
Accepted Manuscript

A parabolic–elliptic–elliptic attraction–repulsion chemotaxis system with logistic
source

Jie Zhao, Chunlai Mu, Deqin Zhou, Ke Lin

PII: S0022-247X(17)30528-0
DOI: http://dx.doi.org/10.1016/j.jmaa.2017.05.068
Reference: YJMAA 21429

To appear in: Journal of Mathematical Analysis and Applications

Received date: 14 January 2017

Please cite this article in press as: J. Zhao et al., A parabolic–elliptic–elliptic attraction–repulsion chemotaxis system with
logistic source, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.05.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmaa.2017.05.068


A parabolic-elliptic-elliptic attraction-repulsion chemotaxis system

with logistic source

Jie Zhao∗, Chunlai Mu, Deqin Zhou, Ke Lin

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China

Abstract

This paper deals with the parabolic-elliptic-elliptic attraction-repulsion chemotaxis system
with logistic source⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut = ∇ · (D(u)∇u)−∇ · (χu∇v) +∇ · (ξu∇w) + ru− μu2, x ∈ Ω, t > 0,

0 = Δv + αu− βv, x ∈ Ω, t > 0,

0 = Δw + γu− δw, x ∈ Ω, t > 0,

under no-flux boundary conditions in bounded domain with smooth boundary, where χ, ξ, α, β, γ, δ, r
and μ are assumed to be positive.

When Ω ⊆ R
3,D(u) is assumed to satisfyD(0) > 0, D(u) ≥ cDum−1 with m ≥ 1 and cD >

0, it is proved that if χα − ξγ > 0 and μ = 1
3 (χα − ξγ), then for any given u0 ∈ W 1,∞(Ω),

the system possesses a global and bounded classical solution. For the case where D(u) ≡ 1
and n ≥ 3, the convergence rate of the solution is established. When the random motion of
the chemotactic species is neglected i.e. (D(u) ≡ 0) and Ω ⊂ R

n (n ≥ 2) is a convex domain,
boundedness and the finite time blow up of the solution are investigated.
Keywords: Chemotaxis; Boundedness; Blow up; Asymptotic behavior; Logistic source
AMS(2010) Subject Classification: 92C17; 34K12; 35K55; 35B40; 35B44

1 Introduction

Chemotaxis is an interesting phenomenon which is used to measure the movement of cells in

response to chemical substance. In 1970, Keller and Segel [8] (see also [7, 9]) introduced a model

to describe the collective behavior of cells type which can be read as follows⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u)−∇ · (χu∇v) + f(u), x ∈ Ω, t > 0,

τvt = Δv + u− v, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = v0(x), x ∈ Ω,

(1.1)

where u(x, t) denotes the density of cells and v(x, t) represents the concentration of the chemoat-

tractant. The function f : [0,∞) → R is smooth and fulfills f(0) > 0. χ > 0 is a parameter referred

to as chemosensitivity.

∗Corresponding author: jiezhaocqu@163.com
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Recently, there is an increasing interest in studying the Keller-Segel model and the qualitative

analysis of the model is worthwhile and challenging. In the absence of the logistic source (i.e.

f(u) ≡ 0) for system (1.1), the knowledge appears to be rather complete. For instance, if D(u) ≡ 1,

it was shown in [31] that the system (1.1) admits a unique global solution under the condition n = 1.

Nagai (see [28–30]) found a critical mass which determines the behavior of the solution when n = 2.

More precisely, there is a threshold value mc > 0 such that the solution to (1.1) exists globally

and remains bounded if the initial mass ‖u0‖L1(Ω) < mc, whereas finite time blow up occurs

when ‖u0‖L1(Ω) > mc. Additionally, when n ≥ 3, relying on a Lyapunov function, Winkler [42]

established the existence of radially symmetric solution blowing up in finite time with proper initial

conditions.

In view of the underlying biological background, cell motility should be regarded as movement

in a porous medium, accordingly, the cell movement can be described by a nonlinear function

D(u). There have been many results about whether the solutions are global bounded or blow up,

the readers can refer to [2, 10,14,34,38] and the references therein.

In fact, the blow up phenomenon of the solution is very extreme in practical applications. For

this reason, many scholars investigate the chemotaxis model (1.1) with logistic source function f(u)

which is expected to prevent the blow up of the solution. For example, when the function f(u)

fulfills f(0) ≥ 0 and f(u) ≤ a− μu2 for all u ≥ 0 with some a ≥ 0 and μ > 0, for the case where

τ = 0 and D(u) ≡ 1, the main results in [36] showed the prevention of blow up under the conditions

n ≤ 2, μ > 0 or n ≥ 3 and μ > n−2
n χ with χ > 0. Moreover, when τ = 0 and D(u) ≥ cum holds

for all u ≥ 0 with some c > 0 and m ≥ 1, Wang et al. [45] established the boundedness and large

time asymptotic behavior of the solution to system (1.1). Under the assumptions τ = 1, D(u) ≡ 1

and Ω is a smooth bounded convex domain, Winkler [43] showed that sufficiently large μ ensures

the global existence and boundedness of solutions when n ≥ 3. Furthermore, in [39], Winkler

investigated the following chemotaxis model without random motion of the cells⎧⎨
⎩ ut = −∇ · (u∇v) + ru− μu2, x ∈ Ω, t > 0,

0 = Δv + u− v, x ∈ Ω, t > 0

in one dimensional case. For μ > 1, the corresponding solution remains bounded. For μ < 1,

the solution blows up in finite time. Lankeit [25] considered the system in a ball for arbitrary

spatial dimension n. Moreover, under the assumption of Ω being convex, Kang and Stevens [15]

extended the recent results given by Winkler [39] and Lankeit [25]. For more results on the classical

Keller-Segel model and its variants, we refer the readers to [1, 11,12,38,40,41,46].

The main concern of the above Keller-Segel model is chemoattraction, however, in practical

application, chemorepulsion is also involved in many biological processes, and can form various

interesting biological patterns (see [26,32]). Let w be a secondary chemical substance as a chemore-

2



pellent which leads to the repulsion migration of cells, then system (1.1) can be directly generalized

as the following attraction-repulsion chemotaxis model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u)−∇ · (χu∇v) +∇ · (ξu∇w) + f(u), x ∈ Ω, t > 0,

τvt = Δv + αu− βv, x ∈ Ω, t > 0,

τwt = Δw + γu− δw, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.2)

u = u(x, t) denotes the density of the cells population; v = v(x, t) and w = w(x, t) represent the

concentration of the chemoattractant and chemorepellent, which lead to the attractive movement

and the repulsion migration of cells. The function f : [0,∞) → R is smooth and fulfills f(0) > 0.

α > 0, β > 0, γ > 0 and δ > 0 are positive parameters. χ > 0 and ξ > 0 measure the strength of

the attraction and repulsion, respectively.

When f(u) ≡ 0 and D(u) ≡ 1, the main results in [6, 24] showed that the system (1.2) with

n = 1 and τ = 1 possesses a unique global bounded solution; under the assumptions Ω ⊂ R
2 and

repulsion dominates (i.e. ξγ − χα > 0), Tao and Wang [33] proved that the model (1.2) admits a

unique global solution, and Liu [21] improved the result of [33]; when Ω ⊂ R
2, τ = 0 and attraction

dominates (i.e. ξγ−χα < 0), all solutions to (1.2) are global in time if ‖u0‖L1(Ω) <
4π

χα−ξγ (see [3]),

whereas finite time blow up occurs if ‖u0‖L1(Ω) >
8π

χα−ξγ and δ ≥ β (see [16]); under the assumption

that repulsion cancels attraction (i.e. ξγ − χα = 0), Lin et al. [18] (see also [17]) proved the global

existence of classical solution in two or three dimensions, as well as the large time asymptotic

behavior.

In the case where f(u) fulfills f(u) = ru−μu2, where r and μ are positive constants. It is known

that for τ = 0 and D(u) ≡ 1, all solutions of problem (1.2) are bounded provided that n ≤ 2, μ > 0

or n ≥ 3, μ > n−2
n (χα − ξγ) (see [47]); Wang [44] proved that if τ = 0 and D(u) ≥ cum for all

u ≥ 0 holds with some c > 0 and m ≥ 1, system (1.2) possesses a unique global bounded classical

solution provided that μ > μ∗, where

μ∗ =

⎧⎨
⎩

n−2
n (χα− ξγ), if m ≤ 2− 2

n ,

0, if m > 2− 2
n .

Furthermore, for more results on the attraction-repulsion chemotaxis system with (without) logistic

source, we refer the readers to [4, 5, 19,20,22,23].

In this paper, we consider the following parabolic-elliptic-elliptic attraction-repulsion chemo-
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taxis with logistic source⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u)−∇ · (χu∇v) +∇ · (ξu∇w) + ru− μu2, x ∈ Ω, t > 0,

0 = Δv + αu− βv, x ∈ Ω, t > 0,

0 = Δw + γu− δw, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = ∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.3)

Our first aim is to discuss the effect of the diffusion exponent and logistic source for the solutions

of model (1.3). To this end, we suppose that the diffusion function D(u) satisfies

D(u) ∈ C2([0,∞)), D(0) > 0, (1.4)

and

D(u) ≥ cDu
m−1 for all u > 0, (1.5)

where cD > 0 and m ≥ 1.

Motivated by the arguments in [44,47] and the method in [12,15], the present work focuses on

the analysis of (1.3) under the assumptions Ω ⊂ R
3 and μ = 1

3(χα − ξγ). Compared to [12, 15],

the main obstacle in this paper is that we can not obtain the boundedness of ‖u‖
L

3
2 (Ω)

directly.

However, we can estimate ‖u‖
L

3
2 (Ω)

based on the boundedness of ‖u‖
L

3
2−θ(Ω)

(see Lemma 3.3).

Our first result reads as follows:

Theorem 1.1. Let Ω ⊂ R
3 be a bounded domain with smooth boundary. Suppose that χ, ξ, α,

β, γ, δ and μ are given positive parameters satisfying

χα− ξγ > 0, and μ =
1

3
(χα− ξγ). (1.6)

Assume that (1.4) and (1.5) hold, then for any nonnegative u0 ∈ W 1,∞(Ω), the system (1.3)

possesses a unique global classical solution (u, v, w) which is uniformly bounded in Ω× (0,∞).

Remark 1.1. Our result in this paper is an improvement of the result in [44]. Moreover, for the

special case m = 1, Theorem 1.1 extends the result in [47].

Remark 1.2. Our result in this paper, together with the previous results in [44], show that the

system (1.3) possesses a unique global bounded classical solution for any μ ≥ μ∗ when n = 3, where

μ∗ =

⎧⎨
⎩

1
3(χα− ξγ), if m ≤ 4

3 ,

0, if m > 4
3 .

Remark 1.3. We have to leave an open question whether the solution to (1.3) still remains

bounded when χα− ξγ > 0 and μ = n−2
n (χα− ξγ) with n ≥ 4.

For the case where D(u) ≡ 1, Zhang and Li [47] established the asymptotic behavior of the

solution to system (1.3), but the convergence rate of the solution is still unknown. Thus, the second
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aim is to explore the convergence rate of the solution to (1.3) under the assumptions that D(u) ≡ 1

and μ > max
{

n−2
n (χα− ξγ), rχ

2α2

8μβ + rγ2ξ2

8μδ

}
.

In order to prove our main result in this direction, similar to [13,35], we construct

F (t) :=

∫
Ω

(
u− r

μ
− r

μ
ln

μu

r

)

which acts as a Lyapunov functional for (1.3). Relying on an estimate of the corresponding energy

inequality, we can first obtain the convergence of (u, v, w) to
(

r
μ ,

αr
βμ ,

γr
δμ

)
in L2(Ω) as well as in

L∞(Ω) (Lemma 4.2 and Lemma 4.3). Finally, we establish the convergence rate of (u, v, w) by

means of the Gagliardo-Nirenberg inequality.

The main result in this direction can be stated as follows.

Theorem 1.2. Let n ≥ 3 and assume that D(u) ≡ 1 and μ > max
{

n−2
n (χα− ξγ), rχ

2α2

8μβ + rγ2ξ2

8μδ

}
.

Then for any initial data u0 ∈ C(Ω), one can find two positive constants c and λ such that the

classical solution of (1.3) satisfies∥∥∥∥u− r

μ

∥∥∥∥
L∞(Ω)

+

∥∥∥∥v − αr

βμ

∥∥∥∥
L∞(Ω)

+

∥∥∥∥w − γr

δμ

∥∥∥∥
L∞(Ω)

≤ ce−λt, t > 0. (1.7)

To the best of our knowledge, very few results related to the system (1.3) without random

motion of cells (i.e. D(u) ≡ 0) seem to be known. With regard to this, the third goal in this

paper is to make a substantial step forward towards the behavior of the solution to (1.3) under the

assumption D(u) ≡ 0.

When D(u) ≡ 0, we can not prove that there is a classical solution to system (1.3). However,

we can prove that the model possesses at least one nonnegative regular solution which is defined

as follows:

Definition 1.1. Let T ∈ (0,∞), nonnegative function (u, v, w) is called a regular solution of (1.3)

with D(u) ≡ 0 if

(1) for any q > n,

u ∈ Lq((0, T ),W 1,q(Ω)) ∩ L∞((0, T )× Ω),

v ∈ Lq((0, T ),W 2,q(Ω)) ∩ L∞((0, T )× Ω),

w ∈ Lq((0, T ),W 2,q(Ω)) ∩ L∞((0, T )× Ω);

(2) the integral equations

−
∫ T

0

∫
Ω
uϕt −

∫ T

0

∫
Ω
u0ϕ(0) =χ

∫ T

0

∫
Ω
u∇v · ∇ϕ− ξ

∫ T

0

∫
Ω
u∇w · ∇ϕ

+ r

∫ T

0

∫
Ω
uϕ− μ

∫ T

0

∫
Ω
u2ϕ,

∫ T

0

∫
Ω
Δvζ −

∫ T

0

∫
Ω
βvζ +

∫ T

0

∫
Ω
αuζ = 0,
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and

∫ T

0

∫
Ω
Δwη −

∫ T

0

∫
Ω
δwη +

∫ T

0

∫
Ω
γuη = 0

hold for all ϕ ∈ C∞
0 (Ω× (0, T )), ζ ∈ C∞

0 (Ω× (0, T )) and η ∈ C∞
0 (Ω× (0, T )).

In view of the underlying biological background, we find it worthwhile to investigate the solution

to system (1.3) when n ≥ 2 and our results in this case can be stated as follows.

Theorem 1.3. Let n ≥ 2, D(u) ≡ 0 and Ω ⊂ R
n be a convex domain with smooth boundary.

Suppose that u0 ∈ W 1,∞(Ω), then for any q > n, there is a maximal time T0 ∈ (0,∞) such that

the regular solution (u, v, w) to system (1.3) exists for any time t < T0. Moreover:

(i) If μ > μ∗, where

μ∗ =

⎧⎨
⎩ 0 if χα− ξγ ≤ 0,

χα− ξγ if χα− ξγ > 0,

then the corresponding solution of system (1.3) is uniformly bounded.

(ii) If χα−ξγ > 0, μ < χα−ξγ and the initial data ‖u0‖Lq(Ω) is sufficiently large, then the solution

of (1.3) blows up in finite time.

Remark 1.4. Due to the lack of an effective way, it is not clear about the behavior of the solution

when μ = μ∗ and we have to leave it as an open problem.

The rest of this paper is organized as follows. In the next section, we give some preliminary

inequalities which are important for our proofs. Some estimates of the solution and the proof of

Theorem 1.1 are shown in Section 3. In Section 4, we consider the case D(u) ≡ 1 and obtain the

convergence rate of the solution. Finally, we give the proof of Theorem 1.3 in Section 5.

2 Preliminaries

In this section, we recall some preliminary estimates and some results which will be used in

our proof. The following statement on local existence of classical solution to (1.3) has already been

proven in [44].

Lemma 2.1. Suppose that Ω ⊂ R
n(n ≥ 1) is a bounded domain with smooth boundary and

u0 ∈ W 1,∞(Ω) is a non-negative function. Assume that D(u) satisfies (1.4) and (1.5). Then

problem (1.3) has a unique local-in-time non-negative classical solution

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

w ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

where Tmax denotes the maximal existence time. Moreover, if Tmax < ∞, then

‖u(·, t)‖L∞(Ω) → ∞ as t → Tmax.
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In the proof of the main result, we will frequently use the following version of the Gagliardo-

Nirenberg inequality, for details we refer the readers to [33].

Lemma 2.2. Let Ω be a bounded domain in R
n. Suppose r ∈ (0, p) and ψ ∈ W 1,2(Ω)

⋂
Lr(Ω).

Then there exists a positive constant CGN depending on Ω, p, and r such that

‖ψ‖Lp(Ω) ≤ CGN (‖∇ψ‖aL2(Ω)‖ψ‖1−a
Lr(Ω) + ‖ψ‖Lr(Ω)) (2.1)

holds with a ∈ (0, 1) fulfilling

1

p
= a

(
1

2
− 1

n

)
+ (1− a)

1

r
,

that is

a =

1
r − 1

p
1
r +

1
n − 1

2

.

Lemma 2.3. (see [47]) Let (u, v, w) be a nonnegative solution of (1.3). Then for any ε > 0, there

is a constant C := C(p, ε, ‖u0‖L1(Ω)) > 0 fulfilling

∫
Ω
wp+1 ≤ ε

∫
Ω
up+1 + C, p > 0 (2.2)

for all t ∈ (0, Tmax).

3 Proof of Theorem 1.1

The starting point of our analysis is the following inequality.

Lemma 3.1. Suppose that D(u) satisfies (1.4) and (1.5) with m ≥ 1, then for any p ∈ [1,+∞),

the solution of (1.3) fulfills

1

p

d

dt

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 ≤r

∫
Ω
up +

p− 1

p
ξδ

∫
Ω
upw

−
(
μ− p− 1

p
(χα− ξγ)

)∫
Ω
up+1

(3.1)

for all t ∈ (0, Tmax).

Proof. Multiplying both sides of the first equation in (1.3) by up−1 and integrating by parts, we
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have

1

p

d

dt

∫
Ω
up =

∫
Ω
up−1ut =

∫
Ω
up−1∇ · (D(u)∇u)−

∫
Ω
up−1∇ · (χu∇v)

+

∫
Ω
up−1∇ · (ξu∇w) + r

∫
Ω
up − μ

∫
Ω
up+1

=− (p− 1)

∫
Ω
up−2D(u)|∇u|2 + (p− 1)

∫
Ω
χup−1∇u · ∇v

− (p− 1)

∫
Ω
ξup−1∇u · ∇w + r

∫
Ω
up − μ

∫
Ω
up+1

=− (p− 1)

∫
Ω
up−2D(u)|∇u|2 + (p− 1)

p

∫
Ω
χ∇up · ∇v

− (p− 1)

p

∫
Ω
ξ∇up · ∇w + r

∫
Ω
up − μ

∫
Ω
up+1

=− (p− 1)

∫
Ω
up−2D(u)|∇u|2 − (p− 1)

p

∫
Ω
up(χΔv − ξΔw)

+ r

∫
Ω
up − μ

∫
Ω
up+1

for all t ∈ (0, Tmax). Invoking the second and the third equations in (1.3) and employing (1.4) and

(1.5), we obtain

1

p

d

dt

∫
Ω
up ≤− 4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 − (p− 1)βχ

p

∫
Ω
upv +

(p− 1)

p
(χα− ξγ)

∫
Ω
up+1

+
(p− 1)ξδ

p

∫
Ω
upw + r

∫
Ω
up − μ

∫
Ω
up+1

for all t ∈ (0, Tmax). According to the fact that v > 0, we deduce

1

p

d

dt

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 ≤−

(
μ− (p− 1)

p
(χα− ξγ)

)∫
Ω
up+1

+
(p− 1)ξδ

p

∫
Ω
upw + r

∫
Ω
up

for all t ∈ (0, Tmax). �
Lemma 3.2. Let n = 3. Suppose that (1.4), (1.5) and (1.6) hold. Then for any 1 ≤ p < 3

2 there

exists a constant C(p) > 0 such that∫
Ω
up ≤ C(p) for all t ∈ (0, Tmax). (3.2)

Proof. From (1.6), we deduce

λ := μ− (p− 1)

p
(χα− ξγ) > 0 if p ∈

[
1,

3

2

)
.

According to the Young’s inequality, there exist positive constants λ
2 and C = C(λ) such that

(p− 1)ξδ

p

∫
Ω
upw ≤ λ

2

∫
Ω
up+1 + C

∫
Ω
wp+1 for all t ∈ (0, Tmax). (3.3)

Inserting (3.3) back into (3.1), we get

1

p

d

dt

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 ≤ −λ

2

∫
Ω
up+1 + C

∫
Ω
wp+1 + r

∫
Ω
up

8



for all t ∈ (0, Tmax). Employing (2.2) with ε = λ
4C , we find

1

p

d

dt

∫
Ω
up ≤ −λ

4

∫
Ω
up+1 + r

∫
Ω
up + C1 for all t ∈ (0, Tmax), (3.4)

where C1 is a positive constant. In light of the Hölder’s inequality, we discover

(
∫
Ω up)

p+1
p

|Ω| 1p
≤

∫
Ω
up+1. (3.5)

A combination of (3.4) and (3.5) yields

1

p

d

dt

∫
Ω
up ≤ − λ

4|Ω| 1p

(∫
Ω
up

) p+1
p

+ r

∫
Ω
up + C1 for all t ∈ (0, Tmax).

Thus a standard ODE comparison argument implies the boundedness of
∫
Ω up on (0, Tmax). �

Lemma 3.3. Let n = 3. Assume that (1.4), (1.5) and (1.6) hold. Then there is a constant

C = C(Ω,m, μ, ξ, δ) such that∫
Ω
up ≤ C for all t ∈ (0, Tmax) with p =

3

2
. (3.6)

Proof. From (1.6) we see

μ− (p− 1)

p
(χα− ξγ) = 0 if p =

3

2
.

Thus we have

1

p

d

dt

∫
Ω
up +

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 ≤(r + 1)

∫
Ω
up +

p− 1

p
ξδ

∫
Ω
upw

for all t ∈ (0, Tmax). Using the Young’s inequality once more, we conclude

1

p

d

dt

∫
Ω
up +

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2

≤(r + 1)

∫
Ω
up + C1

∫
Ω
u

3p+2
3 + C2

∫
Ω
w

3p+2
2

(3.7)

for all t ∈ (0, Tmax) with some certain C1 > 0 and C2 > 0. In view of the Gagliardo-Nirenberg

inequality, we obtain

(1 + r)

∫
Ω
up =(1 + r)‖um+p−1

2 ‖
2p

p+m−1

L
2p

p+m−1 (Ω)

≤(1 + r)CGN

(‖∇u
m+p−1

2 ‖a1
2p

p+m−1

L2(Ω)
‖um+p−1

2 ‖(1−a1)
2p

p+m−1

L

2( 3
2−θ)

p+m−1 (Ω)

+ ‖um+p−1
2 ‖

2p
p+m−1

L

2( 3
2−θ)

p+m−1 (Ω)

)
(3.8)

for all t ∈ (0, Tmax), where a1 =
p+m−1
3−2θ

− p+m−1
2p

1
3
+ p+m−1

3−2θ
− 1

2

∈ (0, 1) and θ > 0 is sufficiently small. Due to

m ≥ 1, we have

2p

p+m− 1
a1 =

2p
3−2θ − 1

1
3 + p+m−1

3−2θ − 1
2

=

2p
3−2θ − 1

1
3 + m−1

3−2θ +
p

3−2θ − 1
2

< 2. (3.9)
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In view of (3.2), there exists a positive constant C3 satisfying

‖um+p−1
2 ‖

2p
p+m−1

L

2( 3
2−θ)

p+m−1 (Ω)

< C3. (3.10)

Collecting (3.8)-(3.10) along with the Young’s inequality, we can find ε1 > 0 and C4 > 0 such that

(1 + r)

∫
Ω
up ≤ ε1‖∇u

m+p−1
2 ‖2L2(Ω) + C4 for all t ∈ (0, Tmax). (3.11)

For C1

∫
Ω u

3p+2
3 : employing the Gagliardo-Nirenberg inequality again, we arrive at

C1

∫
Ω
u

3p+2
3 = ‖um+p−1

2 ‖
2(3p+2)

3(m+p−1)

L
2(3p+2)

3(m+p−1) (Ω)

≤C1CGN‖∇u
m+p−1

2 ‖
2(3p+2)

3(m+p−1)
a2

L2(Ω)
‖um+p−1

2 ‖(1−a2)
2(3p+2)

3(m+p−1)

L
2( 32−θ)

m+p−1 (Ω)

+ ‖um+p−1
2 ‖

2(3p+2)
3(m+p−1)

L
2( 32−θ)

m+p−1 (Ω)

(3.12)

for all t ∈ (0, Tmax), where a2 =
m+p−1
3−2θ

− 3(m+p−1)
2(3p+2)

m+p−1
3−2θ

+ 1
3
− 1

2

∈ (0, 1). We have

2(3p+ 2)

3(m+ p− 1)
a2 =

2p
3−2θ − 1 + 4

3(3−2θ)
p

3−2θ − 1
2 + 1

3 + m−1
3−2θ

< 2

due to m ≥ 1 and θ > 0 sufficiently small. Thus, using the Young’s inequality along with the

boundedness of ‖um+p−1
2 ‖

L
2( 32−θ)

m+p−1 (Ω)

, we can find ε2 > 0 and C5 > 0 such that

C1

∫
Ω
u

3p+2
3 ≤ ε2‖∇u

m+p−1
2 ‖2L2(Ω) + C5 for all t ∈ (0, Tmax). (3.13)

For C2

∫
Ωw

3p+2
2 : after multiplying both sides of the third equation in (1.3) by w

3p
2 and integrating

by parts over Ω, we have

24p

(3p+ 2)2

∫
Ω
|∇w

3p+2
4 |2 + δ

∫
Ω
w

3p+2
2 =γ

∫
Ω
uw

3p
2

≤C6

∫
Ω
u

3p+2
3 + C7

∫
Ω
w

3p(3p+2)
2(3p−1)

(3.14)

holds for all t ∈ (0, Tmax) with certain C6 > 0 and C7 > 0. According to the Gagliardo-Nirenberg

inequality, we calculate

C7

∫
Ω
w

3p(3p+2)
2(3p−1) = C7‖w

3p+2
4 ‖

6p
3p−1

L
6p

3p−1 (Ω)
≤C7CGN‖∇w

3p+2
4 ‖

6p
3p−1

a3

L2(Ω)
‖w 3p+2

4 ‖(1−a3)
6p

3p−1

L
4( 32−θ)

3p+2 (Ω)

+ ‖w 3p+2
4 ‖

6p
3p−1

L
4( 32−θ)

3p+2 (Ω)

(3.15)

for all t ∈ (0, Tmax), where a3 =
3p+2
6−4θ

− 3p−1
6p

1
3
+ 3p+2

6−4θ
− 1

2

∈ (0, 1). Thanks to p = 3
2 and θ > 0 is sufficiently

small, we immediately obtain

6p

3p− 1
a3 =

(3p+2)6p
(6−4θ)(3p−1) − 1

1
3 + 3p+2

6−4θ − 1
2

< 2. (3.16)
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Applying the classical elliptic Lp estimate, it follows that

‖w 3p+2
4 ‖

L
4( 32−θ)

3p+2 (Ω)

≤ C‖u 3p+2
4 ‖

L
4( 32−θ)

3p+2 (Ω)

. (3.17)

Collecting (3.15)-(3.17) and applying Young’s inequality again, one can find a positive constant

C8 > 0 such that

C7

∫
Ω
w

3p(3p+2)
2(3p−1) ≤ 24p

(3p+ 2)2
‖∇w

3p+2
4 ‖2L2(Ω) + C8 for all t ∈ (0, Tmax). (3.18)

Thus a combination of (3.14) and (3.18) yields

∫
Ω
w

3p+2
2 ≤ C6

δ

∫
Ω
u

3p+2
3 +

C8

δ
for all t ∈ (0, Tmax). (3.19)

Inserting (3.11), (3.13) and (3.19) into (3.7) with ε1 + (1 + C6C2
δ )ε2 =

4cD(p−1)
(m+p−1)2

, we get

1

p

d

dt

∫
Ω
up +

∫
Ω
up ≤ C9 for all t ∈ (0, Tmax)

with some constant C9 > 0, this confirms (3.6). �
Lemma 3.4. Let the same assumptions as that in Lemma 3.3 hold. Then there exists σ > 0

sufficiently small such that for any p ∈ (
3
2 ,

3
2 + σ

]
, we have C(p) > 0 satisfying

∫
Ω
up ≤ C(p) for all t ∈ (0, Tmax). (3.20)

Proof. Indeed, according to the definition of μ in (1.6), we find (p−1)
p (χα − ξγ) − μ > 0 when

p > 3
2 . Recalling (3.1) and employing the Young’s inequality, one can find a positive constant C1

satisfying

1

p

d

dt

∫
Ω
up +

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2

≤2

(
p− 1

p
(χα− ξγ)− μ

)∫
Ω
up+1 + C1 for all t ∈ (0, Tmax).

(3.21)

By the Gagliardo-Nirenberg inequality, we have∫
Ω
up+1 = ‖um+p−1

2 ‖
2(p+1)
m+p−1

L
2(p+1)
m+p−1 (Ω)

≤CGN‖∇u
m+p−1

2 ‖a
2(p+1)
m+p−1

L2(Ω)
‖um+p−1

2 ‖(1−a)
2(p+1)
m+p−1

L
3

m+p−1 (Ω)

+ ‖um+p−1
2 ‖

2(p+1)
m+p−1

L
3

m+p−1 (Ω)

(3.22)

hold for all t ∈ (0, Tmax), where a =
m+p−1

3
−m+p−1

2(p+1)
m+p−1

3
+ 1

3
− 1

2

∈ (0, 1). We immediately get

2(p+ 1)

m+ p− 1
a =

2(p+1)
3 − 1

m+p
3 − 1

2

≤ 2 (3.23)

thanks to m ≥ 1.
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• If m = 1, we have 2(p+1)
m+p−1a =

2(p+1)
3

−1
m+p

3
− 1

2

= 2. Using (3.22) along with the boundness of
∫
Ω u

3
2 ,

it follows ∫
Ω
up+1 = ‖um+p−1

2 ‖
2(p+1)
m+p−1

L
2(p+1)
m+p−1 (Ω)

≤C2‖∇u
m+p−1

2 ‖2L2(Ω) + C3 (3.24)

for all t ∈ (0, Tmax) with certain C2 > 0 and C3 > 0. Since

lim
p→ 3

2

(p− 1)

p
(χα− ξγ)− μ = 0,

one can find some σ > 0 sufficiently small satisfying

2

(
(p− 1)

p
(χα− ξγ)− μ

)
C2 ≤ 4cD(p− 1)

(m+ p− 1)2
if p ∈

(
3

2
,
3

2
+ σ

]
.

From this, (3.21) and (3.24), we infer that

1

p

d

dt

∫
Ω
up +

∫
Ω
up ≤ C4 for all t ∈ (0, Tmax) (3.25)

holds with some appropriate positive constant C4.

• If m > 1, then 2(p+1)
m+p−1a =

2(p+1)
3

−1
m+p

3
− 1

2

< 2, in view of the Young’s inequality and the boundedness

of
∫
Ω u

3
2 , we can find some positive constant C5 satisfying

2

(
(p− 1)

p
(χα− ξγ)− μ

)∫
Ω
up+1 ≤ 4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 + C5 (3.26)

for all t ∈ (0, Tmax). A combination of (3.21) and (3.26) yields a positive constant C6 such that

1

p

d

dt

∫
Ω
up +

∫
Ω
up ≤ C6 for all t ∈ (0, Tmax). (3.27)

From (3.25) and (3.27), we arrive at (3.20). �
Lemma 3.5. Let n = 3 and assume that (1.4), (1.5) and (1.6) hold. Then for any 3

2 +σ < p < +∞
with σ provided by Lemma 3.4, there is a positive constant C(p) independent of t such that the

solution (u, v, w) of system (1.3) satisfies∫
Ω
up ≤ C(p) for all t ∈ (0, Tmax). (3.28)

Proof. The Young’s inequality and (3.1) lead to

1

p

d

dt

∫
Ω
up +

∫
Ω
up +

4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2

≤2

(
p− 1

p
(χα− ξγ)− μ

)∫
Ω
up+1 + C1

(3.29)

for p > 3
2 + σ and all t ∈ (0, Tmax) with some C1 > 0. Using the Gagliardo-Nirenberg inequality

once more, we discover∫
Ω
up+1 = ‖um+p−1

2 ‖
2(p+1)
m+p−1

L
2(p+1)
m+p−1 (Ω)

≤CGN‖∇u
m+p−1

2 ‖a
2(p+1)
m+p−1

L2(Ω)
‖um+p−1

2 ‖(1−a)
2(p+1)
m+p−1

L
2p

′
m+p−1 (Ω)

+ ‖um+p−1
2 ‖

2(p+1)
m+p−1

L
2p

′
m+p−1 (Ω)

,

(3.30)
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where p
′
:= 3

2 + σ and a =
m+p−1

2p
′ −m+p−1

2(p+1)

m+p−1

2p
′ + 1

3
− 1

2

∈ (0, 1). It also holds that

2(p+ 1)

m+ p− 1
a =

2(p+1)

2p′
− 1

m+p

2p′
− 1

2 + 1
3 − 1

2p′
< 2 (3.31)

due to m ≥ 1 and p
′
> 3

2 . Combining (3.30) with (3.31) and applying the Young’s inequality along

with the boundness of
∫
Ω up

′
, we can find a positive constant C2 satisfying

2

(
p− 1

p
(χα− ξγ)− μ

)∫
Ω
up+1 ≤ 4cD(p− 1)

(m+ p− 1)2

∫
Ω
|∇u

m+p−1
2 |2 + C2 (3.32)

for all t ∈ (0, Tmax). Finally, we substitute (3.32) into (3.29) to discover

1

p

d

dt

∫
Ω
up +

∫
Ω
up ≤ C3 for all t ∈ (0, Tmax),

where C3 := C1 + C2, which confirms (3.28). �
Finally, we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. With the aid of Lemma A.1 in [34] and Lemma 3.5, we obtain that u is

bounded in (0, Tmax). Thus, we can find a positive constant C independent of t such that

‖u‖L∞(Ω) ≤ C for all t ∈ (0, Tmax),

which together with Lemma 2.1 shows that Tmax = ∞. Therefore, (u, v, w) is a global bounded

classical solution to system (1.3) and the proof of Theorem 1.1 is completed. �

4 Convergence rate for D(u) ≡ 1

In this section, we treat the asymptotic behavior of the solution to system (1.3) with D(u) ≡ 1.

In order to prepare our arguments concerning the large time behavior of the solution, we need to

introduce the following property.

Lemma 4.1. (see [27, 47]) Suppose that D(u) ≡ 1, n ≥ 3 and μ > max
{
0, n−2

n (χα− ξγ)
}
. Then

for any nonnegative initial data u0 ∈ C(Ω) the system (1.3) possesses a unique classical bounded

solution (u, v, w) satisfying

‖u‖L∞(Ω) ≤ c, for all t ∈ (0,∞),

where c = c(‖u0‖L∞(Ω)). Moreover, there is a constant κ ∈ (0, 1) and K > 0 such that

‖u‖
Cκ, κ2 (Ω×[t,t+1])

≤ K,

‖v‖
Cκ, κ2 (Ω×[t,t+1])

≤ K,

‖w‖
Cκ, κ2 (Ω×[t,t+1])

≤ K

hold for all t > 1.
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Next, we can derive the following L2-estimate of the solution to (1.3) by making full use of the

Lyapunov function.

Lemma 4.2. Assume that n ≥ 3, D(u) ≡ 1 and μ > max
{

n−2
n (χα− ξγ), rχ

2α2

8μβ + rγ2ξ2

8μδ

}
. Then

for any initial data u0 ∈ C0(Ω), the corresponding solution of (1.3) fulfills∫
Ω

(
u− r

μ

)2

→ 0,

∫
Ω

(
v − αr

βμ

)2

→ 0,

∫
Ω

(
w − γr

δμ

)2

→ 0

as t → ∞.

Proof. We construct a function

F (t) :=

∫
Ω

(
u− r

μ
− r

μ
ln

μu

r

)
(4.1)

and it is easy to verify that s − r
μ − r

μ ln μs
r ≥ 0 for all s > 0. Thus we have F (t) ≥ 0. We collect

(4.1) and the first equation of (1.3) to see that

d

dt
F (t) =

∫
Ω

u− r
μ

u
ut

=

∫
Ω

u− r
μ

u
(Δu−∇ · (χu∇v) +∇ · (ξu∇w) + ru− μu2)

= − r

μ

∫
Ω

|∇u|2
u2

+
χr

μ

∫
Ω

∇u · ∇v

u
− ξr

μ

∫
Ω

∇u · ∇w

u
− μ

∫
Ω

(
u− r

μ

)2

≤ rχ2

2μ

∫
Ω
|∇v|2 + rξ2

2μ

∫
Ω
|∇w|2 − μ

∫
Ω

(
u− r

μ

)2

.

(4.2)

To estimate
∫
Ω |∇v|2, we test the second equation of (1.3) by v − rα

βμ and integrate by parts to

compute

0 =

∫
Ω
Δv

(
v − rα

βμ

)
+

∫
Ω
αu

(
v − rα

βμ

)
−

∫
Ω
βv

(
v − rα

βμ

)

= −
∫
Ω
|∇v|2 + α

∫
Ω

(
u− r

μ

)(
v − rα

βμ

)
− β

∫
Ω

(
v − rα

βμ

)2

.

(4.3)

Similarly, we have

0 = −
∫
Ω
|∇w|2 + γ

∫
Ω

(
u− r

μ

)(
w − rγ

δμ

)
− δ

∫
Ω

(
w − rγ

δμ

)2

. (4.4)

Collecting (4.2)-(4.4) and applying the Young’s inequality, we obtain

d

dt
F (t) ≤− μ

∫
Ω

(
u− r

μ

)2

+
rαχ2

2μ

∫
Ω

(
u− r

μ

)(
v − rα

βμ

)
− rβχ2

2μ

∫
Ω

(
v − rα

βμ

)2

+
rγξ2

2μ

∫
Ω

(
u− r

μ

)(
w − rγ

δμ

)
− rδξ2

2μ

∫
Ω

(
w − rγ

δμ

)2

≤−
(
μ− rχ2α2

8μβ
− rγ2ξ2

8μδ

)∫
Ω

(
u− r

μ

)2

.
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Due to μ > max
{

n−2
n (χα− ξγ), rχ

2α2

8μβ + rγ2ξ2

8μδ

}
, we have

d

dt
F (t) ≤ −ε

∫
Ω

(
u− r

μ

)2

, (4.5)

where ε := μ− rχ2α2

8μβ − rγ2ξ2

8μδ > 0. Integrating (4.5) from t0 > 0 to t, we infer that

F (t)− F (t0) ≤ −ε

∫ t

t0

∫
Ω

(
u− r

μ

)2

for all t > t0 > 0.

Thanks to F (t) ≥ 0 and the boundedness of u, we get

∫ ∞

t0

∫
Ω

(
u− r

μ

)2

≤ F (t0)

ε
,

this implies

∫
Ω

(
u− r

μ

)2

→ 0 as t → ∞.

According to (4.3) and using the Young’s inequality, we arrive at∫
Ω
|∇v|2 = α

∫
Ω

(
u− r

μ

)(
v − rα

βμ

)
− β

∫
Ω

(
v − rα

βμ

)2

≤ β

2

∫
Ω

(
v − rα

βμ

)2

+ C(α, β)

∫
Ω

(
u− r

μ

)2

− β

∫
Ω

(
v − rα

βμ

)2

≤ C(α, β)

∫
Ω

(
u− r

μ

)2

− β

2

∫
Ω

(
v − rα

βμ

)2

,

and hence

β

2

∫
Ω

(
v − rα

βμ

)2

≤ C(α, β)

∫
Ω

(
u− r

μ

)2

→ 0 as t → ∞.

Similarly, by virtue of (4.4), we have

δ

2

∫
Ω

(
w − rγ

δμ

)2

≤ C(γ, δ)

∫
Ω

(
u− r

μ

)2

→ 0 as t → ∞.

Thereupon, the proof of this lemma is completed. �
Next we prove the uniform convergence.

Lemma 4.3. Let D(u) ≡ 1 and μ > max
{

n−2
n (χα− ξγ), rχ

2α2

8μβ + rγ2ξ2

8μδ

}
. Then for any initial

data u0 ∈ C0(Ω), we have ∥∥∥∥u− r

μ

∥∥∥∥
L∞(Ω)

→ 0, as t → ∞, (4.6)

∥∥∥∥v − rα

βμ

∥∥∥∥
L∞(Ω)

→ 0, as t → ∞ (4.7)

as well as ∥∥∥∥w − rγ

δμ

∥∥∥∥
L∞(Ω)

→ 0, as t → ∞. (4.8)
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Proof. If (4.6) was false, then we could find l > 0, {tk}k∈N ⊂ (1,∞) and {xk}k∈N ⊂ Ω such that

tk → ∞ as k → ∞ and ∣∣∣∣u(xk, tk)− r

μ

∣∣∣∣ ≥ l for all k ∈ N.

According to Lemma 4.1, we know that u and hence also u− r
μ is uniformly continuous in Ω×(1,∞).

Thus there exist two positive constants m and ρ such that∣∣∣∣u(x, t)− r

μ

∣∣∣∣ ≥ l

2
for all x ∈ Bρ(xk) ∩ Ω and t ∈ (tk, tk +m)

for arbitrary k ∈ N . The smoothness of ∂Ω implies the number c := infk∈N |Bρ(xk) ∩ Ω| must be

positive. Then we obtain∫ tk+m

tk

∫
Ω

(
u(x, t)− r

μ

)2

dxdt ≥
∫ tk+m

tk

∫
Bρ(xk)∩Ω

(
u(x, t)− r

μ

)2

dxdt ≥ l2mc

4
for all k ∈ N.

However, from Lemma 4.2, we have

l2mc

4
≤

∫ tk+m

tk

∫
Ω

(
u(x, t)− r

μ

)2

dxdt ≤
∫ ∞

tk

∫
Ω

(
u(x, t)− r

μ

)2

dxdt → 0

as k → ∞. This is absurd and hence establishes (4.6). The desired statement (4.7) and (4.8) can

be derived similarly. �
Proof of Theorem 1.2. Since

lim
s→ r

μ

s− r
μ − r

μ ln μs
r

(s− r
μ)

2
=

μ

2r
. (4.9)

Gathering the estimates (4.6) and (4.9), we gain a positive constant t1 such that

μ

4r

(
u− r

μ

)2

≤ u− r

μ
− r

μ
ln

μu

r
≤ μ

r

(
u− r

μ

)2

for all t > t1. Consequently, we see that

μ

4r

∫
Ω

(
u− r

μ

)2

≤ F (t) ≤ μ

r

∫
Ω

(
u− r

μ

)2

(4.10)

holds for all t > t1. Therefore we can conclude from (4.5) and (4.10) that

d

dt
F (t) ≤ −rε

μ
F (t) for all t > t1,

and this implies

F (t) ≤ F (t1)e
− rε

μ
(t−t1) for all t > t1.

In light of the Gagliardo-Nirenberg inequality, we can find positive constant C1 such that∥∥∥∥u− r

μ

∥∥∥∥
L∞(Ω)

≤ C1

∥∥∥∥u− r

μ

∥∥∥∥
n

n+2

W 1,∞(Ω)

∥∥∥∥u− r

μ

∥∥∥∥
2

n+2

L2(Ω)

. (4.11)
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In the same way as in [35, Lemma 3.14], we can obtain a constant C2 > 0 such that∥∥∥∥u− r

μ

∥∥∥∥
W 1,∞(Ω)

≤ C2. (4.12)

Recalling (4.10), it follows that

∫
Ω

(
u− r

μ

)2

≤ 4r

μ
F (t) ≤ 4r

μ
F (t1)e

− rε
μ
(t−t1) for all t > t1. (4.13)

Finally, using (4.11), (4.12) and (4.13), we observe that∥∥∥∥u− r

μ

∥∥∥∥
L∞(Ω)

≤ C3e
− rε

μ(n+2)
(t−t1) for all t > t1 (4.14)

holds for some certain C3 > 0. Similar arguments give the desired estimates of v and w∥∥∥∥v − αr

βμ

∥∥∥∥
L∞(Ω)

≤ C3e
− rε

μ(n+2)
(t−t1) for all t > t1 (4.15)

and ∥∥∥∥w − γr

δμ

∥∥∥∥
L∞(Ω)

≤ C3e
− rε

μ(n+2)
(t−t1) for all t > t1. (4.16)

Collecting (4.14)-(4.16), we obtain (1.7). �

5 The case D(u) ≡ 0

In this section, we consider the solution to system (1.3) when D(u) ≡ 0. In order to construct

a regular solution, we need to introduce the following approximating equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uεt = εΔuε −∇ · (χuε∇vε) +∇ · (ξuε∇wε) + ruε − μu2ε ,

0 = Δvε + αuε − βvε,

0 = Δwε + γuε − δwε,

uε(x, 0) = uε0,

∂uε
∂ν = ∂vε

∂ν = ∂wε
∂ν = 0,

(5.1)

where ε ∈ (0, 1), χ, ξ, α, β, γ, δ, r, μ are positive parameters. For the above system, local existence

of the classical solutions can be proved.

Lemma 5.1. Let uε0 ∈ W 1,∞(Ω), ε ∈ (0, 1), Then there is a Tε ∈ (0,∞] such that (5.1) has a

nonnegative classical solution existing for any time t < Tε. Moreover, if Tε < ∞, then

‖uε‖L∞(Ω) → ∞ as t → Tε.

Proof. The proof of this lemma is standard, for details we refer the readers to [25].
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5.1 A priori estimate for ∇uε

We will derive a priori estimate for ∇uε when ‖uε‖L∞(Ω) is uniformly bounded.

Lemma 5.2. Let (uε, vε, wε) be the classical solution of system (5.1). Ω is a bounded convex domain

with smooth boundary. Assume ‖uε‖L∞(Ω) ≤ C0 < ∞ on (0, T ) where C0 is a positive constant

independent of ε. Then for some q > n, there exists a T1 > 0 such that ∇uε ∈ L∞((0, T1), L
q(Ω)).

Proof. Applying the second and third equations of (1.3), we discover

∇ · (uε∇vε) = ∇uε · ∇vε + uεΔvε = ∇uε · ∇vε + uε(βvε − αuε)

and

∇ · (uε∇wε) = ∇uε · ∇wε + uεΔwε = ∇uε · ∇wε + uε(δwε − γuε).

Thus we rewrite the first equation of (5.1) as follows:

uεt = εΔuε − χ∇uε · ∇vε + ξ∇uε · ∇wε + (r − χβvε + ξδwε)uε + (χα− ξγ − μ)u2ε ,

and hence we have

∇uεt =ε∇Δuε − χ∇(∇uε) · ∇vε − χ∇uε · ∇(∇vε) + ξ∇(∇uε) · ∇wε + ξ∇uε · ∇(∇wε)

+ ξδuε∇wε − χβuε∇vε + (r − χβvε + ξδwε)∇uε + 2(χα− ξγ − μ)uε∇uε.
(5.2)

Multiplying (5.2) by |∇uε|q−2∇uε with q > n and integrating over Ω, we see that

1

q

d

dt
‖∇uε‖qLq(Ω) =ε

∫
Ω
|∇uε|q−2∇uε · ∇Δuε − χ

∫
Ω
∇(∇uε) · ∇vε|∇uε|q−2∇uε

− χ

∫
Ω
∇uε · ∇(∇vε)|∇uε|q−2∇uε + ξ

∫
Ω
∇(∇uε) · ∇wε|∇uε|q−2∇uε

+ ξ

∫
Ω
∇uε · ∇(∇wε)|∇uε|q−2∇uε + ξδ

∫
Ω
uε∇wε|∇uε|q−2∇uε

− χβ

∫
Ω
uε∇vε|∇uε|q−2∇uε +

∫
Ω
(r − χβvε + ξδwε)∇uε|∇uε|q−2∇uε

+

∫
Ω
2(χα− ξγ − μ)uε∇uε|∇uε|q−2∇uε

=:I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9.

In treating I1, we make use of the pointwise identity

∇uε · ∇Δuε =
1

2
Δ(|∇uε|2)− |D2uε|2

to obtain

I1 = −ε

∫
Ω
|∇uε|q−2|D2uε|2 + ε

2

∫
∂Ω

|∇uε|q−2∂|∇uε|2
∂ν

− (q − 2)ε

4

∫
Ω
|∇uε|q−4(∇|∇uε|2)2.

Since ∂|∇uε|2
∂ν < 0 on ∂Ω for convex domains, it is direct that I1 ≤ 0. Clearly,

I2 =− χ

q

∫
Ω
∇|∇uε|q · ∇vε =

χ

q

∫
Ω
|∇uε|qΔvε =

χ

q

∫
Ω
|∇uε|q(βvε − αuε).
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Thus we have

I2 ≤ χ

q

∫
Ω
|∇uε|q(β‖vε‖L∞(Ω) + α‖uε‖L∞(Ω)).

Similarly, we deduce

I4 ≤ ξ

q

∫
Ω
|∇uε|q(δ‖wε‖L∞(Ω) + γ‖uε‖L∞(Ω)),

I6 ≤ ξδ

∫
Ω
|∇uε|q−1(‖uε‖L∞(Ω)‖∇wε‖L∞(Ω)),

I7 ≤ χβ

∫
Ω
|∇uε|q−1(‖uε‖L∞(Ω)‖∇vε‖L∞(Ω)),

I8 ≤
∫
Ω
|∇uε|q(r − χβ‖vε‖L∞(Ω) + ξδ‖wε‖L∞(Ω))

as well as

I9 ≤
∫
Ω
(2(χα− ξγ − μ)‖uε‖L∞(Ω))|∇uε|q.

Additionally, we obtain

I3 ≤ χ‖∇2vε‖L∞(Ω)

∫
Ω
|∇uε|q

and

I5 ≤ ξ‖∇2wε‖L∞(Ω)

∫
Ω
|∇uε|q.

Via classical elliptic Lp estimates, we have

‖vε‖W 2,q(Ω) ≤ C1‖uε‖Lq(Ω),

‖wε‖W 2,q(Ω) ≤ C2‖uε‖Lq(Ω),

‖∇2vε‖L∞(Ω) ≤ C‖∇2vε‖W 1,q(Ω) ≤ C3‖uε‖W 1,q(Ω)

and

‖∇2vε‖L∞(Ω) ≤ C‖∇2vε‖W 1,q(Ω) ≤ C4‖uε‖W 1,q(Ω)

hold for some appropriate positive constant C1, C2, C3 and C4. Collecting all estimates, we can

find positive constants C5 and C6 such that

d

dt
‖∇uε‖qLq(Ω) ≤ C5‖∇uε‖qLq(Ω) + C6‖∇uε‖q+1

Lq(Ω). (5.3)

This ordinary differential inequality gives a T1 > 0 such that ∇uε ∈ L∞((0, T1), L
q(Ω)). �
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Next, we devote to showing the existence of T (D) independent of ε such that the solution uε of

(5.1) exists on (0, T (D)). We begin with the following lemma which we can see details in [25, Lemma

18].

Lemma 5.3. Suppose that f : [0,∞) → R is nondecreasing and locally Lipschitz continuous. Let y

be the solution of y
′
(t) = f(y(t)) with initial data y(0) = y0 on some interval (0, T ). If a continuous

function z : [0, T ) → R fulfills

z(t) ≤ z(0) +

∫ t

0
f(z(τ))dτ for all t ∈ (0, T ), z(0) ≤ y0.

Then we have z(t) ≤ y(t) for all t ∈ (0, T ).

Lemma 5.4. Let q > n. For any D > 0, if ‖uε0‖W 1,q(Ω) ≤ D for arbitrary ε ∈ (0, 1), then

there are some numbers T (D) > 0 and M(D) > 0 such that the regular solution of (5.1) exists on

Ω× (0, T (D)) satisfying ‖∇uε‖Lq(Ω) ≤ (Dq + 1)
1
q and ‖uε‖L∞(Ω×(0,T (D))) ≤ M(D).

Proof. For any ϕ ∈ W 1,q(Ω) where ∞ > q > n, the classical Sobolev inequality shows that

‖ϕ‖L∞(Ω) ≤ C‖ϕ‖Lq(Ω) + C‖∇ϕ‖Lq(Ω)

where C = C(Ω, q). Applying the interpolation inequality, we deduce

‖ϕ‖Lq(Ω) ≤ ‖ϕ‖aL1(Ω)‖ϕ‖1−a
L∞(Ω)

where a = 1
q . Next, we use Young’s inequality to discover

‖ϕ‖Lq(Ω) ≤ C(q)‖ϕ‖L1(Ω) +
1

2C
‖ϕ‖L∞(Ω)

and hence we have

‖ϕ‖L∞(Ω) ≤ 2CC(q)‖ϕ‖L1(Ω) + 2C‖∇ϕ‖Lq(Ω).

We first fix two constants c1 = max{2CC(q), 2C} > 0 and c2 > 0 such that

‖ϕ‖L∞(Ω) ≤ c1(‖∇ϕ‖Lq(Ω) + ‖ϕ‖L1(Ω)) (5.4)

and

‖ϕ‖L1(Ω) ≤ c2‖ϕ‖W 1,q(Ω) (5.5)

for all ϕ ∈ W 1,q(Ω). Applying (5.3), one can find a positive constant C1 fulfilling⎧⎨
⎩

d
dt‖∇uε‖qLq(Ω) ≤ C1(1 + ‖∇uε‖Lq(Ω))‖∇uε‖qLq(Ω),

‖∇uε0‖qLq(Ω) ≤ Dq.
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We denote y the solution to ⎧⎨
⎩ y

′
(t) = C1(1 + y

1
q )y,

y(0) = Dq

and denote a number T (D) such that y(t) ≤ Dq + 1 on t ∈ (0, T (D)). Lemma 5.3 leads us to the

conclusion that

‖∇uε‖Lq(Ω) ≤ (Dq + 1)
1
q (5.6)

on (0, T (D)). Recalling the first equation of (5.1) and employing the standard ODE comparison

argument, we conclude

‖uε‖L1(Ω) ≤ max

{
c2D,

r|Ω|
μ

}
=:

c3
c1
. (5.7)

A combination of (5.4)-(5.7) and the fact ‖uε0‖W 1,q(Ω) ≤ D yields that

‖uε‖L∞(Ω) ≤ (Dq + 1)
1
q + c3 := M(D) on t ∈ (0, T (D)),

where T (D) is independent of ε. �

5.2 Existence of the regular solution.

In order to achieve a strong precompactness property of {uε}ε∈(0,1) by using the Anbin-Lions The-

orem, we should do some estimates on uεt first. We multiply the first equation in (5.1) by ϕ, where

ϕ ∈ C∞
0 (Ω), then integrating over Ω, we obtain∣∣∣∣

∫
Ω
uεtϕ

∣∣∣∣ =
∣∣∣∣
∫
Ω
εΔuεϕ−∇ · (χuε∇vε)ϕ+∇ · (ξuε∇wε)ϕ+ ruεϕ− μu2εϕ

∣∣∣∣
≤ε

∣∣∣∣
∫
Ω
∇uε∇ϕ

∣∣∣∣+ χ

∣∣∣∣
∫
Ω
uε∇vε∇ϕ

∣∣∣∣+ ξ

∣∣∣∣
∫
Ω
uε∇wε∇ϕ

∣∣∣∣+ r

∣∣∣∣
∫
Ω
uεϕ

∣∣∣∣+ μ

∣∣∣∣
∫
Ω
u2εϕ

∣∣∣∣
≤ε‖∇uε‖Lq(Ω)‖∇ϕ‖

L
q

q−1 (Ω)
+ χ‖uε‖L∞(Ω)‖∇vε‖Lq(Ω)‖∇ϕ‖

L
q

q−1 (Ω)

+ ξ‖uε‖L∞(Ω)‖∇wε‖Lq(Ω)‖∇ϕ‖
L

q
q−1 (Ω)

+ r‖uε‖L∞(Ω)‖ϕ‖L1(Ω) + μ‖uε‖2L∞(Ω)‖ϕ‖L1(Ω).

Using the Hölder inequality, we have

r‖uε‖L∞(Ω)‖ϕ‖L1(Ω) ≤ Cr‖uε‖L∞(Ω)‖ϕ‖
L

q
q−1 (Ω)

and

μ‖uε‖2L∞(Ω)‖ϕ‖L1(Ω) ≤ Cμ‖uε‖2L∞(Ω)‖ϕ‖L q
q−1 (Ω)

.

According to Lemma 5.4, let ‖uε0‖W 1,q(Ω) ≤ D for some D > 0, we can find a ε − independent

T (D) > 0 such that the solution uε to (5.1) with initial data uε0 exists on interval (0, T (D))
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satisfying ‖∇uε‖Lq(Ω) ≤ (Dq + 1)
1
q and ‖uε‖L∞(Ω×(0,T (D))) ≤ M(D). Thus we obtain that for

t ∈ (0, T (D)), there is a positive constant C(D) such that∣∣∣∣
∫
Ω
uεtϕ

∣∣∣∣ ≤ C(D)‖ϕ‖
W

1,
q

q−1 (Ω)
.

Moreover, taking the supremum over ϕ with ‖ϕ‖
W

1,
q

q−1 (Ω)
= 1, we infer that

‖uεt‖
(W

1,
q

q−1 (Ω))∗
≤ C(D).

Consequently, we obtain

‖uεt‖
Lq((0,T (D));(W

1,
q

q−1 (Ω))∗)
≤ C(T (D), D).

By Aubin-Lions Theorem (see [37]) and the fact W 1,q(Ω) ↪→↪→ Lq(Ω) ↪→ (W
1, q

q−1 (Ω))∗, we thus

infer that there exists a subsequence {εj} ↘ 0 such that

uεj → u weakly∗ in L∞((0, T (D));W 1,q(Ω)), (5.8)

uεj → u weakly in Lq((0, T (D));W 1,q(Ω)) (5.9)

and

uεj → u strongly in Lq((0, T (D));Lq(Ω)). (5.10)

Elliptic regularity theory applied to the second and third equations in (5.1) leads to

vεj → v strongly in Lq((0, T (D));W 2,q(Ω)) (5.11)

and

wεj → w strongly in Lq((0, T (D));W 2,q(Ω)). (5.12)

We fix any ϕ ∈ C∞
0 ((0, T ); Ω) ⊂ C1,1((0, T ); (W 1,q(Ω))∗) for all T ∈ (0,∞). Since uεj solve (5.1)

weakly at least up to time T (D), then we can conclude

−
∫ T (D)

0

∫
Ω
uεjϕt −

∫ T (D)

0

∫
Ω
uεj0ϕ(0) =− εj

∫ T (D)

0

∫
Ω
∇uεj · ∇ϕ+ χ

∫ T (D)

0

∫
Ω
uεj∇vεj · ∇ϕ

− ξ

∫ T (D)

0

∫
Ω
uεj∇wεj · ∇ϕ

+ r

∫ T (D)

0

∫
Ω
uεjϕ− μ

∫ T (D)

0

∫
Ω
u2εjϕ.

From (5.8) and (5.10) we can deduce that

∫
Ω
|∇u(·, t)|q ≤ lim

k→∞
inf

∫
Ω
|∇uεj(k)(·, t)|q for all t ∈ (0, T (D)).
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Due to the bound of ‖∇uεj‖Lq(Ω) on (0, T (D)) is independent of ε, then we get

εj

∫ T (D)

0

∫
Ω
∇uεj · ∇ϕ → 0 as εj → 0.

Next, we see∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇vεj · ∇ϕ−

∫ T (D)

0

∫
Ω
u∇v · ∇ϕ

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇vεj · ∇ϕ−

∫ T (D)

0

∫
Ω
uεj∇v · ∇ϕ

∣∣∣∣∣+
∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇v · ∇ϕ−

∫ T (D)

0

∫
Ω
u∇v · ∇ϕ

∣∣∣∣∣
Then from (5.10) and (5.11), we arrive at∣∣∣∣∣

∫ T (D)

0

∫
Ω
uεj∇vεj · ∇ϕ−

∫ T (D)

0

∫
Ω
uεj∇v · ∇ϕ

∣∣∣∣∣ → 0 as εj → 0

and ∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇v · ∇ϕ−

∫ T (D)

0

∫
Ω
u∇v · ∇ϕ

∣∣∣∣∣ → 0 as εj → 0.

Therefore, we discover∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇vεj · ∇ϕ−

∫ T (D)

0

∫
Ω
u∇v · ∇ϕ

∣∣∣∣∣ → 0 as εj → 0.

Similarly, we have∣∣∣∣∣
∫ T (D)

0

∫
Ω
uεj∇wεj · ∇ϕ−

∫ T (D)

0

∫
Ω
u∇w · ∇ϕ

∣∣∣∣∣ → 0 as εj → 0.

Moreover, (5.10) also yields

∫ T (D)

0

∫
Ω
uεjϕ →

∫ T (D)

0

∫
Ω
uϕ as εj → 0,

∫ T (D)

0

∫
Ω
u2εjϕ →

∫ T (D)

0

∫
Ω
u2ϕ as εj → 0,

∫ T (D)

0

∫
Ω
uεjϕt →

∫ T (D)

0

∫
Ω
uϕt as εj → 0

as well as

∫ T (D)

0

∫
Ω
uεj0ϕ(0) →

∫ T (D)

0

∫
Ω
u0ϕ(0) as εj → 0.

For εj → 0, it follows that

−
∫ T (D)

0

∫
Ω
uϕt −

∫ T (D)

0

∫
Ω
u0ϕ(0) =χ

∫ T (D)

0

∫
Ω
u∇v · ∇ϕ− ξ

∫ T (D)

0

∫
Ω
u∇w · ∇ϕ

+ r

∫ T (D)

0

∫
Ω
uϕ− μ

∫ T (D)

0

∫
Ω
u2ϕ.

(5.13)
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Next, we fix any ζ ∈ C∞
0 ((0, T ); Ω) ⊂ C((0, T ); (Lq(Ω))∗) to obtain

∫ T (D)

0

∫
Ω
Δvεjζ −

∫ T (D)

0

∫
Ω
βvεjζ +

∫ T (D)

0

∫
Ω
αuεjζ = 0.

As (5.11) implies Δvεj → Δv in Lq((0, T (D));Lq(Ω)), we thus conclude

∫ T (D)

0

∫
Ω
Δvεjζ →

∫ T (D)

0

∫
Ω
Δvζ as εj → 0,

∫ T (D)

0

∫
Ω
βvεjζ →

∫ T (D)

0

∫
Ω
βvζ as εj → 0

and

∫ T (D)

0

∫
Ω
αuεjζ →

∫ T (D)

0

∫
Ω
αuζ as εj → 0.

Then we arrive at

∫ T (D)

0

∫
Ω
Δvζ −

∫ T (D)

0

∫
Ω
βvζ +

∫ T (D)

0

∫
Ω
αuζ = 0. (5.14)

Furthermore, we fix any η ∈ C∞
0 ((0, T ); Ω) ⊂ C((0, T ); (Lq(Ω))∗) to obtain

∫ T (D)

0

∫
Ω
Δwεjη −

∫ T (D)

0

∫
Ω
δwεjη +

∫ T (D)

0

∫
Ω
γuεjη = 0.

Let εj → 0, we deduce

∫ T (D)

0

∫
Ω
Δwη −

∫ T (D)

0

∫
Ω
δwη +

∫ T (D)

0

∫
Ω
γuη = 0. (5.15)

Combining (5.13), (5.14) and (5.15), we can claim that (u, v, w) is a regular solution to system (1.3).

Collecting all T fulfilling the above equations and taking their supremum, we can find a maximal

existence time, say T0. Now it remains to show that the constructed solution is nonnegative. Due

to the maximum principle, u ≥ 0 means that v and w are nonnegative. Therefore, it is sufficient

to prove that u is nonnegative. Let u− = max{−u, 0}. Testing the first equation of (1.3) with u−,

we obtain

1

2

d

dt

∫
Ω
u2− =− χ

2

∫
Ω
u2−Δv +

ξ

2

∫
Ω
u2−Δw + r

∫
Ω
u2− − μ

∫
Ω
u3−

≤C(1 + ‖u‖L∞ + ‖v‖L∞ + ‖w‖L∞)

∫
Ω
u2−.

Then we deduce u− = 0 for all t < T0 due to the initial data u0− = 0.

5.3 Boundedness of the solution when μ > μ∗

Based on the existence of the regular solution to (1.3), we set out to explore the boundedness of

the solution when μ > μ∗.
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Lemma 5.5. Let n ≥ 2 and (u, v, w) be the regular solution of (1.3) in a bounded domain Ω ⊆ R
n

with smooth boundary. If μ > μ∗, where

μ∗ =

⎧⎨
⎩ 0 if χα− ξγ ≤ 0,

χα− ξγ if χα− ξγ > 0,

then u is uniformly bounded.

Proof. Multiplying both side of the first equation in (1.3) by un and integrating over Ω, we discover∫
Ω
unut =− χ

∫
Ω
un∇ · (u∇v) + ξ

∫
Ω
un∇ · (u∇w) + r

∫
Ω
un+1 − μ

∫
Ω
un+2

=− nχ

n+ 1

∫
Ω
un+1Δv +

nξ

n+ 1

∫
Ω
un+1Δw + r

∫
Ω
un+1 − μ

∫
Ω
un+2

≤−
(
μ− n

n+ 1
(χα− ξγ)

)∫
Ω
un+2 + r

∫
Ω
un+1 +

nξδ

n+ 1

∫
Ω
un+1w.

Due to μ > μ∗, we derive μ− n
n+1(χα− ξγ) > 0. Using Young’s inequality along with Lemma 2.3,

we arrive at

1

n+ 1

d

dt

∫
Ω
un+1 =

∫
Ω
unut ≤ −

(
μ− n

n+1(χα− ξγ)
)

2

∫
Ω
un+2 + r

∫
Ω
un+1 + C1,

where C1 = C1(χ, α, ξ, β, γ, δ, n) is a positive constant. Thus a standard ODE comparison argument

implies boundedness of ‖u‖Ln+1(Ω). On the other hand, based on the boundedness of ‖u‖Ln+1(Ω),

elliptic regularity theory applied to the third equation in (1.3) leads to a constant C2 > 0 fulfilling

‖w‖W 1,∞(Ω) ≤ C2.

Next, testing the first equation of (1.3) by up−1 and integrating over Ω, we arrive at

1

p

d

dt

∫
Ω
up =− χ

∫
Ω
up−1∇ · (u∇v) + ξ

∫
Ω
up−1∇ · (u∇w) + r

∫
Ω
up − μ

∫
Ω
up+1

≤−
(
μ− p− 1

p
(χα− ξγ)

)∫
Ω
up+1 + r

∫
Ω
up +

(p− 1)ξδ

p

∫
Ω
upw

≤−
(
μ− p− 1

p
(χα− ξγ)

)∫
Ω
up+1 + (r + ξδ‖w‖L∞(Ω))

∫
Ω
up.

Based on the boundedness of ‖w‖L∞(Ω), we denote C3 = r + ξδ‖w‖L∞(Ω). Applying Young’s

inequality, we deduce

1

p

d

dt

∫
Ω
up ≤−

(
μ− p−1

p (χα− ξγ)
)

2

∫
Ω
up+1 +

(
μ− p−1

p (χα− ξγ)

2C3

p+ 1

p

)−p
1

p+ 1
|Ω|.

Consequently,

1

p

d

dt

∫
Ω
up ≤

(
μ− p−1

p (χα− ξγ)

2C3

p+ 1

p

)−p
1

p+ 1
|Ω|.
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Thus we have ‖u‖Lp(Ω) ≤
((μ− p−1

p
(χα−ξγ)

2C3

p+1
p

)−p 1
p+1 |Ω|t + ‖u0‖pLp(Ω)

) 1
p . Let p → ∞, we have for

arbitrary t < ∞

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +
2C3

μ− (χα− ξγ)
.

Therefore, we obtain a uniform bound of u. �

5.4 Blow up

Next we establish the finite-time blow-up of the regular solution to (1.3) in the case χα − ξγ > 0

and 0 < μ < χα− ξγ.

Lemma 5.6. Let (u, v, w) be the regular solution of (1.3) in Ω ⊂ R
n for n ≥ 2. Assume that

χα − ξγ > 0 and 0 < μ < χα − ξγ. If there exists q with 1 < q < ∞ such that the initial data

‖u0‖Lq(Ω) is sufficiently large, then u becomes unbounded at a finite time.

Proof. Since 0 < μ < χα−ξγ. Then we can find q sufficiently large such that q−1
q (χα−ξγ)−μ > 0.

Testing the first equation of (1.3) by uq−1 and integrating over Ω, we deduce that

1

q

d

dt

∫
Ω
uq =− χ

∫
Ω
uq−1∇ · (u∇v) + ξ

∫
Ω
uq−1∇ · (u∇w) + r

∫
Ω
uq − μ

∫
Ω
uq+1

≥
(
q − 1

q
(χα− ξγ)− μ

)∫
Ω
uq+1 + r

∫
Ω
uq − q − 1

q

∫
Ω
uqv.

(5.16)

Noting the Sobolev embedding and elliptic regular theory of v, we can find a positive constant C1

satisfying

‖v‖Lq+1(Ω) ≤ C‖v‖W 1,q̃(Ω) ≤ C1‖u‖Lq̃(Ω), (5.17)

where 1
q̃ = 1

q+1 + 1
n . On the other hand, since 1 < q̃ < q + 1, the interpolation inequality leads to

‖v‖Lq+1(Ω) ≤ C1‖u‖Lq̃(Ω) ≤ C1‖u‖1−a
L1(Ω)

‖u‖aLq+1(Ω), (5.18)

where a = q(n−1)−1
qn ∈ (0, 1). Employing the Young’s inequality, we estimate (5.16) as follows:

1

q

d

dt

∫
Ω
uq ≥

(
q−1
q (χα− ξγ)− μ

)
2

∫
Ω
uq+1 + r

∫
Ω
uq − C2

∫
Ω
vq+1, (5.19)

where C2 is a positive constant depending on q, χ, ξ, α, β and μ. Combining (5.18) with (5.19) and

using the Young’s inequality once more, one can find a constant C3 > 0 such that

1

q

d

dt

∫
Ω
uq ≥

(
q−1
q (χα− ξγ)− μ

)
2

∫
Ω
uq+1 + r

∫
Ω
uq − C1C2

(∫
Ω
u

)(1−a)(q+1)(∫
Ω
uq+1

)a

≥
(
q−1
q (χα− ξγ)− μ

)
4

∫
Ω
uq+1 + r

∫
Ω
uq − C3

(∫
Ω
u

)q+1

.

(5.20)
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Recalling the boundedness of ‖u‖L1(Ω) and the fact
∫
Ω uq+1 ≥ CΩ

(∫
Ω uq

) q+1
q , we obtain from (5.20)

that

1

q

d

dt

∫
Ω
uq ≥

(
q−1
q (χα− ξγ)− μ

)
CΩ

4

(∫
Ω
uq
) q+1

q

+ r

∫
Ω
uq − C4,

where C4 := C3‖u‖q+1
L1(Ω)

. If ‖u0‖Lq(Ω) is sufficiently large, namely r‖u0‖qLq(Ω) ≥ C4, this implies

r
∫
Ω uq − C4 > 0 for all t > 0. Then we arrive at

1

q

d

dt

∫
Ω
uq ≥ C(Ω, q, χ, α, ξ, γ, μ)

4

(∫
Ω
uq
) q+1

q

and hence

∫
Ω
uq ≥

⎛
⎝ 1

( 1∫
Ω uq

0
)
1
q − C(Ω,q,χ,α,ξ,γ,μ)t

4

⎞
⎠

q

.

The proof is complete. �
Now we can easily prove Theorem 1.3.

Proof of Theorem 1.3. According to the existence of the regular solution, Lemma 5.5 and

Lemma 5.6, we complete the proof. �
Acknowledgment. The authors are very grateful to the anonymous reviewers for their careful

reading and valuable comments which greatly improved this work. This work is supported by

NSFC (Grant No. 11371384 and No. 11571062) and the Basic and Advanced Research Project of

CQC-STC (Grant No. cstc2015jcyjBX0007).

References

[1] T. Cieálak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity 21 (2008)
1057-1076.

[2] T. Cieálak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic
quasilinear Keller-Segel system in higher dimensions, J. Differential Equations 252 (2012) 5832-5851.

[3] E. Espejo, T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl.
Math. Lett. 35 (2014) 29-34.

[4] H.Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl. 422 (2015) 1463-
1478.

[5] H.Y. Jin, Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ-
ential Equations 260 (2016) 162-196.

[6] H.Y. Jin, Z.A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model,
Math. Methods Appl. Sci. 38 (2015) 444-457.

[7] E.F. Keller, L.A. Segel, Model for chemotaxis, J. Theoret. Biol. 30 (1971) 225-234.

[8] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970)
399-415.

[9] E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol. 30
(1971) 235-248.

27



[10] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations 215
(2005) 52-107.

[11] D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl.
Math. 12 (2001) 159-177.

[12] B.R. Hu, Y.S. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter
condition, Appl. Math. Lett. 64 (2017) 1-7.

[13] X. He, S.N. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with
logistic source, J. Math. Anal. Appl. 436 (2016) 970-982.

[14] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on
non-convex bounded domains, J. Differential Equations 256 (2014) 2993-3010.

[15] K. Kang, A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal. 135 (2016)
57-72.

[16] Y. Li, Y.X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions,
Nonlinear Analysis: Real World Applications. 30 (2016) 170-183.

[17] Y. Li, K. Lin, C.L. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system,
Electron. J. Differential Equations 146 (2015) 1-13.

[18] K. Lin, C.L. Mu, L.C. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math.
Anal. Appl. 426 (2015) 105-124.

[19] K. Lin, C.L. Mu, Global existence and convergence to steady states for an attraction-repulsion chemotaxis
system, Nonlinear Anal. Real World Appl. 31 (2016) 630-642.

[20] K. Lin, C.L. Mu, Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis
system with nonlinear diffusion, J. Differential Equations 261 (2016) 4524-4572.

[21] D.M. Liu, Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Meth-
ods Appl. Sci. 38 (2015) 2537-2546.

[22] X. Li, Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math. 81
(2016) 165-198.

[23] X. Li, Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods
Appl. Sci. 39 (2016) 289-301.

[24] J. Liu, Z.A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension,
J. Biol. Dyn. 6 (2012) 31-41.

[25] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B 20
(2015) 1499-1527.

[26] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic singalling, microglia, and alzheimer’s
disease senile plaques: is there a connection?, Bull. Math. Biol. 65 (2003) 673-730.
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