)I(z)dz
∣∣∣

≤ Lf |ξ − η|
−X∫

−∞

eλ1zdz ≤ Lf

λ1
|ξ − η|, (4.6)

where Lf > 0 is the Lipschitz constant of the function fα(y) and

∣∣∣ X∫
−X

[fα(ξ − z − cτ) − fα(η − z − cτ)]S(z)I(z)dz
∣∣∣

=
∣∣∣ ξ+X−cτ∫
ξ−X−cτ

fα(y)S(ξ − y − cτ)I(ξ − y − cτ)dy

−
η+X−cτ∫

η−X−cτ

fα(y)S(η − y − cτ)I(η − y − cτ)dy
∣∣∣

=
∣∣∣ η−X−cτ∫
ξ−X−cτ

fα(y)S(ξ − y − cτ)I(ξ − y − cτ)dy

−
ξ+X−cτ∫

η+X−cτ

fα(y)S(η − y − cτ)I(η − y − cτ)dy

+
η+X−cτ∫

η−X−cτ

fα(y)
[
S(ξ − y − cτ)I(ξ − y − cτ) − S(η − y − cτ)I(η − y − cτ)

]
dy

∣∣∣
≤ 2M2(1 + 1√

2πα
)
|ξ − η|. (4.7)

Therefore, by (4.4)–(4.7),

|I ′′(ξ) − I ′′(η)| ≤ M0|ξ − η|, (4.8)

where

M0 := cM + βM + 2M2(1 + 1√
2πα

)
+ kLf

λ1
.

Hence, by (4.3) and (4.8), we know that the claim is true. Consequently, we get that the sequences

{Sn}n≥N , {In}n≥N , {S′
n}n≥N , {I ′n}n≥N , {S′′

n}n≥N , {I ′′n}n≥N ,

are uniformly bounded and equicontinuous in [−XN , XN ]. Using the Arzelá–Ascoli theorem and the standard 
diagonal method, we can obtain a subsequence (Snk

, Ink
) of (Sn, In) such that

(Snk
, Ink

) → (S, I), (S′
n , I ′n ) → (S′, I ′) (S′′

n , I ′′n ) → (S′′, I ′′), k → +∞,

k k k k
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uniformly in any compact interval of R for some functions S and I in C2(R). By applying Lebesgue’s 
dominated convergence theorem, we get

+∞∫
−∞

fα(y)Snk
(t− y − cτ)Ink

(t− y − cτ)dy →
+∞∫

−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

for any t ∈ R and k → ∞. Then, it is easy to see that (S, I) is a nonnegative solution of system (2.2) on R
and

S(t) ≤ S(t) ≤ 1, I(t) ≤ I(t) ≤ I(t), t ∈ R.

Together with the definitions of S(t) and I(t), it follows that (S, I)(−∞) = (1, 0) and lim
t→−∞

I(t)e−λt = 1.
To show that lim

t→−∞
(S′(t), I ′(t)) = (0, 0), we use the first equation of (2.2) to deduce that

S′(t) = e
c
d (t−η)S′(η) + 1

d
e

c
d t

η∫
t

e−
c
d θ
[
μ(1 − S(θ)) − rS(θ)I(θ)

]
dθ.

By fixing η and letting t → −∞ in the equation above, we immediately obtain

lim sup
t→−∞

|S′(t)| ≤ 1
d

max
θ≤η

∣∣μ(1 − S(θ)) − rS(θ)I(θ)
∣∣ lim sup

t→−∞
e

c
d t

η∫
t

e−
c
d θdθ

≤ 1
c

max
θ≤η

∣∣μ(1 − S(θ)) − rS(θ)I(θ)
∣∣

for any fixed η ∈ R. Recalling the fact that lim
t→−∞

(μ(1 −S(t) −rS(t)I(t)) = 0, we get lim
t→−∞

S′(t) = 0. Similar 
to the arguments employed above and using the second equation of (2.2), we also find that lim

t→−∞
I ′(t) = 0.

Next, we claim that 0 < S(t) < 1 and I(t) > 0 for all t ∈ R. Indeed, by using the strong maximum 
principle applied to the first equation in (2.2), we get that S(t) < 1 for all t ∈ R. Since rS(t)I(t) ≥ 0, we 
know that S(t) = 0 cannot be a minimal value for S(t) such that S(t) > 0 for all t ∈ R. Applying the strong 
maximum principle applied to the second equation of (2.2), we get I(t) > 0 for all t ∈ R. This completes 
the proof. �

In order to show the convergence of the traveling waves toward the endemic equilibrium E∗(S∗, I∗) at 
t = +∞, we construct a suitable Lyapunov functional. First, we need to derive the boundedness property 
of the solution (S(t), I(t)) of system (2.2).

Using the ideas in [4], we give the following lemma.

Lemma 4.1. Let (S, I) be a positive bounded solution of (2.2) such that (4.1) holds. Then,

−L1S(t) < S′(t) < L2S(t), −L3I(t) < I ′(t) < L4I(t), t ≥ 0,

where Li (i = 1, 2, 3, 4) are sufficiently large positive constants such that −L1S(0) < S′(0) and cL ≥ 2rI0, 
S′(0) < L2S(0) and dL2

2 − cL2 − μ − rI0 > 0, −L3I(0) < I ′(0) and cL ≥ 2β, I ′(0) < L4I(0) and 
L2

4 − cL4 − β > 0, I0 = supt≥0 I(t).

Proof. We only show that the inequality −L1S(t) < S′(t) < L2S(t) holds for all t ≥ 0 because the proof of 
the second inequality is similar. First, we show that −L1S(t) < S′(t) for all t ≥ 0. Let
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Φ1(t) := S′(t) + L1S(t), t ≥ 0.

Clearly, it is sufficient to show that Φ1(t) > 0 for all t ≥ 0. If not, note that Φ1(0) > 0, then we may assume 
that there exists a t1 > 0 such that Φ1(t1) > 0 and Φ′

1(t1) ≤ 0. Then, we have the following two cases, i.e.,

Φ1(t) ≤ 0, t ≥ t1, (4.9)

or there is a t2 ≥ t1 such that

Φ1(t2) = 0, Φ′
1(t2) ≤ 0. (4.10)

For the first case, (4.9) and the fact that cL1 ≥ 2rI0 imply that cS′(t) ≤ −2rI0S(t) for t ≥ t1. Since 
0 < S(t) < 1 and 0 < I(t) ≤ I0 (by (4.1)) for all t ≥ 0, then from the first equation of (2.2), we get

dS′′(t) = cS′(t) − μ(1 − S(t)) + rS(t)I(t) ≤ −rI0S(t) < 0, t ≥ t1,

and thus S′(t) is decreasing in [t1, ∞). Hence, S′(t) ≤ S′(t1) ≤ −L1S(t1) < 0 for all t > t1, which contradicts 
the boundedness of S.

For the second case, (4.10) implies that

S′(t2) = −L1S(t2) < 0 and S′′(t2) ≥ −L1S
′(t2) > 0. (4.11)

Again from the first equation of (2.2), by (4.11), it follows that

0 = dS′′(t2) − cS′(t2) + μ(1 − S(t2)) − rS(t2)I(t2)

≥ cL1S(t2) − rI0S(t2)

≥ rI0S(t2)

> 0,

which is a contradiction.
Next, we show that S′(t) < L2S(t) for all t ≥ 0. Let

Φ2(t) := S′(t) − L2S(t), t ≥ 0.

Obviously, it is sufficient to show that Φ2(t) < 0 for all t ≥ 0. By contrast, if we suppose that Φ2(0) < 0, 
then we may assume that there is a t3 > 0 such that Φ2(t3) = 0 and Φ′

2(t3) ≥ 0. Then,

Φ2(t3) = L2(t3) and S′′(t3) ≥ L2S
′(t3) = L2

2S(t3).

Thus, from the first equation of (2.2), we can deduce that

0 = dS′′(t3) − cS′(t3) + μ(1 − S(t3)) − rS(t3)I(t3)

≥ (dL2
2 − cL2 − μ− rI0)S(t3) > 0,

which is again a contradiction. The proof is complete. �
Second, we construct the Lyapunov functional. To simplify the notation, let

g(x) = x− 1 − ln x, x > 0,
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and

α1(y) =
+∞∫
y

fα(x)dx for y ≥ 0, α2(y) =
y∫

−∞

fα(x)dx for y ≤ 0.

It is easy to see that

g(x) = x− 1 − ln x ≥ 0, x > 0,

and

g(x) = x− 1 − ln x = 0 if and only if x = 1.

In addition,

α1(0) = α2(0) = 1
2 ,

dα1(y)
dy

= −fα(y), dα2(y)
dy

= fα(y). (4.12)

Define

D =
{
(S, I) : 0 < S < 1, 0 < I ≤ I0, −L1S < S′ < L2S, −L3I < I ′ < L4I

}
.

For each (S, I) ∈ D, we consider the Lyapunov functional V (S, I) : R+ → R as follows

V (S, I)(t) = V1(S, I)(t) + V2(S, I)(t) + V3(S, I)(t),

where

V1(S, I)(t) = k

r
S∗

(
cg
( S

S∗
)
− dS′( 1

S∗ − 1
S

))
+ I∗

(
cg
( I

I∗
)
− I ′

( 1
I∗

− 1
I

))
,

V2(S, I)(t) = βI∗
t∫

t−cτ

g
(S(θ)I(θ)

S∗I∗
)
dθ,

V3(S, I)(t) = βI∗
( +∞∫

0

α1(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗

)
dy

−
0∫

−∞

α2(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗

)
dy

)
.

Then, we obtain the following result.

Proposition 4.2. Let (S, I) be a positive solution of system (2.2) with (S, I) ∈ D. Then, there exists a constant 
m ∈ R such that V (S, I)(t) > m for all t ∈ R

+ and the map t → V (S, I)(t) is non-increasing. Moreover,

lim
t→+∞

(S(t), I(t)) = (S∗, I∗), lim
t→+∞

(S′(t), I ′(t)) = (0, 0).

Proof. By Lemma 4.1, we can see that there is a constant m such that V (S, I)(t) > m for all t ∈ R
+. Next, 

we show that t → V (S, I)(t) is non-increasing. Indeed, it is easy to see that
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dV1

dt
= −k

r

(
1 − S∗

S

)
(dS′′ − cS′) − S∗ kd

r

(S′

S

)2 − (
1 − I∗

I

)
(I ′′ − cI ′) − I∗

(I ′
I

)2
.

From the fact that μ(1 − S∗) = rI∗S∗, it follows that

dV1

dt
= −k

r

S − S∗

S
(μ(S − S∗) + rSI − rS∗I∗) − S∗ kd

r

(S′

S

)2
− I − I∗

I

(
βI − k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy
)
− I∗

(I ′
I

)2
= −kμ

r

(S − S∗)2

S
− S∗ kd

r

(S′

S

)2 − I∗
(I ′
I

)2 − kSI + βI∗ + βI∗
(
1 − S∗

S

)
+ k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

− βI∗
+∞∫

−∞

fα(y)S(t− y − cτ)I(t− y − cτ)
S∗I(t) dy, (4.13)

and

dV2

dt
= βI∗

(
g
(S(t)I(t)

S∗I∗
)
− g

(S(t− cτ)I(t− cτ)
S∗I∗

))
. (4.14)

Using integration by parts and by (4.12), we then obtain

dV3

dt
= βI∗

(
−

+∞∫
0

α1(y)
d

dy
g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

+
0∫

−∞

α2(y)
d

dy
g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

)

= βI∗
(
− α1(y)g

(S(t− y − cτ)I(t− y − cτ)
S∗I∗

)∣∣∣+∞

y=0

+
+∞∫
0

dα1(y)
dy

g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

+ α2(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)∣∣∣0

y=−∞

−
0∫

−∞

dα2(y)
dy

g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

)
.

Note that (S, I) ∈ D, we get

lim
y→+∞

α1(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)

= 0,

and
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lim
y→−∞

α2(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)

= 0.

Recalling that kS∗ = β, we get

dV3

dt
= βI∗

(
g
(S(t− cτ)I(t− cτ)

S∗I∗
)
−

+∞∫
−∞

fα(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

)

= βI∗g
(S(t− cτ)I(t− cτ)

S∗I∗
)
− k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

+ βI∗ + βI∗
+∞∫

−∞

fα(y) ln
(S(t− y − cτ)I(t− y − cτ)

S∗I∗
)
dy

= βI∗g
(S(t− cτ)I(t− cτ)

S∗I∗
)
− k

+∞∫
−∞

fα(y)S(t− y − cτ)I(t− y − cτ)dy

+ βI∗
+∞∫

−∞

fα(y)
(
1 + ln

(S(t− y − cτ)I(t− y − cτ)
S∗I(t)

))
dy + βI∗ ln I(t)

I∗
. (4.15)

Combining (4.13)–(4.15) yields

dV

dt
= −kd

r

(S − S∗)2

S
− S∗ kd

r

(S′

S

)2 − I∗
(I ′
I

)2 − βI∗g
(S∗

S

)
− βI∗

+∞∫
−∞

fα(y)g
(S(t− y − cτ)I(t− y − cτ)

S∗I(t)
)
dy.

Thus, V (t) is non-increasing and

dV (t)
dt

= 0 if and only if S(t) ≡ S∗, I(t) ≡ I∗, S′(t) = 0, I ′(t) = 0 for t ∈ R. (4.16)

Choose an increasing constant sequence {tn} with lim
n→∞

tn = +∞ and denote

{Sn(t)}∞n=1 = {S(t + tn)}∞n=1, {In(t)}∞n=1 = {I(t + tn)}∞n=1.

Note that {Sn(t)}∞n=1 and {In(t)}∞n=1 are bounded, then there exists a subsequence of the functions (still 
denoted by Sn and In) such that lim

n→∞
Sn(t) := S̃(t) and lim

n→∞
In(t) := Ĩ(t). Since V (t) is decreasing and 

bounded below, then for any n ∈ N,

m ≤ V (Sn, In)(t) = V (S, I)(t + tn) ≤ V (S, I)(t),

which implies that there is Ṽ0 ∈ R such that

lim
n→∞

V (Sn, In)(t) = lim
t+tn→∞

V (Sn, In)(t + tn) = Ṽ0,

for all t ∈ R. Thus, Lebesgue’s dominated convergence theorem follows that
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lim
n→∞

V (Sn, In)(t) = V (S̃, Ĩ)(t).

Thus, V (S̃, Ĩ)(t) = Ṽ0. Consequently,

dV (S̃, Ĩ)(t)
dt

= 0. (4.17)

Thus, by combining (4.16) and (4.17), we can see that S̃(t) = S∗ and Ĩ(t) = I∗, i.e., lim
t→+∞

(S(t), I(t)) =
(S∗, I∗). Hence, by (4.16), lim

t→+∞
(S′(t), I ′(t)) = (0, 0). This completes the proof. �

Using Propositions 4.1 and 4.2, we can complete the proof of Theorem 2.1.

5. Discussion

In this paper, we considered the reaction-convection infectious disease model (1.1) introduced by [8] for 
describing the dynamics of diseases with a fixed latent period in a spatially continuous environment. Li and 
Zou [8] obtained the necessary condition (μεr−βd > 0) for system (1.1) that determines a critical value c∗, 
which serves at least as a lower bound for the wave speed in the sense that when c < c∗, no traveling wave 
front connects the disease-free equilibrium E0(μ/d, 0) and the endemic equilibrium E∗(β/rε, με/β − d/r)
with speed c. Furthermore, numeric simulations demonstrated the existence of traveling wave solutions of 
system (1.1) for c > c∗, where the value c∗ is the minimal wave speed as well as the spatial spread speed of 
the disease. In the present paper, we provided a rigorous mathematical proof by establishing the existence of 
positive traveling wave solutions for (2.1) that connect the two equilibria E0(1, 0) and E∗(S∗, I∗) for c > c∗. 
Biologically, a traveling wave solution that connects the two equilibria E0(1, 0) and E∗(S∗, I∗) accounts for 
the transition from the disease-free equilibrium E0(1, 0) to the endemic equilibrium E∗(S∗, I∗) over time, 
where the wave speed c may explain the spatial spread speed of the disease, which may measure how fast 
the disease invades geographically. Hence, the study of the traveling waves is very important for disease 
models with spatial heterogeneity.

As mentioned in [8], all roots of the characteristic equation Δ(λ, c) = 0 are complex for 0 < c < c∗, 
so the solution of (2.2) oscillates about (1, 0), and thus the I component of the solution of (2.2) will take 
negative values. Hence, for 0 < c < c∗, (2.2) cannot have a positive solution that satisfies (2.3). Therefore, 
Li and Zou [8] have showed the non-existence of the traveling waves for c < c∗ (see [8] on page 2060 for 
details). As a final remark, it should be noted that in the present paper, we did not derive the existence or 
non-existence of the traveling waves for the minimal wave speed c∗ (in the case where R0 > 1). A detailed 
analysis of this problem will be challenging and we leave this as a further project.
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