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1. Introduction

One-dimensional isentropic flow in the gas dynamics with a source term can be written as

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2 + P )x = βρ,

(1.1)

where β is a constant, ρ, u represent the density and the velocity respectively. P = P (ρ, ε) is the scaled 
generalized Chaplygin gas pressure P = εp where ε > 0 and

p = − A

ρα
, 0 < α ≤ 1, (1.2)
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where A > 0 is a constant. It is easy to see that lim
ε→0

P (ρ, ε) = 0. The model of the generalized Chaplygin 

gas explains the acceleration of the universe through an exotic equation of state (1.2) causing it acts like 
dark matter at high density and like dark energy at low density [17]. Thus, the generalized Chaplygin gas 
allows for an unification of dark energy and dark matter [1,2,15,24].

Sun [25] considered the inhomogeneous generalized Chaplygin gas equations (1.1)–(1.2) and obtained the 
non-self-similar Riemann solutions by introducing a new state variable

v(x, t) = u(x, t) − βt. (1.3)

The new velocity (1.3) was introduced by Faccanoni and Mangeney [8] to study the Riemann problem of 
the shallow water equations.

When α = 1, (1.2) is the equation of state of the Chaplygin gas. For the Chaplygin gas equations with a 
friction term, Shen [21] obtained the Riemann solutions. The Riemann problem with delta initial data and 
the vanishing pressure limit problem were considered in [9] and [10] respectively.

For the homogeneous generalized Chaplygin gas equations, β = 0 in (1.1)–(1.2), Wang [26] studied the 
Riemann problem. Sheng, Wang and Yin [23] studied the vanishing pressure limits of the Riemann solutions.

For the Chaplygin gas equations without a source term, there are many results, the readers are referred 
to [3,11,12,16,13,28,27].

The limit system of (1.1)–(1.2) as ε → 0 formally becomes the pressureless gas dynamics model with a 
source term {

ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = βρ.

(1.4)

We can also obtain system (1.4) by taking the constant pressure where the force is assumed to be the gravity 
with β being the gravity constant [6]. System (1.4) can describe the motion process of free particles sticking 
under collision in the low temperature and the information of large-scale structures in the universe [7,
18]. Shen [20] considered both the Riemann problem and the Riemann problem with delta initial data of 
system (1.4).

Li [14] introduced the method of vanishing pressure limit to study the isothermal gases dynamics model. 
Chen and Liu [4] identified and analyzed the formation of delta shocks and vacuum states in Riemann 
solutions to the Euler equations for isentropic fluids. They made a further step later to generalize the 
results to the nonisentropic fluids [5]. For more results on vanishing pressure, we refer the readers to [22,19,
23,29,30].

In this paper, we focus on the vanishing pressure limits of Riemann solutions to the inhomogeneous 
generalized Chaplygin gas equations (1.1)–(1.2). Unlike the homogeneous case, the Riemann solutions are no 
longer self-similar. Moreover, the generalized Chaplygin gas equations (1.1)–(1.2) differ from the Chaplygin 
gas equations. In the present case, the characteristic fields are genuinely nonlinear, while in the latter case, 
the characteristic fields are linearly degenerate.

Now, we give our main results.

Theorem 1.1. When the parameter ε → 0, Riemann solutions of system (1.1)–(1.2) converge to the Riemann 
solutions of system (1.4). There are three cases.

(1) When u− > u+, the two shock wave solutions firstly converge to a delta shock solution as ε drops to 
a certain parameter value ε2 which depends on the initial data, then as ε goes to zero, the delta shock 
wave converges to a delta shock solution of (1.4).

(2) When u− < u+, as ε → 0, the two rarefaction wave solutions converge to two contact discontinuities 
connecting the states (u± + βt, ρ±) with a vacuum state between them.
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(3) When u− = u+, as ε → 0, the Riemann solutions converge to a contact discontinuity connecting the 
states (u± + βt, ρ±).

The organization of this article is as follows: In section 2 and section 3, we review the Riemann solu-
tions to (1.4), (1.1) respectively. In section 4, we study the vanishing pressure limits of Riemann solutions 
to (1.1)–(1.2).

2. Riemann problem for (1.4)

In this section, we give a sketch of the results on the Riemann problem to system (1.4) in [20].
By a change of variable (1.3), system (1.4) can be rewritten as

⎧⎨
⎩
ρt + (ρ(v + βt))x = 0,

(ρv)t + (ρv(v + βt))x = 0.
(2.1)

Consider the Riemann problem of (2.1) with the Riemann initial data

(v, ρ)(x, 0) =
{

(v−, ρ−), x < 0,
(v+, ρ+), x > 0.

(2.2)

From (1.3), we obtain v± = u±. We use u± to denote v± throughout this paper.
A double eigenvalue of (2.1) is λ = v + βt. The corresponding eigenvector is −→r = (1, 0)�. It is easy 

to know that ∇λ · −→r = 0. This means that system (2.1) is linearly degenerate. The elementary waves are 
contact discontinuities.

For a discontinuity σ(t) = x′(t), the Rankine–Hugoniot conditions hold

⎧⎨
⎩
−σ(t) [ρ] + [ρ(v + βt)] = 0,

−σ(t) [ρv] + [ρv(v + βt)] = 0,
(2.3)

where [ρ] = ρ − ρ−. From (2.3), we solve for the contact discontinuity J(u−, ρ−):

σ(t) = v + βt = u− + βt. (2.4)

In the case u− < u+, the Riemann solution of (2.1)–(2.2) consists of two contact discontinuities with a 
vacuum state between them. The solution can be expressed by:

(u−, ρ−) + J1 + V ac + J2 + (u+, ρ+), (2.5)

where “+” means “follow by”.
In the case u− = u+, the Riemann solution can be expressed by:

(u−, ρ−) + J + (u+, ρ+). (2.6)

While in the case u− > u+, the Riemann solution contains a delta shock wave. The Riemann solution 
can be expressed by:

(u−, ρ−) + δS + (u+, ρ+). (2.7)
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The delta shock wave satisfies the generalized Rankine–Hugoniot conditions [20]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx(t)
dt

= uδ(t),

dw(t)
dt

= uδ(t)[ρ] − [ρ(v + βt)],

d(w(t)vδ(t))
dt

= uδ(t)[ρv] − [ρv(v + βt)],

(2.8)

where w(t) and uδ(t) = vδ+βt are weight and velocity of delta shock wave respectively, and (x, w)(0) = (0, 0).
By direct calculations, we have

vδ =
√
ρ−u− + √

ρ+u+√
ρ− + √

ρ+
, x(t) = vδt + 1

2βt
2, w(t) = √

ρ−ρ+(u− − u+)t. (2.9)

In order to ensure the uniqueness of the Riemann solution, the delta shock wave should satisfy the 
generalized entropy condition

u+ + βt < uδ(t) < u− + βt. (2.10)

In summary, we obtain the Riemann solutions to system (1.4) as follows

(1) For u− > u+, the Riemann solution can be expressed by

(u− + βt, ρ−) + δS + (u+ + βt, ρ+). (2.11)

(2) For u− < u+, the Riemann solution can be expressed by

(u− + βt, ρ−) + J1 + V ac + J2 + (u+ + βt, ρ+). (2.12)

(3) For u− = u+, the Riemann solution can be expressed by

(u− + βt, ρ−) + J + (u+ + βt, ρ+). (2.13)

3. Riemann problem for (1.1)–(1.2)

In this section, we summarize results on the Riemann problem of (1.1)–(1.2), see [25] for the detail.
Without loss of generality, we take A = 1 throughout this paper.
Using (1.3), system (1.1)–(1.2) is reformulated as

⎧⎪⎨
⎪⎩
ρt + (ρ(v + βt))x = 0,

(ρv)t +
(
ρv(v + βt) − ε

ρα

)
x

= 0,
(3.1)

which is a system of homogeneous conservative equations. Notice that t appears in the equations.
System (3.1) has two eigenvalues

λ1 = v + βt−
√
αερ−

1+α
2 , λ2 = v + βt +

√
αερ−

1+α
2 (3.2)

with corresponding right eigenvectors
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−→r 1 = (1,−
√
αερ−

3+α
2 )T , −→r 2 = (1,

√
αερ−

3+α
2 )T . (3.3)

Direct calculations give ∇λ1 ·−→r 1 �= 0 and ∇λ2 ·−→r 2 �= 0 for 0 < α < 1, which means that both characteristic 
fields are genuinely nonlinear. We now solve the Riemann problem for (3.1).

Given a state (u−, ρ−) in the phase plane, the rarefaction wave curves are the sets of states that can be 
connected on the right by a 1-rarefaction or 2-rarefaction wave in the form

Rε
1(u−, ρ−) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= λ1 = v + βt−

√
αερ−

1+α
2 ,

v − 2
√
αε

1 + α
ρ−

1+α
2 = u− − 2

√
αε

1 + α
ρ
− 1+α

2
− ,

λ1(u−, ρ−) < λ1(v, ρ),

ρ < ρ−, (3.4)

and

Rε
2(u−, ρ−) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= λ2 = v + βt +

√
αερ−

1+α
2 ,

v + 2
√
αε

1 + α
ρ−

1+α
2 = u− + 2

√
αε

1 + α
ρ
− 1+α

2
− ,

λ2(u−, ρ−) < λ2(v, ρ).

ρ > ρ−. (3.5)

Let σ(t) = x′(t) be the speed of a discontinuity x = x(t), then the Rankine–Hugoniot conditions read

⎧⎪⎨
⎪⎩
−σ(t)[ρ] + [ρ(v + βt)] = 0,

−σ(t)[ρv] +
[
ρv(v + βt) − ε

ρα

]
= 0.

(3.6)

From (3.6), given a state (u−, ρ−) in the phase plane, the shock wave curves are the sets of states that can 
be connected on the right by a 1-shock or 2-shock wave in the form

Sε
1(u−, ρ−) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σε
1(t) = u− + βt−

(
ρ

ρ−

[P ]
[ρ]

) 1
2

,

v = u− −
(

1
ρρ−

[P ]
[ρ]

) 1
2

(ρ− ρ−),
ρ > ρ−, (3.7)

and

Sε
2(u−, ρ−) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σε
2(t) = u− + βt +

(
ρ

ρ−

[P ]
[ρ]

) 1
2

,

v = u− +
(

1
ρρ−

[P ]
[ρ]

) 1
2

(ρ− ρ−),
ρ < ρ−. (3.8)

In the phase plane, given a state (u−, ρ−), we draw curves (3.4) and (3.5) for ρ < ρ− and ρ > ρ−
denoted by Rε

1 and Rε
2, respectively, see Fig. 3.1. Meanwhile, we draw curves (3.7) and (3.8) for ρ > ρ− and 

ρ < ρ− denoted by Sε
1 and Sε

2 , respectively. Curves Rε
1 and Rε

2 have asymptotic lines: the positive v-axis 
and v = u− + 2

√
εα

1+α ρ
− 1+α

2
− , respectively. Curves Sε

1 and Sε
2 have asymptotic lines: v = u− − √

ερ
− 1+α

2
− and 

negative v-axis, respectively. Through the point (u− − 2
√
ερ

− 1+α
2

− , ρ−), we draw curve

u +
√
ερ−

1+α
2 = u− −

√
ερ

− 1+α
2

− , (3.9)
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Fig. 3.1. The phase plane (v, ρ).

denoted by Sε
δ . Curve Sε

δ has two asymptotic lines: v = u− −√
ερ

− 1+α
2

− and negative v-axis. Thus the phase 
plane is divided into five regions, see Fig. 3.1.

When (u+, ρ+) ∈ (I ∪ II ∪ III ∪ IV)(u−, ρ−), the Riemann solutions for (3.1) consist of rarefaction waves 
or shock waves. When (u+, ρ+) ∈ V, we use a delta shock wave to connect states (u−, ρ−) and (u+, ρ+).

The detail can be found in [20]. The delta shock wave satisfies the generalized Rankine–Hugoniot condi-
tions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx(t, ε)
dt

= uδ(t, ε) = vεδ + βt,

dw(t, ε)
dt

= uδ(t, ε)[ρ] − [ρ(v + βt)],

d(w(t, ε)vεδ(t))
dt

= uδ(t, ε)[ρv] − [ρv(v + βt)],

(3.10)

where (x, w)(0, ε) = 0, w(t, ε) and uδ(t, ε) = vεδ +βt are weight and velocity of delta shock wave respectively, 
vεδ indicates the intermediate variable on this delta shock wave curve.

Solving (3.10), we have that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(t, ε) =
√

ρ−ρ+

(
(u+ − u−)2 − ε

(
1
ρ+

− 1
ρ−

)(
1
ρα
−
− 1

ρα
+

))
t,

vεδ =
ρ+u+ − ρ−u− + dω(t,ε)

dt
ρ+ − ρ−

,

x(t, ε) = vεδt + 1
2βt

2,

(3.11)

for ρ+ �= ρ− and

(t, ε) = (ρ−u− − ρ+u+)t, vεδ = 1
2(u+ + u−), x(t, ε) = 1

2(u+ + u−) + 1
2βt

2 (3.12)

for ρ+ = ρ−. In addition, the delta shock wave should satisfy δ-entropy condition

u+ + βt +
√
αερ

− 1+α
2

+ < uδ(t, ε) < u− + βt−
√
αερ

− 1+α
2

− . (3.13)

Therefore, for any given right state (u+, ρ+), there exists a Riemann solution of (3.1). When (u+, ρ+) ∈
(I ∪ II ∪ III ∪ IV ∪ V)(u−, ρ−), the configurations of which are as follows:



JID:YJMAA AID:21409 /FLA Doctopic: Partial Differential Equations [m3L; v1.218; Prn:1/06/2017; 13:22] P.7 (1-14)
L. Guo et al. / J. Math. Anal. Appl. ••• (••••) •••–••• 7
Fig. 4.1. Riemann solution when (u+, ρ+) ∈ IV(u−, ρ−).

1. (u+, ρ+) ∈ I(u−, ρ−) : (u−, ρ−) + Rε
1 + (v∗ε, ρ∗ε) + Rε

2 + (u+, ρ+);
2. (u+, ρ+) ∈ II(u−, ρ−) : (u−, ρ−) + Rε

1 + (v∗ε, ρ∗ε) + Sε
2 + (u+, ρ+);

3. (u+, ρ+) ∈ III(u−, ρ−) : (u−, ρ−) + Sε
1 + (v∗ε, ρ∗ε) + Rε

2 + (u+, ρ+);
4. (u+, ρ+) ∈ IV(u−, ρ−) : (u−, ρ−) + Sε

1 + (v∗ε, ρ∗ε) + Sε
2 + (u+, ρ+);

5. (u+, ρ+) ∈ V(u−, ρ−) : (u−, ρ−) + δS + (u+, ρ+),

where (v∗ε, ρ∗ε) is the intermediate state. If (u+, ρ+) ∈ (Rε
1 ∪ Sε

1 ∪Rε
2 ∪ Sε

2), we use one rarefaction wave or 
one shock wave to connect (u−, ρ−) and (u+, ρ+). By using (1.3), we obtain the Riemann solutions of (1.1)
as follows

1. (u+, ρ+) ∈ I(u−, ρ−) :
(u− + βt, ρ−) + Rε

1 + (v∗ε + βt, ρ∗ε) + Rε
2 + (u+ + βt, ρ+);

2. (u+, ρ+) ∈ II(u−, ρ−) :
(u− + βt, ρ−) + Rε

1 + (v∗ε + βt, ρ∗ε) + Sε
2 + (u+ + βt, ρ+);

3. (u+, ρ+) ∈ III(u−, ρ−)
(u− + βt, ρ−) + Sε

1 + (v∗ε + βt, ρ∗ε) + Rε
2 + (u+ + βt, ρ+);

4. (u+, ρ+) ∈ IV(u−, ρ−)
(u− + βt, ρ−) + Sε

1 + (v∗ε + βt, ρ∗ε) + Sε
2 + (u+ + βt, ρ+);

5. (u+, ρ+) ∈ V(u−, ρ−)
(u− + βt, ρ−) + δS + (u+ + βt, ρ+).

4. Limits of Riemann solutions to (1.1)–(1.2)

In this section, we investigate the limit behavior of the Riemann solutions to system (1.1)–(1.2), that 
is, the formation of delta shock and the vacuum states when pressure vanishes, respectively in the case 
u− > u+ and in the case u− < u+.

4.1. Formation of delta shock wave

In this subsection, we study the limit behavior of Riemann solutions when u− > u+, see Fig. 4.1(a). We 
divide our discussion into two steps:

identify and analyze the formation of delta shock wave when ε tends to a certain value, and display how 
the strength and propagation speed of the delta shock wave change when ε tends to zero.
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Lemma 4.1. Assume u− > u+, then there exist two certain values ε1 > ε2 > 0, such that (u+, ρ+) ∈
IV(u−, ρ−) when ε2 < ε < ε1; (u+, ρ+) ∈ V(u−, ρ−) when 0 < ε < ε2.

Proof. Suppose that u− > u+ and (u+, ρ+) ∈ IV(u−, ρ−), we have (see Fig. 4.1(a)),

u+ < u− −
(

[P ]
ρ+ρ−[ρ]

) 1
2

(ρ+ − ρ−), ρ+ > ρ−, (4.1)

u+ < u− +
(

[P ]
ρ+ρ−[ρ]

) 1
2

(ρ+ − ρ−), , ρ+ < ρ−, (4.2)

and

u+ > u− −
√
ε
(
ρ
− 1+α

2
+ + ρ

− 1+α
2

−

)
. (4.3)

If ρ+ �= ρ−, we deduce from (4.1)–(4.2) and (1.2) that

√
ε

∣∣∣∣∣∣∣
⎛
⎝

(
1
ρα
−
− 1

ρα
+

)
ρ+ρ−(ρ+ − ρ−)

⎞
⎠

1
2

(ρ+ − ρ−)

∣∣∣∣∣∣∣ < u− − u+, (4.4)

i.e.,

ε <
ρα+1
− ρα+1

+ (u− − u+)2

(ρα+ − ρα−)(ρ+ − ρ−) . (4.5)

Let

ε1 =
ρα+1
− ρα+1

+ (u− − u+)2

(ρα+ − ρα−)(ρ+ − ρ−) , (4.6)

then (u+, ρ+) ∈ IV ∪ V(u−, ρ−) when ε < ε1. According to (4.3), we have

ε >

⎛
⎝ (u− − u+)

ρ
− 1+α

2
− + ρ

− 1+α
2

+

⎞
⎠

2

=

⎛
⎝ρ

1+α
2

− ρ
1+α

2
+ (u− − u+)

ρ
1+α

2
− + ρ

1+α
2

+

⎞
⎠

2

. (4.7)

Let

ε2 =

⎛
⎝ρ

1+α
2

− ρ
1+α

2
+ (u− − u+)

ρ
1+α

2
− + ρ

1+α
2

+

⎞
⎠

2

, (4.8)

then (u+, ρ+) ∈ IV(u−, ρ−) when ε2 < ε < ε1, and (u+, ρ+) ∈ V(u−, ρ−) when 0 < ε < ε2.
If ρ+ = ρ−, this conclusion is also true. The proof is completed. �
Lemma 4.1 implies that there is no delta shock wave when ε > ε2.
Now we show how the strength and propagation speed of the delta shock wave change when ε tends to 

zero.
We first consider the situation (u+, ρ+) ∈ IV(u−, ρ−). In this situation, the Riemann solution to (3.1)

and (2.2) presented in Section 3 is
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Sε
1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v∗ε = u− −
√
ε

(
1
ρ−

− 1
ρ∗ε

)(
1
ρα−

− 1
ρα∗ε

)
,

σε
1(t) = u− + βt−

√√√√ερ∗ε
(

1
ρα
−
− 1

ρα
∗ε

)
ρ−(ρ∗ε − ρ−) ,

ρ∗ε > ρ−, (4.9)

Sε
2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v∗ε = u+ +

√
ε

(
1
ρ+

− 1
ρ∗ε

)(
1
ρα+

− 1
ρα∗ε

)
,

σε
2(t) = u+ + βt +

√√√√ερ+

(
1

ρα
∗ε

− 1
ρα
+

)
ρ∗ε(ρ+ − ρ∗ε)

,

ρ∗ε > ρ+, (4.10)

where (v∗ε, ρ∗ε) is the intermediate state, see Fig. 4.1(a). By using the first equation of (4.9) and (4.11), we 
have

lim
ε→ε2

(√
ε

(
1
ρ−

− 1
ρ∗ε

)(
1
ρα−

− 1
ρα∗ε

)
+

√
ε

(
1
ρ+

− 1
ρ∗ε

)(
1
ρα+

− 1
ρα∗ε

))

= u− − u+, ρ∗ε > ρ±.

(4.11)

It follows that

lim
ε→ε2

ρ∗ε = ∞. (4.12)

Lemma 4.2. Let

uδ(t, ε2) =
u−ρ

1+α
2

− + u+ρ
1+α

2
+

ρ
1+α

2
− + ρ

1+α
2

+

+ βt, (4.13)

then

lim
ε→ε2

u∗ε = lim
ε→ε2

(v∗ε + βt) = lim
ε→ε2

σε
1(t) = lim

ε→ε2
σε

2(t) = uδ(t, ε2), (4.14)

lim
ε→ε2

x2(t,ε)∫
x1(t,ε)

ρ∗εdx = (uδ(t, ε2)[ρ] − [ρ(v + βt)]) t, (4.15)

lim
ε→ε2

x2(t,ε)∫
x1(t,ε)

ρ∗εv∗εdx =
(
uδ(t, ε2)[ρv] −

[
ρv(v + β) − ε

ρα

])
t, (4.16)

where [ρ] = ρ+ − ρ−,

x1(t, ε) =
t∫

0

σε
1(τ)dτ =

⎛
⎜⎝u− −

√√√√ερ∗ε
(

1
ρα
−
− 1

ρα
∗ε

)
ρ−(ρ∗ε − ρ−)

⎞
⎟⎠ t + 1

2βt
2, (4.17)

x2(t, ε) =
t∫

0

σε
2(τ)dτ =

⎛
⎜⎝u+ +

√√√√ερ+

(
1

ρα
∗ε

− 1
ρα
+

)
ρ∗ε(ρ+ − ρ∗ε)

⎞
⎟⎠ t + 1

2βt
2. (4.18)
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Proof. Letting ε → ε2, it follows from (1.3), (4.9) and (4.12) that

lim
ε→ε2

u∗ε = lim
ε→ε2

(v∗ε + βt) = lim
ε→ε2

(
u− −

√
ε

(
1
ρ−

− 1
ρ∗ε

)(
1
ρα−

− 1
ρα∗ε

))

= uδ(t, ε2).
(4.19)

From (4.9)–(4.10) and (4.12), we get

lim
ε→ε2

σε
1(t) = lim

ε→ε2
σε

2(t) = uδ(t, ε2). (4.20)

Thus, we conclude from (4.19)–(4.20) that the two shock waves Sε
1 and Sε

2 will coincide when ε → ε2.
In view of the first equation of Rankine–Hugoniot conditions (3.6) for both Sε

1 and Sε
2 , we find

{
σε

1(t)(ρ∗ε − ρ−) = ρ∗ε(v∗ε + βt) − ρ−(u− + βt),
σε

2(t)(ρ+ − ρ∗ε) = ρ+(u+ + βt) − ρ∗ε(v∗ε + βt).
(4.21)

From (4.20)–(4.21), we have

lim
ε→ε2

(σε
2(t) − σε

1(t))ρ∗ε = uδ(t, ε2)[ρ] − [ρ(v + βt)]. (4.22)

Using (4.22), we get

lim
ε→ε2

x2(t,ε)∫
x1(t,ε)

ρ∗εdx = lim
ε→ε2

(σε
2(t) − σε

1(t))ρ∗εt = (uδ(t, ε2)[ρ] − [ρ(v + βt)])t (4.23)

which proves (4.15).
We can obtain (4.16) similarly. The proof is completed. �
Lemma 4.2 shows that the two shock waves Sε

1 and Sε
2 coincide as ε tends to ε2, see Fig. 4.1(b). From (4.12)

and (4.15), we find that ρ∗ε possesses a singularity which is a weighed Dirac delta function with speed 
uδ(t, ε2). Now, if ρ+ �= ρ−, we deduce from (3.11) and (4.8) that

lim
ε→ε2

w(t, ε) = w(t, ε2) = (uδ(t, ε2)[ρ] − [ρ(v + βt)])t, (4.24)

lim
ε→ε2

uδ(t, ε) = uδ(t, ε2) = vε2δ + βt. (4.25)

It is easy to see that the quantities ω(t, ε), uδ(t, ε) and the limits of u∗ε, σε
1 and σε

2 are consistent with (4.15)
when ε arrives at ε2. For ρ+ = ρ−, we can obtain the same conclusion. Therefore, as ε → ε2, the limit of 
the two shock waves of (1.1)–(1.2) is the delta shock solution of (1.1)–(1.2) corresponding to the case of the 
Riemann solution of the case (u+, ρ+) ∈ Sδ, see Fig. 4.1(a).

Next, we discuss the situation 0 < ε < ε2, in which (u+, ρ+) ∈ V(u−, ρ−). In this situation, the Riemann 
solution to (1.1)–(1.2) is a delta shock wave solution. If ρ+ �= ρ−, we deduce from (3.11) that

∂w(t, ε)
∂ε

< 0 and ∂uδ(t, ε)
∂ε

< 0. (4.26)

Using (4.26), we know that both the strength and the propagation speed of the delta shock wave increase 
as ε decreases. Furthermore, taking the limit ε → 0 in (3.11) leads to
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Fig. 4.2. Riemann solution when (u+, ρ+) ∈ I(u−, ρ−).

lim
ε→0

w(t, ε) = √
ρ+ρ−(u− − u+)t, (4.27)

lim
ε→0

uδ(t, ε) =
√
ρ+u+ + √

ρ−u−√
ρ+ + √

ρ−
+ βt. (4.28)

By (4.27)–(4.28), we deduce that the delta shock solution to (1.1)–(1.2) converges to the Riemann solution 
of (1.4). The same conclusion holds for ρ+ = ρ−.

Therefore, as ε → 0, the delta shock solution is nothing but the Riemann solution to (1.4). Therefore, 
we have proved the first part of Theorem 1.1.

4.2. Formation of vacuum states

In this subsection, we will show the limit behavior of Riemann solutions of (1.1)–(1.2), in the case u− < u+
as the pressure decreases, see Fig. 4.2(a).

Lemma 4.3. If u− < u+, then there exists ε3 > 0 such that (u+, ρ+) ∈ I(u−, ρ−) when 0 < ε < ε3.

Proof. If ρ+ = ρ−, then the conclusion is obviously true. Next, we discuss the situation ρ+ �= ρ−. Assume 
that u− < u+ and (u+, ρ+) ∈ I(u−, ρ−), we obtain (see Fig. 4.2(a)):

u+ > u− + 2
√
αε

1 + α

(
ρ
− 1+α

2
+ − ρ

− 1+α
2

−

)
, ρ+ < ρ−, (4.29)

u+ > u− − 2
√
αε

1 + α

(
ρ
− 1+α

2
+ − ρ

− 1+α
2

−

)
, ρ+ > ρ−. (4.30)

According to (4.29) and (4.30), we have

ε <
(1 + α)2ρ1+α

− ρ1+α
+ (u+ − u−)2

4α
(
ρ

1+α
2

+ − ρ
1+α

2
−

)2 . (4.31)

Letting

ε3 =
(1 + α)2ρ1+α

− ρ1+α
+ (u+ − u−)2

4α
(
ρ

1+α
2

+ − ρ
1+α

2
−

)2 , (4.32)

we find (u+, ρ+) ∈ I(u−, ρ−) when ε < ε3. �
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As u− < u+, by Lemma 4.3, for any given ε ∈ (0, ε3), the Riemann solution of (1.1)–(1.2) is

(u− + βt, ρ−) + Rε
1 + (v∗ε + βt, ρ∗ε) + Rε

2 + (u+ + βt, ρ+) (4.33)

where

Rε
1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= λ1(v, ρ) = v + βt−

√
αερ−

1+α
2 ,

v − 2
√
αε

1 + α
ρ−

1+α
2 = u− − 2

√
αε

1 + α
ρ
− 1+α

2
− ,

λ1(u−, ρ−) ≤ λ1(v, ρ),

ρ < ρ−; (4.34)

Rε
2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= λ2(v, ρ) = v + βt +

√
αερ−

1+α
2 ,

v + 2
√
αε

1 + α
ρ−

1+α
2 = u+ + 2

√
αε

1 + α
ρ
− 1+α

2
+ ,

λ2(v, ρ) ≤ λ2(u+, ρ+),

ρ < ρ+ (4.35)

(see Fig. 4.2(a)). By (4.34)–(4.35), we have

ρ
− 1+α

2∗ε = 1 + α

4
√
αε

(
u+ + αε

1 + α
ρ
− 1+α

2
+ − u− + αε

1 + α
ρ
− 1+α

2
−

)
, (4.36)

lim
ε→0

v = u− on Rε
1, lim

ε→0
v = u+ on Rε

2, (4.37)

and ⎧⎪⎨
⎪⎩

λ1 = 1 − α

2 v + 1 + α

2 u− −
√
αερ

− 1+α
2

− + βt,

λ2 = 1 − α

2 v + 1 + α

2 u+ +
√
αερ

− 1+α
2

− + βt.
(4.38)

Combining (4.36)–(4.38), we have

lim
ε→0

ρ∗ε = 0, lim
ε→0

λ1 = u− + βt, lim
ε→0

λ2 = u+ + βt. (4.39)

The above identities assert that as ε → 0, ρ∗ε vanishes and two rarefaction waves Rε
1 and Rε

2 become 
two contact discontinuities connecting the state (u± + βt, ρ±) and the vacuum ρ∗ε = 0, which is one kind 
of Riemann solution of (1.4), see Fig. 4.2(b). Therefore, we have proved the second part of Theorem 1.1.

4.3. Limit of Riemann solutions for u− = u+

In this subcase, we discuss (u+, ρ+) ∈ II(u−, ρ−) ∪ III(u−, ρ−).
If (u+, ρ+) ∈ II(u−, ρ−), then the Riemann solution of (1.1)–(1.2) is

(u− + βt, ρ−) + Rε
1 + (v∗ε + βt, ρ∗ε) + Sε

2 + (u+ + βt, ρ+), (4.40)

where Rε
1, Sε

2 are given by (4.34) and (4.10) respectively, (v∗ε+βt, ρ∗ε) is the intermediate state. From (4.34)
and (4.10) and ρ+ < ρ∗ε < ρ−, we have

lim
ε→0

v∗ε + βt = lim
ε→0

λ1(v∗ε, ρ∗ε) = σε
2(t) = u− + βt. (4.41)

For (u+, ρ+) ∈ III(u−, ρ−), we can obtain same conclusion.
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Fig. 4.3. Riemann solution when (u+, ρ+) ∈ II(u−, ρ−).

Thus, if u+ = u−, when ε → 0, the limit of the Riemann solution is one kind of the Riemann solution 
to (1.4), see Fig. 4.3(b). Therefore, we have proved the third part of Theorem 1.1.

5. Discussion

We have studied the limit behavior of the Riemann solutions to the generalized Chaplygin gas equations 
with a source term. We find the formation of delta shock wave and vacuum states in the Riemann solutions 
to system (1.1)–(1.2) when pressure vanishes as ε → 0. Specifically, for u− > u+, when ε → ε2, for some 
ε2 > 0, the two shock waves Sε

1 and Sε
2 coincide and the Riemann solution converges to a delta shock 

wave solution of the same system (1.1)–(1.2). When ε continues to drop, both the strength and propagation 
speed of this delta shock become stronger. In the end, as ε → 0, the delta shock solution is nothing but 
the Riemann solution to the pressureless gas dynamics with a body force. For u− < u+, when ε tends to 
zero, we find that the two rarefaction waves converge to two contact discontinuities connecting the states 
(u± + βt, ρ±) and the vacuum. For u− = u+, the Riemann solutions to system (1.1) and (1.2) converge to 
one contact discontinuity with the propagation speed u− + βt. The results for the generalized Chaplygin 
gas equations with a source term in the current paper are qualitatively similar to those for the Chaplygin 
gas equations with a source term in [10].
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