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In this article, by introducing a new set and a new concept of ϕ − (h, e)-concave 
operators, and by using the cone theory and monotone iterative method, we 
present some new existence and uniqueness theorems of fixed points for increas-
ing ϕ − (h, e)-concave operators without requiring the existence of upper and lower 
solutions. As an application, we establish the existence and uniqueness of a nontriv-
ial solution for a new form of fractional differential equation with integral boundary 
conditions. The main results of this paper improve and extend some known results, 
and present a new method to study nonlinear equation problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In [24], we introduced the definition of generalized convex operator and considered the nonlinear operator 
equation on ordered Banach spaces x = Ax + x0, where A is an increasing, generalized concave operator, 
and we established some existence and uniqueness results of positive solutions for such equations. Further, 
we also studied the operator equation Ax = λx, where A is an increasing, generalized concave operator and 
the parameter λ > 0, and we give an existence and uniqueness result of positive solutions for any given 
λ > 0. Moreover, we present some clear properties of positive solutions for the operator equation, see [23]. 
These results can be applied to study nonlinear differential and integral equations, see [8,10,12,16,18,19,21,
22,26,28,29] for example. By using the fixed point results of generalized concave operators, [8] presented 
the existence and uniqueness of positive solutions for a singular Lane–Emden–Fowler equation; [12] gave 
the existence and uniqueness of monotone positive solutions for an elastic beam equation with nonlinear 
boundary conditions; [19] studied the existence and uniqueness of positive solutions for a nonlinear perturbed 
fractional two-point boundary value problem; [18,22,26,28,29] also get the existence and uniqueness of 
positive solutions for a three-point boundary value problem of second order impulsive differential equations 
([18]), a Neumann boundary value problem of second order impulsive differential equations ([22]), an optimal 
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control problem of second order impulsive differential equations ([26]), two classes of nonlinear perturbed 
Neumann boundary value problems for second-order differential equations ([28]) and two-point boundary 
value problems for second-order impulsive differential equations ([29]). In [10], the authors also considered 
the operator equation x = Ax + x0 and gave a fixed point theorem for decreasing and convex operators 
in a probabilistic Banach space partially ordered by a normal cone, and then disscussed the existence and 
uniqueness of positive solutions for a two-point boundary value problem. Based upon the results in [24], we 
studied the operator equation Ax + Bx + Cx = x on ordered Banach spaces, and then utilized the fixed 
point results to get the existence and uniqueness of positive solutions for two classes nonlinear problems: 
fourth-order two-point boundary value problems for elastic beam equations and elliptic value problems for 
Lane–Emden–Fowler equations. Similarly, [16] studied a class of operator equation A(x, x) + Bx = x, and 
proved the existence and uniqueness of positive solutions for a nonlinear integral equation of second-order 
on time scales.

In fact, in [24,23], the existence and uniqueness property is local, and the operators which we considered 
are defined in a special set Ph, where Ph is a subset of a cone P . Stimulated by our works [24,23], in this 
paper, we introduce a new set Ph,e which includes the set Ph and needs not be a subset of a cone P . Further, 
we define a new concept of ϕ −(h, e)-concave operators which extend generalized concave operators. Without 
requiring the existence of upper and lower solutions, we prove the existence and uniqueness of solutions for 
ϕ − (h, e)-concave operators. So our results in essence extend the corresponding ones in [24,23]. And then, 
we use our main fixed point theorem to study the following new form of fractional differential equation with 
integral boundary conditions:

{
Dα

0+u(t) + f(t, u(t)) = b, 0 < t < 1,
u(0) = u′(0) = 0, u(1) = β

∫ 1
0 u(s)ds,

(1.1)

where 2 < α ≤ 3, 0 < β < α, b > 0 is a constant, f : [0, 1] × (−∞, +∞) → (−∞, +∞) is continuous, Dα
0+ is 

the Riemann–Liouville fractional derivative of order α which is given as the following:

Dα
0+u(t) = 1

Γ(n− α)
dn

dtn

t∫
0

u(s)
(t− s)α+1−n

ds, n = [α] + 1,

here Γ denotes the Euler gamma function, [α] denotes the integer part of number α provided that the right 
side is point-wise defined on (0, +∞), the concept of fractional derivative can be seen in [15]. And we get a 
new result on the existence and uniqueness of solutions for the problem (1.1), which is not a consequence 
of the corresponding fixed point theorems in [24,23]. Here we should point out that this paper presents a 
new method to study nonlinear equation problems.

For the discussion of our main results, we list some notations, concepts in ordered Banach spaces. For 
the convenience of readers, we refer them to [7,11,24] for details.

Let (E, ‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y if and only if 
y − x ∈ P . If x ≤ y and x �= y, then we denote x < y or y > x. θ denotes the zero element of E. P is called 
normal if there exists M > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖; in this case M is 
the infimum of such constants, it is called the normality constant of P . We say that an operator A : E → E

is increasing if x ≤ y implies Ax ≤ Ay.
For any x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and μ > 0 such that λx ≤ y ≤ μx. 

Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ), we define the set Ph = {x ∈ E |
x ∼ h}. It is easy to see that Ph ⊂ P .

Definition 1. (See [24].) Let A : P → P be a given operator. For any x ∈ P and r ∈ (0, 1), there exists 
ϕ(r) ∈ (r, 1) such that A(rx) ≥ ϕ(r)Ax. Then, A is called a generalized concave operator.
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2. Main results

Let e ∈ P with θ ≤ e ≤ h. We define a new set

Ph,e = {x ∈ E|x + e ∈ Ph}.

Then we can see that h ∈ Ph,e and

Ph,e = {x ∈ E| there exist μ = μ(h, e, x) > 0, ν = ν(h, e, x) > 0 such that μh ≤ x + e ≤ νh}.

Remark 1. If e = θ, then Ph,θ = Ph. Moreover, Ph ⊆ Ph,e. But Ph,e is not a subset of P for some e, so Ph

and Ph,e are different.

Lemma 1. If x ∈ Ph,e, then λx + (λ − 1)e ∈ Ph,e for λ > 0.

Proof. If x ∈ Ph,e, then there are μ, ν > 0 such that

μh ≤ x + e ≤ νh.

For λ > 0, we get λx + (λ − 1)e + e = λx + λe = λ(x + e) and then

λμh ≤ λx + (λ− 1)e + e ≤ λνh.

Hence, λx + (λ − 1)e ∈ Ph,e. �
Lemma 2. If x ∈ Ph,e, then λx ∈ Ph,e for 0 < λ < 2.

Proof. For 0 < λ < 2, we have

λx + e = λx + (λ− 1)e + (2 − λ)e.

From Lemma 1, we have λx + (λ − 1)e ∈ Ph,e. Note that

θ ≤ (2 − λ)e ≤ (2 − λ)h,

we can get

λx + (λ− 1)e + (2 − λ)e ∈ Ph.

That is, λx + e ∈ Ph. So λx ∈ Ph,e. �
Lemma 3. If x, y ∈ Ph,e, then there exist 0 < μ < 1, ν > 1 such that

μy + (μ− 1)e ≤ x ≤ νy + (ν − 1)e.

Further, we can choose a small r ∈ (0, 1) such that

ry + (r − 1)e ≤ x ≤ r−1y + (r−1 − 1)e.
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Proof. If x, y ∈ Ph,e, there exist 0 < μ1, μ2 < 1, ν1, ν2 > 1 such that

μ1h ≤ x + e ≤ ν1h, μ2h ≤ y + e ≤ ν2h.

So

x + e ≥ μ1h = μ1

ν2
ν2h ≥ μ1

ν2
(y + e),

x + e ≤ ν1h = ν1

μ2
μ2h ≤ ν1

μ2
(y + e).

Let μ = μ1
ν2

, ν = ν1
μ2

, then 0 < μ < 1, ν > 1. So

μ(y + e) ≤ x + e ≤ ν(y + e),

and thus μy + (μ − 1)e ≤ x ≤ νy + (ν − 1)e. Further, we can take r ∈ (0, 1) such that r < μ < ν < r−1, and 
then

r(y + e) ≤ μ(y + e) ≤ x + e ≤ ν(y + e) ≤ r−1(y + e),

and in consequence, ry + (r − 1)e ≤ x ≤ r−1y + (r−1 − 1)e. �
To obtain our main results, we first give the definition of ϕ − (h, e)-concave operators.

Definition 2. Let A : Ph,e → E be a given operator. For any x ∈ Ph,e and λ ∈ (0, 1), there exists ϕ(λ) > λ

such that

A(λx + (λ− 1)e) ≥ ϕ(λ)Ax + (ϕ(λ) − 1)e. (2.1)

Then A is called a ϕ − (h, e)-concave operator.

Remark 2. If e = θ in (2.1), then A(λx) ≥ ϕ(λ)Ax. That is, A is a generalized concave operator. So a 
generalized concave operator can be said to be a ϕ − (h, θ)-concave operator. In addition, from (2.1), we 
obtain

Ax ≤ 1
ϕ(λ)A(λx + (λ− 1)e) +

(
1

ϕ(λ) − 1
)
e. (2.2)

Theorem 1. Let P be normal and A be an increasing ϕ − (h, e)-concave operator with Ah ∈ Ph,e. Then 
A has a unique fixed point x∗ in Ph,e. Moreover, for any w0 ∈ Ph,e, making the sequence wn = Awn−1, 
n = 1, 2, . . . , then we obtain ‖wn − x∗‖ → 0 as n → ∞.

Proof. Because Ah ∈ Ph,e, h ∈ Ph,e, from Lemma 3, we can choose a small t0 ∈ (0, 1) such that

t0h + (t0 − 1)e ≤ Ah ≤ t−1
0 h + (t−1

0 − 1)e. (2.3)

Since ϕ(t0) > t0, we can find a positive integer k such that

(
ϕ(t0)
t0

)k

≥ 1
t0
. (2.4)

Put
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xn = tn0h + (tn0 − 1)e, yn = t−n
0 h + (t−n

0 − 1)e, n = 1, 2, . . . .

Then we easily get

xn = t0xn−1 + (t0 − 1)e, yn = t−1
0 yn−1 + (t−1

0 − 1)e, n = 1, 2, . . . . (2.5)

Set u0 := xk, v0 := yk, then u0, v0 ∈ Ph,e and u0 = t2k0 v0 < v0. Further, by the definition of A and 
(2.3)–(2.5), we have

Au0 = Axk = A(t0xk−1 + (t0 − 1)e)

≥ ϕ(t0)Axk−1 + (ϕ(t0) − 1)e

= ϕ(t0)A(t0xk−2 + (t0 − 1)e) + (ϕ(t0) − 1)e

≥ ϕ(t0)[ϕ(t0)Axk−2 + (ϕ(t0) − 1)e] + (ϕ(t0) − 1)e

= (ϕ(t0))2Axk−2 + [(ϕ(t0))2 − 1]e

≥ · · · ≥ (ϕ(t0))kAh + [(ϕ(t0))k − 1]e

≥ (ϕ(t0))k[t0h + (t0 − 1)e] + [(ϕ(t0))k − 1]e

≥ tk−1
0 [t0h + (t0 − 1)e] + (tk−1

0 − 1)e

= tk0h + (tk0 − 1)e = u0.

Also, from (2.2)–(2.5), we obtain

Av0 = Ayk = A(t−1
0 yk−1 + (t−1

0 − 1)e)

≤ 1
ϕ(t0)

Ayk−1 +
(

1
ϕ(t0)

− 1
)
e

= 1
ϕ(t0)

A(t−1
0 yk−2 + (t−1

0 − 1)e) +
(

1
ϕ(t0)

− 1
)
e

≤ 1
ϕ(t0)

[
1

ϕ(t0)
Ayk−2 +

(
1

ϕ(t0)
− 1

)
e

]
+
(

1
ϕ(t0)

− 1
)
e

= 1
(ϕ(t0))2

Ayk−2 +
(

1
(ϕ(t0))2

− 1
)
e

≤ · · · ≤ 1
(ϕ(t0))k

Ah +
(

1
(ϕ(t0))k

− 1
)
e

≤ 1
(ϕ(t0))k

[t−1
0 h + (t−1

0 − 1)e] +
(

1
ϕ(t0)k

− 1
)
e

≤ 1
tk−1
0

[t−1
0 h + (t−1

0 − 1)e] +
(

1
tk−1
0

− 1
)
e

= 1
tk0
h +

(
1
tk0

− 1
)
e = v0.

So we have

u0 < v0, Au0 ≥ u0, Av0 ≤ v0. (2.6)

Let un = Aun−1, vn = Avn−1, n = 1, 2, . . . . From the monotonicity of A and (2.6), we can obtain that
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u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.7)

Since u0, v0 ∈ Ph,e, from Lemma 3, we also choose a τ1 > 0 such that

u0 ≥ τ1v0 + (τ1 − 1)e,

and from u0 < v0, we get τ1 ∈ (0, 1). By using (2.7), we have

un ≥ u0 ≥ τ1v0 + (τ1 − 1)e ≥ τ1vn + (τ1 − 1)e, n = 1, 2 . . . .

Denote

tn = sup{t > 0 : un ≥ tvn + (t− 1)e}.

Then from (2.7), we get

tn ∈ (0, 1), un ≥ tnvn + (tn − 1)e. (2.8)

So, by (2.7), (2.8),

un+1 ≥ un ≥ tnvn + (tn − 1)e ≥ tnvn+1 + (tn − 1)e

and in consequence, tn+1 ≥ tn. That is, {tn} is increasing. So we can set tn → t∗ as n → ∞. Then t∗ ∈ [0, 1]. 
Next we prove t∗ = 1. If 0 < t∗ < 1, we need to consider two cases:
Case one: there is an integer N such that tN = t∗. So tn = t∗ for all n > N . Then for n ≥ N ,

un+1 = Aun ≥ A(tnvn + (tn − 1)e)

= A(t∗vn + (t∗ − 1)e) ≥ ϕ(t∗)Avn + (ϕ(t∗) − 1)e

= ϕ(t∗)vn+1 + (ϕ(t∗) − 1)e.

From the definition of tn+1, we get t∗ = tn+1 ≥ ϕ(t∗) > t∗, this is a contradiction.
Case two: for all integers n, tn < t∗. Then we have

un+1 = Aun ≥ A(tnvn + (tn − 1)e)

= A

(
tn
t∗

(t∗vn + (t∗ − 1)e) +
(
tn
t∗

− 1
)
e

)

≥ ϕ

(
tn
t∗

)
A(t∗vn + (t∗ − 1)e) +

(
ϕ

(
tn
t∗

)
− 1

)
e

≥ ϕ

(
tn
t∗

)
[ϕ(t∗)Avn + (ϕ(t∗) − 1)e] +

(
ϕ

(
tn
t∗

)
− 1

)
e

= ϕ

(
tn
t∗

)
ϕ(t∗)vn+1 +

(
ϕ

(
tn
t∗

)
ϕ(t∗) − 1

)
e.

Also, from the definition of tn+1, we get

tn+1 ≥ ϕ

(
tn
t∗

)
ϕ(t∗) > tn

t∗
ϕ(t∗).

Let n → ∞, we obtain t∗ ≥ ϕ(t∗) > t∗, this is also a contradiction. Hence, t∗ = 1 and thus limn→∞ tn = 1.
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Next, we prove the sequences {un}, {vn} are Cauchy sequences. For any natural number p we get

θ ≤ un+p − un ≤ vn − un ≤ vn − tnvn − (tn − 1)e

= (1 − tn)vn + (1 − tn)e ≤ (1 − tn)v0 + (1 − tn)e.

So

θ ≤ vn − vn+p ≤ vn − un ≤ (1 − tn)v0 + (1 − tn)e.

Note that P is normal, we also get

‖un+p − un‖ ≤ M(1 − tn)‖v0 + e‖, ‖vn − vn+p‖ ≤ M(1 − tn)‖v0 + e‖, (2.9)

where M is the normality constant. Let n → ∞ in (2.9), we obtain

‖un+p − un‖ → 0, ‖vn − vn+p‖ → 0. (2.10)

From (2.10), we can claim that {un}, {vn} are Cauchy sequences. Since E is complete, there are u∗, v∗ ∈ E

such that un → u∗, vn → v∗ as n → ∞. From (2.7),

u0 ≤ un ≤ u∗ ≤ v∗ ≤ vn ≤ v0.

Thus, u∗, v∗ ∈ Ph,e and

θ ≤ v∗ − u∗ ≤ vn − un ≤ (1 − tn)(v0 + e).

Also, by the normality of P ,

‖v∗ − u∗‖ ≤ M(1 − tn)‖v0 + e‖ → 0 (n → ∞).

Therefore, u∗ = v∗. Set x∗ = u∗ = v∗ and we get

un+1 = Aun ≤ Ax∗ ≤ Avn = vn+1.

Let n → ∞, we obtain Ax∗ = x∗. That is, x∗ is a fixed point of A in Ph,e.
Now we show that x∗ is the unique fixed point of A in Ph,e. Suppose that y∗ is any fixed point of A in 

Ph,e. By Lemma 3, there exists τ2 > 0 such that x∗ ≥ τ2y
∗ + (τ2 − 1)e. Set

t = sup{t > 0|x∗ ≥ ty∗ + (t− 1)e}.

Next we prove t ≥ 1. If 0 < t < 1, then x∗ ≥ ty∗ + (t− 1)e and thus

x∗ = Ax∗ ≥ A(ty∗ + (t− 1)e)

≥ ϕ(t)Ay∗ + (ϕ(t) − 1)e

= ϕ(t)y∗ + (ϕ(t) − 1)e.

By the definition of t, we get t ≥ ϕ(t) > t, this is a contradiction. So t ≥ 1 and thus

x∗ ≥ ty∗ + (t− 1)e ≥ ty∗ ≥ y∗.

Similarly, we also obtain y∗ ≥ x∗. Therefore, x∗ = y∗.
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Finally, for any given w0 ∈ Ph,e, let wn = Awn−1, n = 1, 2, . . . , we prove wn → x∗ as n → ∞. Since 
x∗, w0 ∈ Ph,e, from Lemma 3, there exists τ3 ∈ (0, 1) such that

τ3x
∗ + (τ3 − 1)e ≤ w0 ≤ τ−1

3 x∗ + (τ−1
3 − 1)e. (2.11)

Let

u′
0 = τ3x

∗ + (τ3 − 1)e, v′0 = τ−1
3 x∗ + (τ−1

3 − 1)e,

u′
n = Au′

n−1, v′n = Av′n−1, n = 1, 2, . . . .

Then,

u′
0 ≤ w0 ≤ v′0, u′

0 ≤ x∗ ≤ v′0, v′0 ≥ τ−1
3 x∗ ≥ τ−2

3 u′
0 > u′

0.

From the monotonicity of A, we have

u′
n ≤ wn ≤ v′n, u

′
n ≤ x∗ ≤ v′n, n = 1, 2, . . . . (2.12)

Further,

u′
1 = Au′

0 = A(τ3x∗ + (τ3 − 1)e) ≥ ϕ(τ3)Ax∗ + (ϕ(τ3) − 1)e

≥ τ3x
∗ + (τ3 − 1)e = u′

0.

By (2.2), we obtain

v′1 = Av′0 = A(τ−1
3 x∗ + (τ−1

3 − 1)e) ≤ 1
ϕ(τ3)

Ax∗ +
(

1
ϕ(τ3)

− 1
)
e

≤ 1
τ3

x∗ +
(

1
τ3

− 1
)
e = v′0.

In a general, we have

u′
0 ≤ u′

1 ≤ · · · ≤ u′
n ≤ · · · ≤ v′n ≤ · · · ≤ v′1 ≤ v′0.

Similar to the above proof, we can prove that {u′
n}, {v′n} have the same limitation. From (2.12), the limitation 

is x∗, and thus wn → x∗ as n → ∞. �
Corollary 1. (Theorem 2.1 of [23]) Let P be normal and A be an increasing ϕ − (h, θ)-concave operator 
with Ah ∈ Ph. Then A has a unique fixed point x∗ in Ph. Moreover, for any w0 ∈ Ph, making the sequence 
wn = Awn−1, n = 1, 2, . . . , we get ‖wn − x∗‖ → 0 as n → ∞.

Corollary 2. (Theorem 2.1 of [24]) Let P be a normal cone and h > θ. Assume that:
(D1) A : P → P is increasing and Ah + x0 ∈ Ph with x0 ∈ P ;
(D2) for x ∈ P and λ ∈ (0, 1), there exists ϕ(λ) ∈ (λ, 1) such that A(λx) ≥ ϕ(λ)Ax.
Then the operator equation x = Ax + x0 has a unique solution in Ph.

Proof. Let Bx = Ax + x0, then B : P → P is increasing and Bh ∈ Ph. Morover, for λ > 0, we can get

B(λx) = A(λx) + x0 ≥ ϕ(λ)Ax + x0 ≥ ϕ(λ)(Ax + x0) = ϕ(λ)Bx.

That is, B is a ϕ − (h, θ)-concave operator. By Theorem 1, the conclusion holds. �
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Remark 3. Under the conditions of Theorem 1, from the proof, we can obtain the existence of upper and 
lower solutions for the ϕ − (h, e)-concave operator A. If we assume that A : Ph,e → Ph,e, then Ah ∈ Ph,e is 
automatically satisfied. So we also get the following conclusion.

Corollary 3. Let P be normal and A : Ph,e → Ph,e be an increasing ϕ −(h, e)-concave operator. Then A has a 
unique fixed point x∗ in Ph,e. Moreover, for any w0 ∈ Ph,e, making the sequence wn = Awn−1, n = 1, 2, . . . , 
we obtain ‖wn − x∗‖ → 0 as n → ∞.

3. Application

Integral boundary value problems have various applications in applied fields which include chemical en-
gineering, blood flow problems, thermo-elasticity, underground water flow and population dynamics, see [5]. 
Recently, fractional integral boundary value problems have been extensively studied, see [1–6,9,13,14,17,
20,25,27,30] for example. The existence of solutions for integral boundary value problems is an important 
problem. In literature, most of the authors have studied the existence and multiplicity of solutions. In [3], 
Cabada and Hamdi considered a class of fractional equations involving the Riemann–Liouville fractional 
derivative with integral boundary value conditions

{
Dα

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) = 0, u(1) = β

∫ 1
0 u(s)ds.

(3.1)

The authors established the existence of one positive solution for problem (3.1) under sublinear case or 
superlinear case. The method used there is Guo–Krasnosel’skii fixed point theorem. However, there are few 
papers reported on the uniqueness of solutions for fractional differential equations with integral boundary 
conditions. In this section, we will use Theorem 1 to study the fractional integral boundary value prob-
lem (1.1).

Lemma 4. (Theorem 2.1 of [3]) Let 2 < α ≤ 3 and α �= β. Assume y ∈ C[0, 1], then the following fractional 
differential equation with integral boundary conditions

{
Dα

0+u(t) + y(t) = 0, t ∈ (0, 1),
u(0) = u′(0) = 0, u(1) = β

∫ 1
0 u(s)ds,

has a unique solution u ∈ C1[0, 1], given by

u(t) =
1∫

0

G(t, s)y(s)ds, (3.2)

where

G(t, s) =
{

tα−1(1−s)α−1(α−β+βs)−(α−β)(t−s)α−1

(α−β)Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−1(1−s)α−1(α−β+βs)

(α−β)Γ(α) , 0 ≤ t ≤ s ≤ 1.
(3.3)

Lemma 5. (Lemma 3.2 of [23]) Let 2 < α ≤ 3 and 0 < β < α. The function G(t, s) given as in (3.3) has 
the following properties:

(1 − s)α−1βs
tα−1 ≤ G(t, s) ≤ (1 − s)α−1(α− β + βs)

tα−1, t, s ∈ [0, 1].
(α− β)Γ(α) (α− β)Γ(α)
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In the following, we will work in the Banach space C[0, 1], the space of all continuous functions on [0, 1], 
the norm is ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Evidently, this space can be equipped with a partial order

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Set P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. We know that P is a normal cone in C[0, 1]. 
Let

e(t) = b

(α− β)Γ(α)

[
α− β

α
tα−1 + β

α(α + 1) t
α−1 − α− β

α
tα
]
, t ∈ [0, 1].

Theorem 2. Suppose that
(H1) f : [0, 1] × [−e∗, +∞) → (−∞, +∞) is increasing with respect to the second variable, where e∗ =
max{e(t) : t ∈ [0, 1]};
(H2) for any λ ∈ (0, 1), there is ϕ(λ) > λ such that

f(t, λx + (λ− 1)y) ≥ ϕ(λ)f(t, x), ∀ t ∈ [0, 1], x ∈ (−∞,+∞), y ∈ [0, e∗];

(H3) f(t, 0) ≥ 0 with f(t, 0) �≡ 0 for t ∈ [0, 1].
Then the problem (1.1) has a unique nontrivial solution u∗ in Ph,e, where h(t) = Htα−1, t ∈ [0, 1] with 
H ≥ b(α−β+1)

(α−β)(α+1)Γ(α) . Moreover, for any given w0 ∈ Ph,e, making a sequence

wn(t) =
1∫

0

G(t, s)f(s, wn−1(s))ds−
b(α− β + 1)

(α− β)(α + 1)Γ(α) t
α−1 + b

αΓ(α) t
α, n = 1, 2, . . . ,

we have wn(t) → u∗(t) as n → ∞.

Proof. Firstly, for t ∈ [0, 1],

e(t) = b

(α− β)Γ(α)

[
α− β

α
tα−1(1 − t) + β

α(α + 1) t
α−1

]
≥ 0.

That is, e ∈ P . Further, for t ∈ [0, 1],

e(t) = b(α− β + 1)
(α− β)(α + 1)Γ(α) t

α−1 − b

αΓ(α) t
α ≤ b(α− β + 1)

(α− β)(α + 1)Γ(α) t
α−1 ≤ Htα−1 = h(t).

Hence, 0 ≤ e(t) ≤ h(t). In addition, Ph,e = {u ∈ C[0, 1]|u + e ∈ Ph}.
From Lemma 4, the problem (3.1) has an integral formulation given by

u(t) =
1∫

0

G(t, s)f(s, u(s))ds− b

1∫
0

G(t, s)ds

=
1∫

0

G(t, s)f(s, u(s))ds− b

(α− β)Γ(α)

[
α− β

α
tα−1 + β

α(α + 1) t
α−1 − α− β

α
tα
]

=
1∫
G(t, s)f(s, u(s))ds− e(t).
0
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For any u ∈ Ph,e, we consider the following operator of the form

Au(t) =
1∫

0

G(t, s)f(s, u(s))ds− e(t), t ∈ [0, 1].

So u(t) is the solution of the problem (1.1) if and only if u(t) = Au(t).
First, we show that A : Ph,e → E is a ϕ − (h, e)-concave operator. For u ∈ Ph,e, λ ∈ (0, 1), from (H2) we 

have

A(λu + (λ− 1)e)(t) =
1∫

0

G(t, s)f(s, λu(s) + (λ− 1)e(s))ds− e(t)

≥ ϕ(λ)
1∫

0

G(t, s)f(s, u(s))ds− e(t)

= ϕ(λ)[
1∫

0

G(t, s)f(s, u(s))ds− e(t)] + [ϕ(λ) − 1]e(t)

= ϕ(λ)Au(t) + [ϕ(λ) − 1]e(t).

Hence, we obtain

A(λu + (λ− 1)e) ≥ ϕ(λ)Au + [ϕ(λ) − 1]e, u ∈ Ph,e, λ ∈ (0, 1).

Therefore, A is ϕ − (h, e)-concave operator.
Secondly, we prove that A : Ph,e → E is increasing. For u ∈ Ph,e, we have u + e ∈ Ph. So there exists 

μ > 0 such that u(t) + e(t) ≥ μh(t), t ∈ [0, 1]. Hence,

u(t) ≥ μh(t) − e(t) ≥ −e(t) ≥ −e∗.

Therefore, from (H1), A : Ph,e → E is increasing.
Next, we prove that Ah ∈ Ph,e. So we need to prove Ah + e ∈ Ph. By Lemma 5 and (H1), (H3),

Ah(t) + e(t) =
1∫

0

G(t, s)f(s, h(s))ds =
1∫

0

G(t, s)f(s,Hsα−1)ds

≤
1∫

0

(1 − s)α−1(α− β + βs)
(α− β)Γ(α) tα−1f(s,H)ds

≤ α

(α− β)Γ(α)

1∫
0

(1 − s)α−1f(s,H)ds · tα−1

= α

(α− β)HΓ(α)

1∫
0

(1 − s)α−1f(s,H)ds · h(t)

and
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Ah(t) + e(t) =
1∫

0

G(t, s)f(s,Hsα−1)ds

≥
1∫

0

(1 − s)α−1βs

(α− β)Γ(α) t
α−1f(s, 0)ds

= β

(α− β)Γ(α)

1∫
0

s(1 − s)α−1f(s, 0)ds · tα−1

= β

(α− β)HΓ(α)

1∫
0

s(1 − s)α−1f(s, 0)ds · h(t).

Let

l1 = β

(α− β)HΓ(α)

1∫
0

s(1 − s)α−1f(s, 0)ds, l2 = α

(α− β)HΓ(α)

1∫
0

(1 − s)α−1f(s,H)ds.

Because α > β, Γ(α) > 0 and from (H1), (H3),

1∫
0

(1 − s)α−1f(s,H)ds ≥
1∫

0

s(1 − s)α−1f(s, 0)ds > 0

and thus l2 ≥ l1 > 0. So this shows that Ah + e ∈ Ph.
Consequently, by using Theorem 1, the operator A has a unique fixed point u∗ in Ph,e and thus

u∗(t) =
1∫

0

G(t, s)f(s, u∗(s))ds− e(t), t ∈ [0, 1].

Evidently, u∗(t) �≡ 0, t ∈ [0, 1]. Therefore, u∗(t) is a nontrivial solution. Moreover, for any w0 ∈ Ph,e, the 
sequence wn = Awn−1, n = 1, 2, . . . satisfies wn → u∗ as n → ∞. That is,

wn(t) =
1∫

0

G(t, s)f(s, wn−1(s))ds−
b(α− β + 1)

(α− β)(α + 1)Γ(α) t
α−1 + b

αΓ(α) t
α, n = 1, 2, . . . ,

and wn(t) → u∗(t) as n → ∞. �
Remark 4. For some differential equation boundary value problems, we can find two functions e(t), h(t) and 
we can also construct functions which satisfy the conditions of Theorem 2. For example, let f(t, x) = [ e(t)e∗ x +
e(t)] 1

3 , where 0 ≤ e(t) ≤ h(t), e∗ = max{e(t) : t ∈ [0, 1]} > 0. Then f : [0, 1] × (−∞, +∞) → (−∞, +∞) is 
continuous and increasing with respect to the second variable, f(t, 0) = [e(t)] 1

3 ≥ 0 with f(t, 0) �≡ 0. Next 
we show that the condition (H2) is satisfied. Let ϕ(λ) = λ

1
3 , λ ∈ (0, 1). We have ϕ(λ) > λ for λ ∈ (0, 1). 

For λ ∈ (0, 1), x ∈ (−∞, +∞), y ∈ [0, e∗],

f(t, λx + (λ− 1)y) =
{
e(t)
e∗

[λx + (λ− 1)y] + e(t)
} 1

3

= λ
1
3

{
e(t)

∗

[
x + (1 − 1 )y

]
+ 1

e(t)
} 1

3

e λ λ
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= λ
1
3

[
e(t)
e∗

x + (1 − 1
λ

)e(t)
e∗

y + 1
λ
e(t)

] 1
3

≥ λ
1
3

[
e(t)
e∗

x + (1 − 1
λ

)e(t)
e∗

e∗ + 1
λ
e(t)

] 1
3

= λ
1
3

[
e(t)
e∗

x + e(t)
] 1

3

= ϕ(λ)f(t, x).

Remark 5. If b = 0, we can get the uniqueness of positive solutions for the problem (1.1) by using Corollary 1
(see Theorem 3.1 with λ = 1 in [23]). If b > 0, we can not obtain the similar results by using the corresponding 
fixed point theorems in [24,23].
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