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with logistic source

Jie Zhao! Chunlai Mu, Deqin Zhou, Ke Lin

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China

Abstract

This paper deals with the parabolic-elliptic-elliptic attraction-repulsion chemotaxis system
with logistic source

u =V - (D(w)Vu) — V- (xuVov) + V- (EuVw) +ru — pu?, o€, t>0,
0= Av+ au — fv, xe, t>0,
0 =Aw + yu — dw, reQ, t>0,

under no-flux boundary conditions in bounded domain with smooth boundary, where x, £, «, 8,7, 0, r
and p are assumed to be positive.

When  C R?, D(u) is assumed to satisfy D(0) > 0, D(u) > cpu™ ! with m > 1 and cp >
0, it is proved that if xya — &y > 0 and p = %(Xoe — &), then for any given uy € WH>(Q),
the system possesses a global and bounded classical solution. For the case where D(u) = 1
and n > 3, the convergence rate of the solution is established. When the random motion of
the chemotactic species is neglected i.e. (D(u) =0) and 2 C R" (n > 2) is a convex domain,
boundedness and the finite time blow up of the solution are investigated.
Keywords: Chemotaxis; Boundedness; Blow up; Asymptotic behavior; Logistic source
AMS(2010) Subject Classification: 92C17; 34K12; 35K55; 35B40; 35B44

1 Introduction

Chemotaxis is an interesting phenomenon which is used to measure the movement of cells in
response to chemical substance. In 1970, Keller and Segel [8] (see also [7,9]) introduced a model

to describe the collective behavior of cells type which can be read as follows

u =V - (Dw)Vu) = V- (xuVo) + f(u), z€Q, t>0,

TUr = AV + u — v, e, t>0, (11)
ou_ 2 e, t>0, '
u(x,0) = ug(z), Tv(x,0)=ve(x), x € €,

where u(x,t) denotes the density of cells and v(z,t) represents the concentration of the chemoat-
tractant. The function f : [0,00) — R is smooth and fulfills f(0) > 0. x > 0 is a parameter referred

to as chemosensitivity.

*Corresponding author: jiezhaocqu@163.com



Recently, there is an increasing interest in studying the Keller-Segel model and the qualitative
analysis of the model is worthwhile and challenging. In the absence of the logistic source (i.e.
f(u) = 0) for system (1.1), the knowledge appears to be rather complete. For instance, if D(u) = 1,
it was shown in [31] that the system (1.1) admits a unique global solution under the condition n = 1.
Nagai (see [28-30]) found a critical mass which determines the behavior of the solution when n = 2.
More precisely, there is a threshold value m, > 0 such that the solution to (1.1) exists globally
and remains bounded if the initial mass [lug|l 1) < me, whereas finite time blow up occurs
when |ugl/z1(q) > me. Additionally, when n > 3, relying on a Lyapunov function, Winkler [42]
established the existence of radially symmetric solution blowing up in finite time with proper initial
conditions.

In view of the underlying biological background, cell motility should be regarded as movement
in a porous medium, accordingly, the cell movement can be described by a nonlinear function
D(u). There have been many results about whether the solutions are global bounded or blow up,
the readers can refer to [2,10,14,34,38] and the references therein.

In fact, the blow up phenomenon of the solution is very extreme in practical applications. For
this reason, many scholars investigate the chemotaxis model (1.1) with logistic source function f(u)
which is expected to prevent the blow up of the solution. For example, when the function f(u)
fulfills £(0) >0 and f(u) < a— pu? for all u > 0 with some a > 0 and p > 0, for the case where
7 =0and D(u) = 1, the main results in [36] showed the prevention of blow up under the conditions
n<2 pu>0o0rn>3and yu > "T_QX with x > 0. Moreover, when 7 = 0 and D(u) > cu™ holds
for all w > 0 with some ¢ > 0 and m > 1, Wang et al. [45] established the boundedness and large
time asymptotic behavior of the solution to system (1.1). Under the assumptions 7 = 1, D(u) = 1
and 2 is a smooth bounded convex domain, Winkler [43] showed that sufficiently large p ensures
the global existence and boundedness of solutions when n > 3. Furthermore, in [39], Winkler

investigated the following chemotaxis model without random motion of the cells

ug =~V - (uVv) +ru— pu?, x €, t>0,
0=Av+u—wu, ze, t>0

in one dimensional case. For p > 1, the corresponding solution remains bounded. For p < 1,
the solution blows up in finite time. Lankeit [25] considered the system in a ball for arbitrary
spatial dimension n. Moreover, under the assumption of Q being convex, Kang and Stevens [15]
extended the recent results given by Winkler [39] and Lankeit [25]. For more results on the classical
Keller-Segel model and its variants, we refer the readers to [1,11,12, 38,40, 41, 46].

The main concern of the above Keller-Segel model is chemoattraction, however, in practical
application, chemorepulsion is also involved in many biological processes, and can form various

interesting biological patterns (see [26,32]). Let w be a secondary chemical substance as a chemore-



pellent which leads to the repulsion migration of cells, then system (1.1) can be directly generalized

as the following attraction-repulsion chemotaxis model

up =V - (D(u)Vu) = V- (xuVv) + V- (EuVw) + f(u), ze€Q, t>0,

Tvr = Av 4+ au — P, r€eQ, t>0,

Tws = Aw + yu — dw, r €N, t>0, (1.2)
%:8_«;:%_15:0’ x e, t>0,

u(z,0) = ug(x), x e Q.

u = u(z,t) denotes the density of the cells population; v = v(z,t) and w = w(x,t) represent the
concentration of the chemoattractant and chemorepellent, which lead to the attractive movement
and the repulsion migration of cells. The function f : [0,00) — R is smooth and fulfills f(0) > 0.
a>0,8>0,v>0and > 0 are positive parameters. x > 0 and £ > 0 measure the strength of
the attraction and repulsion, respectively.

When f(u) = 0 and D(u) = 1, the main results in [6,24] showed that the system (1.2) with
n =1 and 7 = 1 possesses a unique global bounded solution; under the assumptions  C R? and
repulsion dominates (i.e. £y — xa > 0), Tao and Wang [33] proved that the model (1.2) admits a

unique global solution, and Liu [21] improved the result of [33]; when  C R?, 7 = 0 and attraction

dominates (i.e. £&y—xa < 0), all solutions to (1.2) are global in time if |[uol[ 1 (o) < Xa4f£,y (see [3]),

8
xa—¢&y

whereas finite time blow up occurs if |luol[1 (o) > and 0 > (3 (see [16]); under the assumption
that repulsion cancels attraction (i.e. &y — xa = 0), Lin et al. [18] (see also [17]) proved the global
existence of classical solution in two or three dimensions, as well as the large time asymptotic
behavior.

In the case where f(u) fulfills f(u) = ru— pu?, where r and u are positive constants. It is known
that for 7 = 0 and D(u) = 1, all solutions of problem (1.2) are bounded provided that n < 2, u > 0
orn >3, pn > 2(ya — &) (see [47]); Wang [44] proved that if 7 = 0 and D(u) > cu™ for all

u > 0 holds with some ¢ > 0 and m > 1, system (1.2) possesses a unique global bounded classical

solution provided that p > u*, where
_9 . 2
) e =&y), ifm<2-3,
0, if m>2-2

Furthermore, for more results on the attraction-repulsion chemotaxis system with (without) logistic
source, we refer the readers to [4,5,19,20,22,23|.

In this paper, we consider the following parabolic-elliptic-elliptic attraction-repulsion chemo-



taxis with logistic source

ug =V - (D(w)Vu) — V- (xuVo) + V- (éuVw) +ru — pu?, x€Q, t>0,

0= Av+ au — Pv, e, t>0,

0 =Aw+yu — dw, r€eN, t>0, (1.3)
%:%:%:07 e, t>0,

u(z,0) = ug(x), x € Q.

Our first aim is to discuss the effect of the diffusion exponent and logistic source for the solutions

of model (1.3). To this end, we suppose that the diffusion function D(u) satisfies

D(u) € C%([0,00)), D(0) >0, (1.4)
and

D(u) > cpu™ ! for all u >0, (1.5)

where cp > 0 and m > 1.
Motivated by the arguments in [44,47] and the method in [12,15], the present work focuses on
the analysis of (1.3) under the assumptions Q C R* and p = £(ya — &y). Compared to [12,15],

the main obstacle in this paper is that we can not obtain the boundedness of ||uHL%(Q directly.

)

However, we can estimate ||uHL%(Q based on the boundedness of HUHL%*Q (see Lemma 3.3).

)

Our first result reads as follows:

(D)

Theorem 1.1. Let Q C R? be a bounded domain with smooth boundary. Suppose that y, &, a,

B, v, 0 and p are given positive parameters satisfying

xa—£7>07mﬂ/v=%Wa—€w. (1.6)

Assume that (1.4) and (1.5) hold, then for any nonnegative ug € W1>°(Q), the system (1.3)
possesses a unique global classical solution (u, v, w) which is uniformly bounded in Q x (0, c0).
Remark 1.1. Our result in this paper is an improvement of the result in [44]. Moreover, for the
special case m = 1, Theorem 1.1 extends the result in [47].

Remark 1.2. Our result in this paper, together with the previous results in [44], show that the

system (1.3) possesses a unique global bounded classical solution for any 1 > p* when n = 3, where

(xa—¢&y), ifm<

) if m >

*

M:

O Wi
ol Ol

Remark 1.3. We have to leave an open question whether the solution to (1.3) still remains
bounded when ya —&v > 0 and p = ”T*Q(X@ —&v) with n > 4.
For the case where D(u) = 1, Zhang and Li [47] established the asymptotic behavior of the

solution to system (1.3), but the convergence rate of the solution is still unknown. Thus, the second



aim is to explore the convergence rate of the solution to (1.3) under the assumptions that D(u) =1

2.2 2¢2
and p > max {%(Xa —&), Hr Tt Tgug }

In order to prove our main result in this direction, similar to [13,35], we construct

o (o)

which acts as a Lyapunov functional for (1.3). Relying on an estimate of the corresponding energy
inequality, we can first obtain the convergence of (u,v,w) to (ﬁ, %, %) in L2(Q) as well as in
L>*(Q) (Lemma 4.2 and Lemma 4.3). Finally, we establish the convergence rate of (u,v,w) by
means of the Gagliardo-Nirenberg inequality.

The main result in this direction can be stated as follows.

n ’ o 8upf 8o

Then for any initial data ug € C(Q), one can find two positive constants ¢ and A such that the

Theorem 1.2. Let n > 3 and assume that D(u) =1 and p > max{"_z(xa —&v) e | e }

classical solution of (1.3) satisfies

r
u— —

1

ar

’77‘
Bu

5 < ce_’\t, t>0. (1.7)

Leo(Q)

+ Hv

#uw

L>(Q) L>(Q)

To the best of our knowledge, very few results related to the system (1.3) without random
motion of cells (i.e. D(u) = 0) seem to be known. With regard to this, the third goal in this
paper is to make a substantial step forward towards the behavior of the solution to (1.3) under the
assumption D(u) = 0.

When D(u) = 0, we can not prove that there is a classical solution to system (1.3). However,
we can prove that the model possesses at least one nonnegative regular solution which is defined
as follows:

Definition 1.1. Let T' € (0, 00), nonnegative function (u, v, w) is called a regular solution of (1.3)
with D(u) =0 if

(1) for any g > n,

w e LI(0,T), Wh1(Q)) N L>®((0,T) x Q),

v e LY(0,T), W>4(Q)) N L=((0,T) x ),

w e LI((0,T), W?9(Q)) N L>=((0,T) x Q);

(2) the integral equations

T T T T
—/ /ugpt—/ /uogp(O)zx/ /qu-Vgp—f/ /qu-Vgo
0 Q 0 Q 0 Q 0 Q
T T
+7’/ /wp—u/ /uztp,
0 Q 0 Q

/OT/QAUC/OT/QBUCJF/OT/QOCUC:Q



and

T T T
/ /Awn—/ /5w77+/ /Wun:O
0 Jo 0 Ja 0o Jo

hold for all ¢ € C§°(Q x (0,T)), ¢ € C§ (2 x (0,T)) and € C§ (2 x (0,T)).
In view of the underlying biological background, we find it worthwhile to investigate the solution
to system (1.3) when n > 2 and our results in this case can be stated as follows.
Theorem 1.3. Let n > 2, D(u) = 0 and Q@ C R"™ be a convex domain with smooth boundary.
Suppose that ug € WH*(Q), then for any ¢ > n, there is a maximal time Ty € (0,00) such that
the regular solution (u,v,w) to system (1.3) exists for any time ¢ < Ty. Moreover:
(7) If o> ps, where
_Jo if xa =&y <0,
"o xa—&y if xa =&y >0,
then the corresponding solution of system (1.3) is uniformly bounded.
(id) If xa =&y > 0, p < xao— &y and the initial data ||uol| Le(q) is sufficiently large, then the solution
of (1.3) blows up in finite time.
Remark 1.4. Due to the lack of an effective way, it is not clear about the behavior of the solution
when p = u, and we have to leave it as an open problem.
The rest of this paper is organized as follows. In the next section, we give some preliminary
inequalities which are important for our proofs. Some estimates of the solution and the proof of
Theorem 1.1 are shown in Section 3. In Section 4, we consider the case D(u) = 1 and obtain the

convergence rate of the solution. Finally, we give the proof of Theorem 1.3 in Section 5.

2 Preliminaries

In this section, we recall some preliminary estimates and some results which will be used in
our proof. The following statement on local existence of classical solution to (1.3) has already been
proven in [44].

Lemma 2.1. Suppose that @ C R"(n > 1) is a bounded domain with smooth boundary and
up € WH(Q) is a non-negative function. Assume that D(u) satisfies (1.4) and (1.5). Then
problem (1.3) has a unique local-in-time non-negative classical solution

u€ CUQ x [0, Tinaa)) N C*HQ X (0, Trnaa)),

v € CY(Q % [0, Trnaz)) N C*H(Q % (0, Tnaz)),

w € CYQ x [0, Tmaz)) N C*H(Q x (0, Tinac)),

where T}, denotes the maximal existence time. Moreover, if T4 < 00, then

u(-s )| peo () — 00 as t = Tnaa-



In the proof of the main result, we will frequently use the following version of the Gagliardo-
Nirenberg inequality, for details we refer the readers to [33].
Lemma 2.2. Let Q be a bounded domain in R”. Suppose r € (0,p) and ¢» € WH2(Q) (" L" ().

Then there exists a positive constant Cy depending on 2, p, and r such that
19l ey < CGN(||V1/J||%2(Q)||¢H1L7(GQ) + 1]l Lr @) (2.1)

holds with a € (0,1) fulfilling
that is

Lemma 2.3. (see [47]) Let (u,v,w) be a nonnegative solution of (1.3). Then for any € > 0, there

is a constant C':= C(p, ¢, [luo||11(q)) > 0 fulfilling
/ wPt < 5/ W4 C p>0 (2.2)
Q Q
for all t € (0, Thnax)-
3 Proof of Theorem 1.1

The starting point of our analysis is the following inequality.
Lemma 3.1. Suppose that D(u) satisfies (1.4) and (1.5) with m > 1, then for any p € [1, +0c0),
the solution of (1.3) fulfills

1d 4 —1 mtp— -1
Lo [ oD [ < [ Pl [
pdt Jq (m+p—1)% Jo Q P Q

- (u - p%l(xa - 57)) /Qup“

Proof. Multiplying both sides of the first equation in (1.3) by uP~! and integrating by parts, we

(3.1)

for all t € (0, Thnax)-



have

1
71/up:/up_lut:/up_lv-(D(u)Vu)f/up_1V~(xqu)
dt Jo Q Q Q
+/ upflv-(gqu)—l—r/up—u/upH
Q Q Q

=—(p—1) /QUP_QD(U)WUP +(p-1) /Q Xup_1Vu -V

—(p—1)/§1L”71VU'VU)—|—7"/up—u/up+1
Q Q Q

:_(p_1)/up 2D ()| Vul? + ﬂ/xwp Vo

/{Vup Vw—i—r/up—u/upH

— p-1) /Q =2 D) vl — 2= /Q aP(x Ao — EAw)
—l—r/Qup—u/QupH

for all t € (0, Tynqz)- Invoking the second and the third equations in (1.3) and employing (1.4) and
(1.5), we obtain

1d dep(p—1) mtp-1 1 (p—1)Bx 1)BX / (p—1) /
P < _ D _ p+1
bl u < m+p / [Vu v+ ) (xa — &) Qu

—1
f /uperr/up /u’”’1

for all ¢t € (0, Thnax)- According to the fact that v > 0, we deduce

1d 4CD m+p 1 (p— ].) /
P _ _ _ p+1
pdt/u +— m+p_1) /IV < <u ’ (xa — &) a

-1
+7(p )gé/upw—kr/up
p Q Q
for all t € (0, Tnaz). O

Lemma 3.2. Let n = 3. Suppose that (1.4), (1.5) and (1.6) hold. Then for any 1 < p < 2 there

exists a constant C'(p) > 0 such that
/ uP < C(p) for all ¢ € (0, Thna)- (3.2)
Q

Proof. From (1.6), we deduce

1 3
(xa—¢&y)>01if pe [1,§>.
According to the Young’s inequality, there exist positive constants % and C' = C(\) such that

—1
M/ uPw < é/ Man +C/ wPT! for all ¢ € (0, Trnaz)- (3.3)
D Q 2 Jo Q

Inserting (3.3) back into (3.1), we get

1 d up+ 4CD /‘va-Hi 1|2<__/up+1+0/wp+1+r/up
pdt (m+P—1 QO Q Q

8



for all ¢ € (0, Tynes). Employing (2.2) with € = 735, we find

1d

A
vt ), uf < —Z/Qup+1 —i—r/ﬂup + Cy for all t € (0, Thaz)s (3.4)

where C1 is a positive constant. In light of the Holder’s inequality, we discover
pt+1
py B
M < / wuPTL. (3.5)
o e
A combination of (3.4) and (3.5) yields

pt+1
1d A 2
—— [ WP < - </up> ! +r/up+01 for all ¢ € (0, Tinaz)-
pdt Jo 410> \Jo Q

Thus a standard ODE comparison argument implies the boundedness of fQ uP on (0, Tras). O

Lemma 3.3. Let n = 3. Assume that (1.4), (1.5) and (1.6) hold. Then there is a constant
C =C(Q,m,u,&,0) such that

3
/up < C for all t € (0,T)q,) with p= 3 (3.6)
Q

Proof. From (1.6) we see

(-1

, 3
) (xaa—=&v) =0 lfp—§-

Thus we have
4CD m+p 2
up u? + !Vu | <(r+1) [ v+ —5(5 uPw
p dt Q p Q
for all t € (0, Tinae). Using the Young’s inequality once more, we conclude
p / uP + / P 4CD+ / [Vu S 1
P (m+p - (3.7)

§(r+1)/up+01/uT+02/w3p2+2
Q Q Q

for all ¢ € (0, Tyqx) with some certain C; > 0 and Cy > 0. In view of the Gagliardo-Nirenberg

inequality, we obtain

O R RV s
Q LrFm= (Q)
m 1 a1)
< p+m p+m—1 +;7 1 p+m 1
<(1+7)Con (|Vu™3 [l ) 2(3-0) (3.8)
[ ptm—1I (Q)
m-+p—1 1
R )
LpFm=1 (Q)

p+m—1_pt+m—1
for all t € (0, Tyqz), Where a; = % € (0,1) and 0 > 0 is sufficiently small. Due to
3 3—20 2

m > 1, we have

_2p 2p
2 1 = 1
+7§_1a1 1 piem T 1 1 3129 p r <2 (3.9)
p 3t 395 2 3t32 T399 32



In view of (3.2), there exists a positive constant C3 satisfying

m+p—1 %
HU 2 | pz(%_le) < 03. (310)
LPFa=T (q)

Collecting (3.8)-(3.10) along with the Young’s inequality, we can find 1 > 0 and C4 > 0 such that

+z>1

(1+r)/ W< e ||Vu'E |[Faq) + Cu forall £ € (0, Tinax). (3.11)
Q

For ¢4y fQ w5 employing the Gagliardo-Nirenberg inequality again, we arrive at

2(3p+2) _2(3p+2) 2(3p+2)
3p+2 mAP=L \ St p— metp= - az  mip—1 (l—ag)z- "=
O [0 = ] <OCan IV g
@ L3tm+p=1) (Q) LmFP=T(Q)
mipe P (312
T
L1 ()

m+4p—1_ 3(m+p—1)

for all t € (0, Tynaz), where ag = me_pl—w € (0,1). We have

2 4
2(3p+ 2) B 355 — 1+ 3(3—20) 5
Smap—1) 2T 2 I I mIS
3729 2T 37T 3-2

due to m > 1 and 6 > 0 sufficiently small. Thus, using the Young’s inequality along with the

m+p—1

boundedness of [[u™ 2| ,3_4 , we can find 2 > 0 and C5 > 0 such that
L= ()
cl/ B2 < | U 2 gy + Cs for all ¢ € (0, Tonaa). (3.13)
Q

For (s [, w5 after multiplying both sides of the third equation in (1.3) by w % and integrating

3p
=y UwW 2
Q

3p+2 3p(3p+2)
<Cs | u 3 +C7 [ w?2BrD
Q Q

holds for all ¢ € (0, Thnae) with certain Cg > 0 and C7 > 0. According to the Gagliardo-Nirenberg

by parts over 2, we have

24p / 3p+2 o / 3p+2
——= [ Vw2 |"4+6 [ w2
(Bp+2)? Jo | | Q

(3.14)

inequality, we calculate

3p(3p+2) Sp+2 6p apt2  (1—a3)5ol;
07/wz<sm> = Crlw” i | <ChCan|| VT ||z‘;(;2) [ A
Q L1 (Q) LI (0)
(3.15)
+ ™ SZ(é,g)
L3 (Q)

3p42  3p—1
for all ¢ € (0,Tynqez), Wwhere az = % € (0,1). Thanks to p = % and 6 > 0 is sufficiently

1
3+6 40 2

small, we immediately obtain

6p (6(35123))61)1) —1
_ (6-10)Gp—
1% T 1om2_1 % (3.16)
3 6—40 2

10



Applying the classical elliptic LP estimate, it follows that

™%

3p+2
<Clu sl ugo (3.17)
L73pF2 (Q) L 302 (Q))

Collecting (3.15)-(3.17) and applying Young’s inequality again, one can find a positive constant
Cs > 0 such that

3p(3p+2) 24p
C7/ w 26r-1) < 7||Vw for all t € (0, Thnaz)- (3.18)
Q (3p +2)?
Thus a combination of (3.14) and (3.18) yields
/w <O [ 1O forall ¢ € (0, Thnas): (3.19)
Q o Ja 0

Inserting (3.11), (3.13) and (3.19) into (3.7) with &1 + (1 + ©52)e; = (LY=L, we get

p p<
pdt/u +/u Cy for all t € (0, Thaz)

with some constant Cg > 0, this confirms (3.6). OJ
Lemma 3.4. Let the same assumptions as that in Lemma 3.3 hold. Then there exists o > 0

sufficiently small such that for any p € (2, 5+ G] we have C'(p) > 0 satisfying
/ uP < C(p) for all t € (0, Thnaz)- (3.20)
Q

Proof. Indeed, according to the definition of x in (1.6), we find (p 1) (Xa &y) — o > 0 when

p > 5. Recalling (3.1) and employing the Young’s inequality, one can find a positive constant C;

4CD m+p 1
P P
pdt/u /u (m+p-1)2 /|V

satisfying

(3.21)
<2 (p (xa—&v) — > / P Oy for all ¢ € (0, Thnag)-
p Q
By the Gagliardo-Nirenberg inequality, we have
g1 2D i1 @2 g 2
/up+1 = |l +p 1| m;(,;;ll) <Con||Vu tpl Qs Hu%”( a3m+p71
Q Lm+p=1(Q) LW(Q)
(3.22)
mtp—1 2(p+1)
7
L7Fp=1(Q)
m+p—1_m+p—1
hold for all ¢ € (0, T4z ), Where a = mi?m € (0,1). We immediately get
3 372
2(p+1)
2 1 == -1
(ot )1 - < (3.23)
mtp - =52

thanks to m > 1.
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_ 2p+1) PR ; ; g
e If m =1, we have mip—1¢ = T T = 2. Using (3.22) along with the boundness of fQuz,
B
it follows
map—1 2+l m+p—1
/ = W <O Va2 + Cs (3.24)
Q Lmi-1(Q)

for all t € (0, Tinqae) With certain Co > 0 and C5 > 0. Since

lim
p—3

(pgl)(xaﬁw)MZO,

one can find some o > 0 sufficiently small satisfying
(p—1) dep(p—1) . 33
2 (L= (ya — €y) — < ZDWT D) gy 22 .
( o (xa— &) —p Cosnypoig TP 3ot
From this, (3.21) and (3.24), we infer that

pn / up+/ uP < Cy for all t € (0, Thnaz) (3.25)
p
holds with some appropriate positive constant Cy.
2(p+1)
o If m > 1, then Ti(_f;i)la = o1 < 2, in view of the Young’s inequality and the boundedness
3 2

of fQ u%, we can find some positive constant Cj satisfying

2 (%(Xa —&v) —,u> /QUPH < {::%/ [Vu g 2+ Cs (3.26)

for all t € (0, Tynez)- A combination of (3.21) and (3.26) yields a positive constant Cg such that

P P < _
pdt/u +/u Ce for all t € (0, Tnaz)- (3.27)

From (3.25) and (3.27), we arrive at (3.20). O
Lemma 3.5. Let n = 3 and assume that (1.4), (1.5) and (1.6) hold. Then for any 3 +o < p < +o0
with o provided by Lemma 3.4, there is a positive constant C(p) independent of ¢ such that the

solution (u,v,w) of system (1.3) satisfies
/ u? < C(p) for all t € (0, Thnaz)- (3.28)
Q

Proof. The Young’s inequality and (3.1) lead to

4CD m+p 1
Py P YVu
pdt/u / TSR (m+p— /'
<2( (Xa—ffy) )/up+1+C1
p Q

for p > % + o and all t € (0, Tnae) with some Cy > 0. Using the Gagliardo-Nirenberg inequality

(3.29)

once more, we discover

m+p—1 2(p+i) m+p—1 a 2(p+1) m+p 1 (1 a) 2(p+i)
/ up-l-l — ||u 0] ||m42r(1;+11> SCGN”VU 0] ||L72n(}r213 1 ” ” ; ,Tn+p 1
@ Lmtr=1(Q) L#p*l O
) (3.30)
map—1  2etl) ’
Flu
Lmtr=1(Q)

12



m+p—1 m+p—1

where p’ : =3+4+o0anda= ,,fﬁplij(pm (0,1). Tt also holds that
2 3
2(p+1) 1
2p+1 T
(f: _)1 S T, (3.31)
m-p % 2 +3 =57

2p
due tom >1and p > 3. Combining (3.30) with (3.31) and applying the Young’s inequality along
with the boundness of fQ up/, we can find a positive constant Cy satisfying
2 (u(xa —&y) - u) / w1 < Aol =D / Va2 4 Oy (3.32)
p 0 (m+p—1)°

for all ¢ € (0, Tynaz)- Finally, we substitute (3.32) into (3.29) to discover

pdt/up+/up<03 for all t € (0, Trnax)s

where C3 := C + Cy, which confirms (3.28). O
Finally, we are in a position to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. With the aid of Lemma A.1 in [34] and Lemma 3.5, we obtain that u is

bounded in (0, Tinar). Thus, we can find a positive constant C' independent of ¢ such that
|l oo () < C for all ¢ € (0, Trnaz),

which together with Lemma 2.1 shows that Ty, = oo. Therefore, (u,v,w) is a global bounded

classical solution to system (1.3) and the proof of Theorem 1.1 is completed. O

4 Convergence rate for D(u) =1

In this section, we treat the asymptotic behavior of the solution to system (1.3) with D(u) = 1.
In order to prepare our arguments concerning the large time behavior of the solution, we need to
introduce the following property.
Lemma 4.1. (see [27,47]) Suppose that D(u) =1, n > 3 and p > max {0, = 2=2(ya — &) }. Then
for any nonnegative initial data uy € C(£2) the system (1.3) possesses a unique classical bounded

solution (u, v, w) satisfying
]| Lo () < ¢, for all ¢ € (0,00),

where ¢ = ¢(||uo|| < (). Moreover, there is a constant x € (0,1) and K > 0 such that

lull o 5 xtiry) =15

o] <K,

CPE (Qx[tt+1])) =
||w||cm%(ﬂx[t,t+1]) =k

hold for all ¢ > 1.
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Next, we can derive the following L?-estimate of the solution to (1.3) by making full use of the

Lyapunov function.

Lemma 4.2. Assume that n > 3, D(u) = 1 and p > max{ 2 (ya — &), T%‘;g + = 8@ } Then
for any initial data ug € C°(€Q), the corresponding solution of (1.3) fulfills
o\ 2
/ <u — ) — 0,
Q H
ar\?
v—— ] —0,
/Q < ﬂu)
/ <w — ’W“) — 0
Q op
as t — oo.
Proof. We construct a function
T, pu
F(t ::/(uln) 4.1
0= [ (u=t -t (41)

and it is easy to verify that s — & — = 1n B2 >0 for all s > 0. Thus we have F(t) > 0. We collect

(4.1) and the first equation of (1.3) to see that

d u— =
GF0 = [
(A“_v'(XUVU)+V'(§UVW)+TU—MU2)
. |Vu|2 xr [ Vu-Vo & [ Vu-Vuw < _£>2
) T I A G
TX f,«§2 9 ( 7’)2

/| 2#/9' w| M/Q b

a

To estimate [, |Vv[?%, we test the second equation of (1.3) by v — 5 and integrate by parts to

« ro ro
O—/AU(’U—E> /g)au(v—ﬁ—u>—/gzﬁv(v—@>
2
2 _r _re) _re
/|W| +a/ (u u) (U Bu) 5/9(1) Bﬂ)
Similarly, we have

[ [ D) L) e

Collecting (4.2)-(4.4) and applying the Young’s inequality, we obtain
d 2 ray? r ro x> ra\?
0= [ (=5) 5 -0 05 -5 [0 5)
dt 1)< Q p 2u Jo I B 2u Jo B
ry€? / ( 7’) ( r’y) 7’5{2/ < r’y)
+ u—— ] lw——|— w —
2u Jo p op 2 Jo op
242 2
S-(M e’ Wg)/(u—£>.
8ups 8ud /) Ja Iz

14
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(4.2)

| /\

compute

(4.3)




Due to x4 > max {”T’Q(Xa — &) e Tgff; }, we have

> 8up
d r\?
—F(t) < — - — 4.5
gro<—f (-1}, (4.5)
where € := p — % - Tg;f: > 0. Integrating (4.5) from ¢y > 0 to t, we infer that

t 2
F(t) — F(to) < —e/ / <u - Z) for all t >ty > 0.
to JQ 12

Thanks to F'(t) > 0 and the boundedness of u, we get

INAGHESS

to Q 24 €
2

/(u——) — 0 as t — oo.

Q 12

According to (4.3) and using the Young’s inequality, we arrive at

fre=ef (D05 LR
<3 (-5) eenf (=) o (- 5)
scen [ (+=5) -2 0-5)

B ra’\? r\?
§/Q<1)—@> gC(a,ﬂ)/Q(u—;> — 0 as t — oo.

Similarly, by virtue of (4.4), we have

2 2
é/(w—ﬁ> SC(’)/,(S)/<U—Z> — 0 as t — oc.
2 Jo op Q 7

Thereupon, the proof of this lemma is completed. [

this implies

and hence

Next we prove the uniform convergence.
2

Lemma 4.3. Let D(u) = 1 and u > max{%(xa — &), Té‘qu + Tg;?}. Then for any initial

data ug € C°(9), we have

u— L — 0, as t — oo, (4.6)
P ()
v— 12 —0, as t — oo (4.7)
Bill L= (q)
as well as
'w—ﬂ 50, as t — oo. (4.8)
Ol oo ()
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Proof. If (4.6) was false, then we could find I > 0, {tx}reny C (1,00) and {xg}reny C Q such that

tp, — oo as k — oo and

u(xg, ty) — %‘ > forall ke N.

According to Lemma 4.1, we know that u and hence also u—ﬁ is uniformly continuous in 2 x (1, 00).

Thus there exist two positive constants m and p such that

r
u(x,t) — —
W

> — for all € B,(x) NQ and ¢t € (tg,t +m)

DN | =~

for arbitrary k& € N. The smoothness of 02 implies the number ¢ := infycy [B,(zx) N Q] must be

positive. Then we obtain

tp+m 2 tp+m 2 12
/ / <u(a:,t) - Z) dxdt > / / <u(x,t) - Z) dxdt > " for all ke N.
tr Q H tr Bp(zk)ﬁQ H 4

However, from Lemma 4.2, we have

l2 t+m 2 e’} 2
< / / (u(x,t) - r) dxdt < / / <u(m,t) - 7n> dxdt — 0
4 tr Q /"L Lk Q N’

as k — oo. This is absurd and hence establishes (4.6). The desired statement (4.7) and (4.8) can

be derived similarly. [

Proof of Theorem 1.2. Since

s—L—Links
lim — &~ # T _ ﬂ 4.9
51—>H% (8— 2)2 2r ( )

Gathering the estimates (4.6) and (4.9), we gain a positive constant ¢; such that

2 2
ﬂ(u_£> Su_ﬁ_flnﬁgﬁ(u_f>
4r 2 U A It

for all ¢t > t;. Consequently, we see that

whCoi) =ross (-]

holds for all ¢ > ¢;. Therefore we can conclude from (4.5) and (4.10) that

d
ZF®) < —%F(t) for all ¢ > ¢y,

and this implies
F(t) < F(t)e w1 for all t > ¢,.

In light of the Gagliardo-Nirenberg inequality, we can find positive constant C} such that

n 2
r n+2 n+2
u— —

I

r
u— —

I

r
u— —

1

<y

< (4.11)
L=(9)

Weo(Q) L2(Q) '
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In the same way as in [35, Lemma 3.14], we can obtain a constant Cp > 0 such that

r
°— —
I

< Cs.

Wl,oo(Q)

Recalling (4.10), it follows that
r\?  d4r 4r re
/ (u - —) <ZF{#)< —F(t)e #n forall t> .
Q K
Finally, using (4.11), (4.12) and (4.13), we observe that

r e
U — — < Cge nn+2) ) for all ¢ > ty

I

Lo (Q)

holds for some certain C3 > 0. Similar arguments give the desired estimates of v and w

< Cze atny (1) for all ¢ >t
L>=(Q)

H ar
B

and

< Cse Ao ) forall ¢ > t1.

5
w
L>=(Q)

o

Collecting (4.14)-(4.16), we obtain (1.7). O

5 The case D(u) =0

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

In this section, we consider the solution to system (1.3) when D(u) = 0. In order to construct

a regular solution, we need to introduce the following approximating equations

Ut = €Aue — V- (xucVoe) + V - (€ucVwe) + rue — pu2,
0 = Ave + aue — B,
0 = Awe + Yue — dwe,

ue(z,0) = u,

3u€_8v6_8we_0
o — ov — ov —

(5.1)

where € € (0,1), x,&, o, 3,7,9,r, 1 are positive parameters. For the above system, local existence

of the classical solutions can be proved.

Lemma 5.1. Let uqg € Wh(Q), € € (0,1), Then there is a T, € (0,00] such that (5.1) has a

nonnegative classical solution existing for any time ¢ < T.. Moreover, if T, < oo, then
HueuLoo(Q) — 00 as t — T,.

Proof. The proof of this lemma is standard, for details we refer the readers to [25].
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5.1 A priori estimate for Vu,

We will derive a priori estimate for Vue when [|uel| () is uniformly bounded.

Lemma 5.2. Let (ue, ve, we) be the classical solution of system (5.1). €2 is a bounded convex domain
with smooth boundary. Assume [[ul|z) < Co < 0o on (0,7") where Cp is a positive constant
independent of €. Then for some g > n, there exists a T} > 0 such that Vu, € L>((0,T1), L1(f2)).

Proof. Applying the second and third equations of (1.3), we discover
V- (uVue) = Vue - Voe + ucAve = Ve - Voe + ue(Boe — auy)
and
V - (ueVwe) = Ve - Vwe + ucAwe = Vue - Vwe + e (dwe — ).
Thus we rewrite the first equation of (5.1) as follows:
Uet = €At — XVe - Ve 4+ EVue - Vwe 4 (1 — xBoe + E6we)ue + (o — &y — p)u?,
and hence we have
Vueg =eVAu, — xV(Vue) - Vo, — xVue - V(Voe) + EV(Vaue) - Vwe + EVu, - V(Vwe)

(5.2)
+ EdueVwe — xPueVue + (r — xPue + Edwe ) Ve + 2(xa — &y — p)ue V.

Multiplying (5.2) by |Vue|9"2Vu, with ¢ > n and integrating over €, we see that
$%|Vue|%q(m —e/Q V|9 2Vu, - VAu, — X/QV(VUe) Vo Ve |92V,
—x [ Ve VT0) Va2 + € [ V(T TV
+£/9Vu€ SV (Vwe)|Vue |92V, +55/QUveeVue|q_2Vue
- XxB /Q Ue Ve | Vue [T 2 Ve + /Q(r — XBue + E6we) Vue| Vue| 7>V,

+ / 2(xa — &y — ,u)u6Vu6\Vue|q_2Vu5
Q
=L+ L+ I3+ 14+ Is + Ig + I7 + Iz + 1.

In treating I, we make use of the pointwise identity
1
Vg - VAue = §A(‘Vue|2) - |D2u€|2

to obtain

62 _2
I | V22Vl (g = De [ 19l 19
0 2 o0 81/ 4 0

Since < 0 on 0N for convex domains, it is direct that I; < 0. Clearly,

0| Vu|?
ov
12:7X/ V|Vue|? - Vo = K/ [Vuel!Av, = X/ [Vue|?(Bve — aue).
q.Jq q.Ja q.Ja
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Thus we have
X q
I < E/Q|Vue| (Bllvell Lo () + el Loo ()

Similarly, we deduce

§
Iy < 7)o [ Ve 1(0]|wel oo ) + V[[well Lo ()

I <66 [ 190 e ey IVt )
B <8 | (90l (e[ Vel
e < [ 90t = xBlocl o + €811l (o)
as well as
b < [ 20— mllud @)Vl
Additionally, we obtain
B < XVl oy [ 9l
and
s < 61Vl [ [V
Via classical elliptic LP estimates, we have
[vellw2a(0) < Chlluel Lo,
[wellw2a) < Colltell Loy,

V20| oo () < ClIVvellwria) < Cslluellwra)

and
V20| oo () < ClIVvellwra) < Calluellwra)

hold for some appropriate positive constant Cy, Cy, C3 and Cy. Collecting all estimates, we can

find positive constants C5 and Cg such that
d q q q+1 5.3
EHVUGHLQ(Q) < C5||vu€||Lq(Q) + 06||vue||Lq(Q)~ (5:3)
This ordinary differential inequality gives a 71 > 0 such that Vu, € L*°((0,71), L1(2)). O
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Next, we devote to showing the existence of T'(D) independent of € such that the solution w, of
(5.1) exists on (0, T(D)). We begin with the following lemma which we can see details in [25, Lemma
18).

Lemma 5.3. Suppose that f : [0,00) — R is nondecreasing and locally Lipschitz continuous. Let y
be the solution of 3/ (t) = f(y(t)) with initial data y(0) = yo on some interval (0, 7). If a continuous
function z : [0,7) — R fulfills

z(t) < 2(0) —I—/O f(z(r))dr for all t € (0,T), 2(0) < yo.

Then we have z(t) < y(t) for all t € (0,T).

Lemma 5.4. Let ¢ > n. For any D > 0, if |Jucollw1a) < D for arbitrary e € (0,1), then
there are some numbers 7'(D) > 0 and M (D) > 0 such that the regular solution of (5.1) exists on
Q x (0, T(D)) satistying || Vuel|ra@) < (D7 + 1)7 and [tell Lo (@x (0,7(Dy)) < M (D).

Proof. For any ¢ € W14(Q) where oo > ¢ > n, the classical Sobolev inequality shows that
el @) < Cliellnaq) + ClIVell Lag)
where C' = C(, q). Applying the interpolation inequality, we deduce
lellzo) < ot oyl
where a = %. Next, we use Young’s inequality to discover
liellzo@ < C@lellze + 551l
and hence we have
lell o) < 2CC(Q)l|lellLr ) +2C1 Vel Laq)-
We first fix two constants ¢; = max{2C'C(q),2C} > 0 and ¢z > 0 such that
el e ) < erlliVell o) + lellzr @) (5.4)
and
el 1) < eallellwrag) (5.5)

for all o € W4(Q). Applying (5.3), one can find a positive constant Cy fulfilling

%HVUEH%II(Q) <Ci(1+ HVUEHL‘I(Q))”VUEHqu(Q)v

||V“60H%q(g) < D1.
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We denote y the solution to

’

1
y () =Ci(1+y)y,

y(0) = D1
and denote a number T'(D) such that y(t) < D7+ 1 on t € (0,7(D)). Lemma 5.3 leads us to the

conclusion that

1
Vel Loy < (DT +1)4 (5.6)

on (0,7(D)). Recalling the first equation of (5.1) and employing the standard ODE comparison

argument, we conclude

r|€

c3
[uell 1) < max{cQD, 7} =

1

(5.7)
A combination of (5.4)-(5.7) and the fact |[uco|lyy1.0() < D yields that

ltell () < (D7 +1)7 + 3 := M(D) on ¢t € (0,T(D)),
where T'(D) is independent of e. O

5.2 Existence of the regular solution.

In order to achieve a strong precompactness property of {ue}ee(m) by using the Anbin-Lions The-
orem, we should do some estimates on u; first. We multiply the first equation in (5.1) by ¢, where

p € C§°(Q2), then integrating over 2, we obtain

/ Uet P
Q

/ eAucp — V- (xucVo)p + V - (§ucVwe)p + ruep — pule
Q

/Vu€V<p‘+x /uveV(p /u€VwEV<p‘+r /uecp
Q Q Q Q

<elVucl @IVl o) + Xl @)l Vel IVl o

<e +¢

+u'/ u?w’
Q

+ &luell oo (@ IVwell Lo V| +rluel oo @ llell L) + ol Foo ey llll L)

_9_
La=T(Q)

Using the Hoélder inequality, we have

rlhuclzeqo Il ) < Crllud =@ lIel, 2,

and

pllucl @yl ellza@) < Colluelmqayllel] 2y

According to Lemma 5.4, let |Jucol[y1ai) < D for some D > 0, we can find a € — independent

T(D) > 0 such that the solution ue to (5.1) with initial data wu. exists on interval (0,7(D))
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satisfying [|Vuel|Lo) < (D7 + 1)% and ||ue||pex(o,r(py)) < M(D). Thus we obtain that for

t € (0,T(D)), there is a positive constant C'(D) such that

‘/ UetP
Q

Moreover, taking the supremum over ¢ with | o]

< OOl g2y o

Wl’q_gf(Q) =1, we infer that

et .27 . < CLD)-

Consequently, we obtain
c(T(D), D).

<
Huctll o 0 pyyom #21 apyey

By Aubin-Lions Theorem (see [37]) and the fact W14(Q) s LI(Q) — (qu%l(Q))*, we thus

infer that there exists a subsequence {¢;} \, 0 such that
ue; — u weakly™ in L>=((0,T(D)); Wh1(Q)),

ue; — u weakly in LI((0,T(D)); WhHa())

and

ue; — u strongly in L((0,7(D)); LY(%2)).

Elliptic regularity theory applied to the second and third equations in (5.1) leads to

ve; — v strongly in LI((0,T(D)); W>1(£2))
and

we; — w strongly in LI((0,T(D)); W24(Q)).

(5.10)

(5.11)

(5.12)

We fix any ¢ € C5°((0,7);9) ¢ CHH((0,T); (Wh4(Q))*) for all T € (0,00). Since u,; solve (5.1)

weakly at least up to time T'(D), then we can conclude

T(D) T(D) T(D) T(D)
—/ / Ue; Pt —/ / ue;0p(0) = — ej/ / Vu, ~V<p+x/ / Ue; VUe; + Vip
0 0 0 Q 0 Q 0 Q

(D)
— 5/ / uE].Vij -V
0 Q

(D) (D)
+r/ /ue]-so—u/ /ua@
0 Q 0 Q

From (5.8) and (5.10) we can deduce that

/QVU(~,7§)|q < kli_)rgoinf/ﬂ [Vuej (- )7 for all ¢ € (0,T(D)).
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Due to the bound of [|Vuc,||1q(q) on (0,7(D)) is independent of ¢, then we get

T(D)
ej/o /QVUGJ.-V<,0—>OaSEj—>O.

Next, we see

(D) T(D)
/ /uevaej ~V<p—/ /qu'Vap
0 Q 0 Q

(D) (D)
/ /uejV’uq ~V<p—/ /quVv'Vgo
0 Q 0 Q

Then from (5.10) and (5.11), we arrive at

T(D) T(D)
/ / Ue; Ve, - Vip — / / ue; Vu - Vo
0 Q 0 Q
(D) (D)
/ /uﬁva-Vgo—/ /qu-ch
0 Q 0 Q

Therefore, we discover

(D) T(D)

/ / Ue; Ve, - Vp —/ / uVv -V
0 Q 0 Q
T(D) T(D)

/ / ue, Vwe; - Vi — / / uVw - Vo
0 Q 0 Q

Moreover, (5.10) also yields

< +

T(D) (D)
/ /uejV%Vgof/ /uVﬂ-Vg@
0 Q 0 Q

—+0as ¢ =0

and

—0 as ¢ — 0.

— 0 as ¢ — 0.

Similarly, we have

— 0 as ¢ — 0.

T(D) T(D)
/ /ufjcp%/ /ugaasejﬁo,
0 Q 0 Q

(D) (D)
/ /ufj(p—)/ /u2<p as ¢j — 0,
0 Q 0 Q

(D) (D)
/ /uﬁj«pt—>/ /ucpt as ¢ — 0
0 Q 0 Q

T(D) T(D)
/ /uﬁjocp(O) —>/ /uogo(O) as €; — 0.
0 Q 0 Q

For €; — 0, it follows that

(D) (D) T(D) T(D)
—/ /wpt—/ /u()(p(O)zx/ /qu~ch—§/ /qu~V<p
0 Q 0 Q 0 Q 0 Q
T(D) T(D)
+7"/ /ugpfu/ /u2<p.
0 Q 0 Q
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Next, we fix any ¢ € C§°((0,7);Q) € C((0,T); (L7(92))*) to obtain

/ /Avejg /T(D)/Bve C—l—/T(D)/auGJ =0.

As (5.11) implies Ave; — Av in L((0,T(D)); L4(€2)), we thus conclude

(D) (D)
/ /Avej(—>/ /Avg as €5 — 0,
0 Q 0 Q
(D) (D)
/ /Bvej(%/ /BUC as € — 0
0 Q 0 Q

/()T(D)/Qauejgﬁ/OT(D)/Qau( as € — 0.
/T(D)/ AvC — /T(D /BUCJr/T(D)/ au¢ = 0. (5.14)

Furthermore, we fix any n € C5°((0,7); Q) € C((0,T); (L9(€2))*) to obtain

T(D) T(D) (D)
/ /Awejn—/ /6w5j77+/ /7u€jn:0.
0 Q 0 Q 0 Q

Let €; — 0, we deduce
(D) (D) T(D)
/ / Awn —/ / own —|—/ / ~yun = 0. (5.15)
0 Q 0 Q 0 Q

Combining (5.13), (5.14) and (5.15), we can claim that (u, v, w) is a regular solution to system (1.3).

and

Then we arrive at

Collecting all T fulfilling the above equations and taking their supremum, we can find a maximal
existence time, say Tp. Now it remains to show that the constructed solution is nonnegative. Due
to the maximum principle, © > 0 means that v and w are nonnegative. Therefore, it is sufficient

to prove that u is nonnegative. Let u— = max{—u,0}. Testing the first equation of (1.3) with u_,

1d 2 X 2 £ 2 /2 /3
h == A = A -
St Qu_ 2/Qu_ U—|—2/Qu_ w+r Qu_ 7 Qu_

CO A [lullzee + [lvflL> + lelLoo)/Qu2~

we obtain

Then we deduce u_ = 0 for all ¢t < Tjy due to the initial data ug_ = 0.

5.3 Boundedness of the solution when p > p,

Based on the existence of the regular solution to (1.3), we set out to explore the boundedness of

the solution when p > ..
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Lemma 5.5. Let n > 2 and (u, v, w) be the regular solution of (1.3) in a bounded domain 2 C R"

with smooth boundary. If ;1 > p,, where

Hose =
xa—&y it xa—&§y >0,
then wu is uniformly bounded.

Proof. Multiplying both side of the first equation in (1.3) by v™ and integrating over €2, we discover

/u”ut: / (uVv) +§/ (uVw) +r/ —u/u”+2
Q Q Q
_ nx / n+1A I 5 n+1Aw+T/un+1_‘u/un+2

"™ e — n+2 n+l ”_55/ n+l
<u +1(a §fy)>/ﬂu +r/Qu +n+1 Qu w.

Due to i > ps, we derive p — n—+1( a —&v) > 0. Using Young’s inequality along with Lemma 2.3,

we arrive at

(u — i (xer — 57))
1 i un+1 :/UnUt S _ n+1 /’U,n+2+’l"/un+1+01,
Q Q Q Q

n+1dt 2

where C1 = C1(x, o, &, 8,7, d,n) is a positive constant. Thus a standard ODE comparison argument
implies boundedness of |[u||;n+1(q). On the other hand, based on the boundedness of [|ul|pn+1(q),

elliptic regularity theory applied to the third equation in (1.3) leads to a constant Cy > 0 fulfilling
[wllweo @) < Co.

Next, testing the first equation of (1.3) by uP~! and integrating over €2, we arrive at

zl)c;lt up:—x/ PV - (uVv) +£/ PV - (uVw) —H"/up—u/upH

N T [ 608 [

< (ue Py ae) [t [ B0 [
1

(w2 e e) [tk el [ o

Based on the boundedness of [[wl|pe(q), we denote C3 = 7 + §6|w||p=(q)- Applying Young’s

inequality, we deduce

—1 _ —
1d <_(u—%(xa—ﬁv))/up+1+<u—%(xa—£v)p+1> " al.
Q

up
D dt - 2 2C D p+1

Consequently,
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_p-1 _
Thus we have ||ulr) < ((W%

=

)—pﬁm“ + HUOHZ’(Q)) . Let p — oo, we have for

arbitrary t < oo

2C%

u(, )| Lo < lluollpo(@) + —————-
Dl < ol + ey

Therefore, we obtain a uniform bound of w. [

5.4 Blow up

Next we establish the finite-time blow-up of the regular solution to (1.3) in the case ya — &y > 0
and 0 < gt < xa — &7.

Lemma 5.6. Let (u,v,w) be the regular solution of (1.3) in @ C R™ for n > 2. Assume that
xa—&y >0and 0 < pu < ya — &y. If there exists ¢ with 1 < ¢ < oo such that the initial data
|uol La () is sufficiently large, then u becomes unbounded at a finite time.

Proof. Since 0 < p < ya—&vy. Then we can find ¢ sufficiently large such that q%l(xafﬁfy) —p>0.
Testing the first equation of (1.3) by u4~! and integrating over 2, we deduce that

1d uq:—x/uq_lv-(qu)—i—f/uq_lv-(qu)+r/uq—u/uq+1
qdt Jo Q Q Q Q

-1 -1
2(q—(xoz—gy)—u)/uqﬂ—kr/uq—q—/uqv.
q Q Q qa Ja

Noting the Sobolev embedding and elliptic regular theory of v, we can find a positive constant C;

(5.16)

satisfying
[0l Loty < Cllvllwra) < CrllullLag), (5.17)
where % = q+L1 + % On the other hand, since 1 < ¢ < ¢ + 1, the interpolation inequality leads to
lollLat10) < Cillull L) < Cullull iy lull e o, (5.18)
where q = Ln=U=1 ¢ (0,1). Employing the Young’s inequality, we estimate (5.16) as follows:

qn

q=1 _ _
1d /uq>< 7 (xa —&y) '“) /uq+1+r/uq_02/vq+17 (5.19)
Q Q Q Q

q dt 2
where (5 is a positive constant depending on ¢, x, §, «, 8 and p. Combining (5.18) with (5.19) and

using the Young’s inequality once more, one can find a constant Cs > 0 such that

1L (xa — &) — (1=a)(g+1) @
1i/u"2<q )/uq+1+r/uq—0102(/u) (/uq+1>
qdt Jo 2 Q Q Q Q
=2 (o — &y) — a+1
><q )/uq+1+7’/uq—03</u> .
4 Q Q Q
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qt+1

Recalling the boundedness of [[ul| 1) and the fact [ u?™ > Cq (o u?) ¢, we obtain from (5.20)
that

q—l( _ _ g+1

T=(xa—¢&y) —u) Cq o

ld uq>(q ) (/uq>q +T/uq—C4,
Q Q

where Cy := 03||u||qLT(19). If [Juol|Le(q) is sufficiently large, namely r||u0||qu(Q) > (4, this implies

er u? — Cy > 0 for all £ > 0. Then we arrive at

td [ gy Caxa.&m) /uq o
th o) - 4 Q

and hence

. 1
w2 1 V2 C(anmbrt
- S X068, 1
Q ( )q — 7

Jo ub

The proof is complete. [

Now we can easily prove Theorem 1.3.

Proof of Theorem 1.3. According to the existence of the regular solution, Lemma 5.5 and
Lemma 5.6, we complete the proof. [J
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