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1. Introduction

Let Q be an open bounded connected domain of R, 1 < d < 3 with polygonal boundary 9. In this paper
we study the problem of identifying simultaneously the diffusion matriz @, source term f and boundary
condition g as well as the state ® in the Neumann boundary value problem for the elliptic PDE

-V-(QV®)=f in Q, (1.1)
QVe-i=g on 09 (1.2)

from a measurement z5 € L%(Q) of the solution ® € H* (), where 7 is the unit outward normal on 9.

* Correspondence to: Department of Mathematics, University of Hamburg, BundesstraBe 55, D-20146 Hamburg, Germany.
E-mail addresses: quyen.tran@uni-hamburg.de, quyen.tran@uni-goettingen.de.
1 The author gratefully acknowledges support of the Alexander von Humboldt Foundation, Bonn, Germany and the Lothar
Collatz Center for Computing in Science at the University of Hamburg, Hamburg, Germany. This research was supported in part
by the University of Goettingen, Lower Saxony, Germany.

https://doi.org/10.1016/j.jmaa.2018.01.030
0022-247X/© 2018 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2018.01.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:quyen.tran@uni-hamburg.de
mailto:quyen.tran@uni-goettingen.de
https://doi.org/10.1016/j.jmaa.2018.01.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2018.01.030&domain=pdf

T.N.T. Quyen / J. Math. Anal. Appl. 461 (2018) 676-700 677
To formulate precisely our problem, let us first denote by Sy the set of all symmetric, real d x d-matrices
equipped with the inner product M - N := trace(M N) and the corresponding norm ||M||s, = (M - M)'/? =
1/2
(Z?’j:l m?) , where M := (m;;); ;_75- Furthermore, for 1 < p < co we set

LP (Q) = {H = (hij)iyta € L™ | H(z) == (hyj(2)), ;14 € Sa ae. in Q} :

In L2 . (€) we use the scalar product (H', H2)L2 @ = Zd (hi;, hZ;)12(0) and the corresponding norm

sym sym G =1 g
1/2
Bz oy = (S W3y ) = (o I )3, d2) 72, while the space 155, (0) is endowed with the
norm |[Hl[rze () = max; ;_1glhijllL= (o).

Let us denote by

Had = Qad X Faud X Gad

with
Qua = {Q € L, (Q) | ql¢f” < Q(x)¢ - € < ql¢f for all { € R}, (1.3)
Fad i= LQ(Q),
Guaq = L2(0Q)

and ¢, g being given constants satisfying g > ¢ > 0. Let
v: HY Q) —  HY%09)

be the continuous Dirichlet trace operator and HZ () be the closed subspace of H'() consisting all func-
tions with zero-mean on the boundary, i.e.

HX(Q):=uec H(Q) udx =0
“ral [

while Cq stands for the positive constant appearing in the Poincaré-Friedrichs inequality (cf. [38])
C’Q/apde < / \V|?dz forall ¢ e HX(Q). (1.4)
Q Q

Then, due to the coercivity condition

1+ C 1+ C;
ol < g [ 1VePdo < =222 [ QVy- Vods (1.5
Q - Q

holding for all ¢ € H1(Q),Q € Q.4 and the Lax—Milgram lemma, we conclude for each (Q, f,g) € Had,
there exists a unique weak solution ® of (1.1)—(1.2) in the sense that ® € H!(2) and satisfies the identity

/QV<I> Vdr = (f, ) + (g,7¢) (1.6)
Q

for all ¢ € HL(). Here the expressions (-,-) and (-,-) stand for the scalar product on space L?(Q2) and
L?(09), respectively. Furthermore, there holds the estimate
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1+ Cq
[} < —
H HHl(Q) = CQQ

(1912 a2 60,1172 000 19 2202y + 122
< Cw (llgllz2om + 11z (1.7)
with

Cn

1
= + CQ max (1, H’Y”L(Hl(ﬂ) Hl/Q(BQ))> .
C )

Then we can define the non-linear coefficient-to-solution operator
U: Hog — HHQ)

which maps each (Q, f,g) € Hqa to the unique weak solution Ug 4 := ® of the problem (1.1)-(1.2). Here,
for convenience in computing numerical solutions of the pure Neumann problem we normalize the solution
with vanishing mean on the boundary (cf., e.g., [23, Subsection 5.2], [29, Section 2]); however, all results
performed in the present paper are still valid for the normalization of solutions of the Neumann problem
with zero-mean over the domain, i.e. Uy sy € {u € H(Q) | [,udz = 0}. The identification problem is
now stated as follows:

Given ' == Ug. ;, € HL(Q), find an element (Q, f,g) € Haa such that (1.6) is satisfied with ®' and
Q. 1.9

This inverse problem may have more than one solution and it is highly ill-posed. In fact, assume that the
exact ®f € C2(9), the space of all functions having second-order derivatives with compact support in .
Then, for all Q € C’l(Q)dXd N Quq the element (Q, f, ) := (Q,—V(Q - V®'),0) is a solution of the above
identification problem, i.e. Up 75 = ®T. In other words we are considering to solve an equation U ;. , = ®f,
where the forward operator U is non-linear and non-injective. Without using additional objective a priori
information or without exploiting other observation data as considering here, it is difficult for us to classify
sought targets. Following the general convergence theory for ill-posed problems (see, e.g., [9, Chapter 5] and
[43, Subsection 3.2.1], or the classical monograph [15, Section 10.1]), in the present paper we are interested
in finding ezact solutions with penalty minimizing, which is defined as

Tt ogt) = i R 1.8
(@, f.9") arg . min Q. f.9), (1.8)

where Z(®1) := {(Q, f,9) € Haa | Uq,1,y = T} and the penalty term

R(Q. f.9) = QL2 @ + IIf72@) + l9lZ200)-
We note that the admissible set Z(®') of the problem (1.8) is non-empty, convex and weakly closed in
L2, (Q) x L*() x L?(8Q), so that the minimizer (QT, fT,g") is defined uniquely. Furthermore, the exact
data ®' may not be known in practice, thus we assume instead of ®' to have a measurement z; € L%(Q)
such that

<é with §>0. (1.9)

||(I)Jr - Z‘sHLQ(Q)

Our identification problem is now to reconstruct (QT, f1,g") € Haq from zs.
h

Let (T")gcpen

the approximation of the operator U on the piecewise linear, continuous finite element space associated

denote a family of triangulations of the domain € with the mesh size h and U" be



T.N.T. Quyen / J. Math. Anal. Appl. 461 (2018) 676-700 679

with 7". Furthermore, let TI" be the Clément’s mollification interpolation operator (cf. §2). The standard
method for solving the above mentioned identification problem is the output least squares one with Tikhonov
regularization, i.e. one considers a minimizer of the problem

.10 = T2 o) + PRAQ. S, 1.10
(nyryrglirelﬂadu Q.19 Z6HL2(Q) PR(Q, [, 9) ( )

as a discrete approximation of the identified coefficient (QT, ft, gT), here p > 0 is the regularization pa-
rameter. However, due to the non-linearity of the coefficient-to-solution operator, we are faced with certain
difficulties in holding the non-conver minimization problem (1.10). Thus, instead of working with the above
least squares functional and following the use of energy functions (cf. [37,35,48]), in the present work the
convex cost function (cf. §2)

(Qa fa g) € Haa — jéh(Qa f7 g) = /Qv (ug,f,g - thé) Y (u(37f7g - thé) dx
Q

will be taken into account. We then consider a unique minimizer (Qh, 1, gh) of the strictly convex problem

(@t T3 (@ £.9) +pR(Q. f.9) (1.11)

as a discrete regularized solution of the identification problem. Note that, by using variational discretization
concept introduced in [22], every solution of the minimization problem (1.11) is proved to automatically
belong to finite dimensional spaces. Thus, a discretization of the admissible set H,4 can be avoided. Fur-
thermore, for simplicity of exposition we here restrict ourselves to the case of one set of data (zs5)s>0. In
case with several sets of data (z5,)!_, being available, we can replace the misfit term in the problem (1.11)

by the term % Zle jg:(Q, f9).

In §3 we will show the convergence of these approximation solutions (Q", f", ¢") to the identification
(QT, f1,g") in the L2, () x L?(Q) x L?(8€2)-norm as well as the convergence of corresponding approximation
states (Z/{gh) fh,’gh) to the exact ®' in the H'(€2)-norm. Under the structural source condition — but without
the smallness requirement — of the general convergence theory for non-linear, ill-posed problems (cf. [15,
16]), we prove in §4 error bounds for these discrete approximations. For the numerical solution of the
minimization problem (1.11) we in §5 employ a gradient projection algorithm with Armijo steplength rule.
Finally, a numerical implementation will be performed to illustrate the theoretical findings.

The coefficient identification problem in PDEs arises from different contexts of applied sciences, e.g.,
from aquifer analysis, geophysical prospecting and pollutant detection, and attracted great attention from
many scientists in the last 30 years or so. For surveys on the subject one may consult in [2,9,27,43.45.46].
The problem of identifying the scalar diffusion coefficient has been extensively studied for both theoretical
research and numerical implementation, see e.g., [7,8,10,11,17-19,28,30,32,33,36,40,48]. Some contributions
for the case of the simultaneous identification can be found in [3,20,21,34] while some works treated the
diffusion matriz case have been obtained in [14,24-26,39].

We conclude this introduction with the following mention. By using the H-convergent concept, the con-
vergence analysis presented in [24] can not be applied directly to the problem of identifying scalar diffusion
coefficients. There are two main difficulties for the scalar coefficient identification. First, the set

D:={qly | g € L>°(Q) with ¢ < q(2) < g a.e. in Q and I, is the unit d x d-matrix}

is in general not a closed subset of Q,4 under the topology of the H-convergence (cf. [47]), i.e. if the sequence
(gnlq)n C D is H-convergent to @ € Quq, then @ is not necessarily proportional to Iy in dimension d > 2 or
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Q ¢ D. Second, the forward operator U is not weakly sequentially closed in L?, i.e. if (¢.,U(q,)) — (g,))
weakly in L?(Q) x L?(Q), it is not guaranteed that Y = U(q) (see [14] and the references therein for
counterexamples). To overcome these difficulties, a different analysis technique based on the convexity of
the cost functional will be taken into counting. Due to the weak™ closedness of the set D above in Lgy,, (€2)
(cf. Remark 2.1), the convergence analysis performed in the present paper thus covers the scalar diffusion
identification case. On the other hand, in [24] the source term and the boundary condition were assumed to
be given. In the present situation they are variables which have to be found simultaneously together with
the diffusion from observations.

Throughout the paper we write fQ -+« instead of fQ - - dx for the convenience of relevant notations. We

use the standard notion of Sobolev spaces H'(€2), H?(2), WkP(Q), etc. from, e.g., [1].
2. Finite element discretization
2.1. Preliminaries

In product spaces L2 () x L?(Q) x L?(99) and L, () x L3(2) x L?(0Q) we use respectively the

sym sym
norm
2 2 2 1/
1CH, L)z, 2o zom = (1HIRz, @) + 11320 + Isl3200))  and
|(H,1,8)|lLee (@)xr2@)xr200) = [ HllLe @) + [lllL2) + IsllL2(00)-

sym sym

We note that the coefficient-to-solution operator

Uu: HadCLOO

oym (£2) X L*(Q) x L*(0Q) — HXQ)
with
I':= (Qafv g) € Haa — u(r) = Ur

is Fréchet differentiable on H,q. For each T' = (Q, f, g) € Haa the action of its Fréchet derivative in direction
A= (H,l,s) € L2, (Q) x L*(Q) x L*(99) denoted by &, := UL (A) :=U'(T)(A) is the unique weak solution

sym

in H!(Q) to the equation
[aven Vo= [HVU: Vot (9) + (590 (21)
Q Q

for all ¢ € HL(Q).
In S; we introduce the convex subset
Ki={MeS;|q< M &<qforall € € R}
together with the orthogonal projection Py : S — K that is characterized by
(A= Px(A))-(B—Pc(A)) <0

for all A € §; and B € K. Furthermore, let £ := (&1, -+, &4) and 5 := (91, - -,n4) be two arbitrary vectors
in R%, we use the notation

. 1 .
(€ ®@N)1<ij<a €S with (§®mn)i; = 5(&77;' +&mni) forall i,j=1,---,d.
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We close this subsection by the following note.
Remark 2.1. Let
D:={qeL® )| q¢<q(x) <gae inQ}.

Then D is a weakly* compact subset of L>°((2), i.e. for any sequence (g,,), C D a subsequence (¢p,, )m and
an element &, € D exist such that (g, )m is weakly* convergent in L>°(£2) to {. In other words, for all

0, € L'(Q) there holds the limit
lim /qnm91 :/50091.
m— o0
o)

Q
We also remark that any ¥ € L>(£) can be considered as an element in L>(Q)" by
<\I/, w) (LW(Q)*,L“(Q)) = /\I/w (22)
Q
for all ¢ in L>°(Q2) and ||¥|[ 00y < [Q] - || ¥ (). Therefore, due to (2.2), the assertion of Remark 2.1 is
a direct consequence of the Banach—Alaoglu theorem.

2.2. Discretization

Let (") cpes
h such that each vertex of the polygonal boundary 92 is a node of 7,. For the definition of the discretization
space of the state functions let us denote

be a family of regular and quasi-uniform triangulations of the domain  with the mesh size

Vi={¢" € C@)NHI) | " € PAT) forall T € T" 23)

with P, consisting all polynomial functions of degree at most r. Similar to the continuous case, we have the
following result.

Lemma 2.2. Let (Q, f,g) be in Haq. Then the variational equation

/ Q" - Vih = (£,0") + (g, 7¢") (2.4)
Q

for all p" € V' admits a unique solution ®" € VI, Furthermore, the estimate

12" 1) < Ca (I lz2(0) + 9l z200)) (2.5)
1s satisfied.

The map U" : Hag C L, () x L*(Q) x L*(8Q) — V] from each I := (Q, f,g) € Haq to the unique
solution Ut := ®" of (2.4) is called the discrete coefficient-to-solution operator. This operator is also Fréchet
differentiable on the set Hqq. For each T' = (Q, f,g) € Haq and X := (H, 1, s) € L, (Q) x L*(Q) x L*(09)

the Fréchet differential £} := Z/Ifb/()\) is an element of V! and satisfies for all " in V! the equation

/QVEQL Vel = —/HVU? Ve + (L") + (s,7¢"). (2.6)
Q Q
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Due to the standard theory of the finite element method for elliptic problems (cf. [6,12]), for any fixed
I'=(Q, f,g9) € Haq there holds the limit

. h
lim [t = Up | 12 ) = 0 (2.7)
Let
m: L@ = {¢"eC@) |¢"pePi(T) forall Te T}
be the Clément’s mollification interpolation operator with properties
. h _
lim ¢ = 11| i) =0 forall ke {0,1} (2.8)
and
16 =" jru () < CR 10l an1 (0 (2.9)

for 0 < k <1 <2, where C is independent of h and ¢ (cf. [13,4,5,44]). Then, using the discrete operator U"
and the interpolation operator II”, we can now introduce the discrete cost functional

THQf.9) = [ QV W py ~10"20) ¥ (U g~ T0'25). (2.10)
Q

where (@, f,9) € Haad-

Lemma 2.3. Assume that the sequence (I'y), = (Qn, fn,9n),, C Haea weakly converges to T' := (Q, f,g) in
L2,,,(Q) x L*(Q) x L*(9Q). Then for any fized h > 0 the sequence (U ) C Vi converges to Uft in the

sym

H'(Q)-norm.

Proof. Due to Remark 2.1, (Q,), has a subsequence denoted by the same symbol which is weakly* conver-
gent in LS";’m(Q) to Q. Furthermore, by (2.5), the corresponding state sequence (Z/{I@n)n is bounded in the
finite dimensional space V. A subsequence which is not relabelled and an element ©" € V}' then exist such

that (U ) converges to ©" in the H'(Q)-norm. It follows from the equation (2.4) that

/QnV(Uﬂ ~Utt) -V = /(Q — Qn) VUL - V" + (fu = f,¢") + (gn — 9:7¢") (2.11)
Q Q

for all " € V], Taking " =Uf! — U, by (1.5), we obtain that

Cag
o U~ U g < / (Q— Qu) VUL -V (Uf:, — O + 0" —uf) (2.12)
Q

+ (fo— £ UL, —O" +O" —UP) + (g — g,y (U, — O" + 0" —Uf))

< Cllut, = 0" gy + / (Q — Qu) VUL -V (0" — 1)
Q

+ (fo— £,0" —UP) + (g — g7 (O" —UP)).

Since Q,, — @ weakly* in L, (Q), we get limy, o0 [, (Q — Qn) VUL - V (06" —Uf*) = 0. Sending n to oo,

sym
we thus obtain from the last inequality that lim, o |[Uf — U} = 0, which finishes the proof. O

e
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We now state the following useful result on the convexity of the cost functional.

Lemma 2.4. J! is conver and continuous on Haq with respect to the L2,,.(Q) x L*(Q) x L*(9Q)-norm.

Proof. The continuity of 7, 5h follows directly from Lemma 2.3. We show that 7, 5h is convex.
Let I := (Q, f,9) € Hqa and X := (H,l,s) € L2, () x L2(Q) x L?(952). We have that

sym

Y oup oul - ouk Y g oghr) —oghr)
ug (N = 3QH 3fl+ ags and J5' (T)(\) = 90 H+ o7 I+ 09 s.

We compute for each term in the right hand side of the last equation. First we get

075 (I)
Q

H:/Hv(u#—nhz(;)-v(u — II"25) +2/QV( uFH) V (Ul —1"z).
Q

For the second term we have

N ou
‘75; )ZZQQ/QV(afFQ V(U —11"z) .

Finally, we have for the third term

axg 8_2/Qv(auF > V(U —Tsy)

Therefore,
aul}“L 8“# 8Z/{1’l h h h h h h
)=2 [ QV H+ aflJra s| -V (Up —T"zs) + | HVUE —11"z5) - V(UL — 11" z5)
g Q
= 2/Qv V(U —1"zs) + /Hv (U —T1"zs) - V (UL — TT"25)
Q
= 2/Qv V (Uf —TT"z5) +/ VUl —10"z5) -V (U —1T"z)
Q
where
Mz ="z — 09|71 (1,71T"25) € V' with VII"z; = VII"z. (2.13)

By (2.6), we infer that

T = —2/Hvu# SV (Up - z) + 2 (LUf — T 2s) +2 s,y U — TT"z5))
+ /Hv Ul —1"z) - v (U — TT"25) (2.14)

/HvuF VU + /HVth5 VIl zs +2 (LU —T"z5) + 2 (s, v (U —T"25)) .
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Therefore, by (2.6) again, we arrive at

TE T (AN = —2 / HVUE VUl (\) + 2 (z,uﬁ’(x)) +2 <s, yug’(x)>
Q

e

2
14+ Cq Ur ()\)H 20

—9 MO VUl (2) > 2
[ avut o vt o) = ey 2
Q

by (1.5), which completes the proof. O

Now we are in position to prove the main result of this section.

Theorem 2.5. The strictly conver minimization problem

© frg};gﬂad T2MQ, f.9) = THQ, f.9) + PR(Q, f,9) (P

attains a unique minimizer. Furthermore, an element T := (Q, f,g) € Haa is the unique minimizer to (735"}')
if and only if the system

Q(z) = P (% (Vi () @ VUt () = VIT"z5(2) & vnhZ5(x))) : (2.15)

fa) = = (["25(0) ~ ). (2.16)
1 /-

(o) = (0 25(0) ~ 14 () (2.17)

holds for a.e. in Q, where II" was generated from II" according to (2.13).

Proof. Let (T'y)n := (Qn, fn, gn)n C Haa be a minimizing sequence of (73(/;‘}'), ie.

lim Y2™MT,) =  inf  YPMQ, 1, 9).
S L ( ) (Q.f19)EHou 5 (Qfg)

The sequence (I',),, is thus bounded in the L2 _(Q) x L?(Q) x L?(0Q)-norm. A subsequence not relabelled

sym

and an element I' := (Q, f,g) € L2,,,(Q) x L*(Q) x L?(9Q) exist such that ', — I' weakly in L2 (Q) x
L?(Q) x L*(99). On the other hand, since Hoq is a convex, closed subset of L2, (Q2) x L*(Q) x L?*(99), so

is weakly closed, it follows that I € H,q. By Lemma 2.4, 7, 6h and R are both weakly lower semi-continuous
on H,q which yields that

JHT) <liminf J(T,) and R(T) < liminf R(T,,).

n—oo n—oo

We therefore have that

T3 (T) 4+ R(T) < liminf J(T',) + liminf R(T',,) < liminf (J3"(Ty) + R(Ty))
n— 00 n—00 n—00

= lim T"(T,) = inf  TPMQ,f,9)
B, X5 In) = o i, T (@ 9)
and I is then a minimizer to (7353‘]"). Since Tg’h is strictly convex, this minimizer is unique. Next, an element
I':=(Q, f,g) € Haq is the minimizer to (Pg"h) if and only if Tg’hl(f‘)(f— [)>0forallT = (H,l,5) € Haa-
Then, in view of (2.14), we get that
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0< / (H - Q)Vil'z - ViT"z5 / (H — Q)VUL - VUl +2p(H — Q.Q)
Q Q

+2(1— fuf —1"zs) +2p(L = f, f) +2(s — g,y (U —T1"25)) + 2p (s — g, 9)

= / (H—-Q)- (VII"zs @ VII"z5 — VUL @ VU +2pQ)
Q
+2(1 = fuf =2 +pf) +2(s — g7 (UF —11"2) + pg)

for all T = (H,1,5) € Haq. Taking Ty = (H, f,g), T2 = (Q,l,9) and I's = (Q, f, s) into the above inequality
we obtain the system (2.15)—(2.17). The proof is completed. O

Remark 2.6. We denote by
Vb= {goh € L*(Q) | goh‘T = const for all triangulations T' € ’Th} ,

Eh = {goh € C(09) | goh‘e € P, for all boundary edges e of Th} .

Since U € VP and 11725 € V], the system (2.15)-(2.17) shows that every solution of (775)‘”) automatically

belongs to the finite dimensional space ngXd x Vi x g
3. Convergence

For abbreviation in what follows we denote by C a generic positive constant independent of the mesh
size h, the noise level § and the regularization parameter p. By (2.8) and (2.9), we can introduce for each
P e H'(Q)

X4 = ||® —1I"®| ., which satisfies lim x4 =0 and 0< x4 <Ch
h—0

(Q)
in case ® € H?(Q). Likewise, by (2.7), for all T' € Haq
B = e 14

iy =0 as A—0 and 0<pfy <Ch as Ure H*(Q).

Furthermore, by (2.9), we get
||Hh||L(L2(Q),L2(Q)) < C and ||Hh||£(H1(Q)’H1(Q)) < C. (31)
Thus, it follows from the inverse inequality (cf. [6,12]):
||<PhHH1(Q) < Ch_1||g0h\|L2(Q) for all <ph IS {Lph eC (ﬁ) ‘ <ph|T e Py(T) forall T € Th}
that

197 = T"25 rr1 () < IT* (DT — 25) [l 1) + 1€ — T*@T[| 1110y < CATHIT* (@F — 25) [[22(0) + X
< Ch YT gzao).2n 19T = 2sllz2 () + X < ChT10 + X (3.2)

The following result shows the convergence of finite element approximations to the unique minimum norm
solution T'" := (QT, fT, g") of the identification problem, which is defined by (1.8).
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Theorem 3.1. Let (hy),, be a sequence with lim, o h, =0 and (6,),, and (p,), are any positive sequences
such that

hn h
On Upi Xt
Pn — 0, — — 0, L0 and —=— —0 as n— .
hn Pn v Pn v/ Pn

Assume that (2s,), C L*(2) is a sequence satisfying ||25n — <I>T||L2(Q) < 6, and Ty, := (Qn, fn,gn) is the

unique minimizer of the problem (Pé:’h") for each n € N. Then the sequence (I'y), converges to 't in the

L2,,.(Q) x L*(2) x L*(9Q)-norm as n — oo. Furthermore, the corresponding discrete state sequence (Z/{{f”)n

also converges to ®1 in the H'(Q)-norm.

Remark 3.2. In case ®f = Ups € H?(Q) we have 0 < BZZnTanﬁ < Chy,. Therefore, the convergence of
r
Theorem 3.1 is obtained if §,, ~ h2 and the sequence (py,), is chosen such that

n

pn — 0 and =0 as n — oo.

On

To prove Theorem 3.1, we need the following auxiliary estimate.

Lemma 3.3. There holds the estimate
h (Tt —2¢2 h \2 h \2
Tty <o (202 + () + (8ly,)?) (3.3)

Proof. We have with ® = U+ and (3.2) that
2
T = [ QT 1) Vg ) <7
Q

=4q HUFT —Upi + @' — Hh%”ip(n) <C (HUFT _UFTH?LII(Q) + Hq)T - HhZfSHle(Q))
<C(h26+ ()" + (8,)7)
which finishes the proof. O

Proof of Theorem 3.1. By the optimality of I',, and Lemma 3.3, we have that

Ty (Tn) + paR (Tn) < Jgm (TF) + puR (TT)
< C (02 + (d)* + (Br,)”) + PR ()
which yields

lim Jf (T,) =0 (3.4)

n—00 n

and

limsup R (T,) < R (T1). (3.5)

n—oo

A subsequence of the sequence (I';,),, denoted by the same symbol and an element Iy := (Qo, fo, 90) € Haa
then exist such that
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Q. — Qo weakly*in L (Q),
fn — fo weaklyin L*(Q),
gn — go weaklyin L?*(99).

We will show that (T',)
from (3.2) that

converges to I'g in the L2 (Q) x L*(Q) x L*(99)-norm and I'y = I'f. We have

n

Tim (|1 25, = Upt [ 1 ) < Jim (Chi1 8 + 303 ) =0, (3.6)

Combining this with lim,, . |[Ur, — L{l}ls ||z () = 0 from (2.7), we arrive at

n—oo

lim j(; (Ty) = nlLIIgO/Q()V (UI]}; — Hh"zén) .V (L{I’}; — thzén)
Q
= /QOV (Ur, —Urt) -V (Ur, — Upt) .

Now for each fixed n we consider an arbitrary subsequence (I'y,,, )m of (I'y,)n. By the weakly l.s.c. property
of the functional 7, 6}::1 (cf. Lemma 2.4), we obtain that

h L h
n < n .
J5," (To) < lim inf 75" (I, )
Again, using the convexity of 7. 5}1", we get that

T (Ta) = T (Tay) + T (Ta) (T = T -

By (1.5), we thus arrive at
C e, ~ Ui ooy < [ QuY U, —Uer) - ¥ U, ~ )

m—roo

< lim hmlélof (j(; (Tn) + j(s};n (Tn,) (T, — Fn)) .

n—,oo m—

Using (3.4), we infer from the last inequality that

C ||Ur, — L{F+||H1(Q) < lim hmmfj " ( ) (Do, — Tn) (3.7

n—oo m—0oo

In view of (2.14) we get that

/ _ _
*76};" (L) (Cny =) = /(Qnm —Qn) VHh"Z% -VHh"z(;”

Q
-2 (fnm — fn, I 267,,) -2 <gnm — 9n, ’Yﬁh" 267,,>

— [ Qo - @iVl VUl 2 (fa,  dthly, ) +2 (o, — ol )
Q
= A1 — 2A2 — 2A3 - A4 + 2A5 + 2A6 (38)
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Since Qp,, — Qo weakly* in LSS (2) as m — oo, we have for the first term that

sym

lim lim A := lim lim /(Qnm —Qn) Vﬁhnzén 'Vﬁh"Zén
n—00 M—00 n—oo | m—oo
Q

= lim [ (Qo— Q) VII""z5, - VII"" 25,
n—oo
Q

= ,}l_)H;O (Qo — Qn) VUr+ - VUr+
+ lim [ (Qo—Qn)V (T" 25, —Upi) -V (T 25, + Urr)

= lirrgo (Qo—Qn)V (I:Ih”z(;n — Z/{I‘T) -V (f[h”z(;n + L{m) ,

since lim,, o0 fQ (Qo — Qn) VUt - VUpt = 0, due to Q, — Qo weakly” in L, (€2). Furthermore, by (3.6),
we get that

n— o0
Q

lim / (Qo — Qn) V (" 25, — Upi) - V (T 25, + Uri)

< lim CHV(ﬁh"Zén —UF*)HLz(Q) = lim C||V(thz‘5n _UFT)HLQ(Q)

n—oo n—roo

< C lim |10 25, = Upt]| 1 ) = 0-

Therefore,

lim lim A; =0. (3.9)

n—oo m—oo

On the other hand, we get

(fo— fa, 1" 25,)

lim lim Ay := lim lim (fn,, —fn,l:[h"z(gn) = lim
n—oo m—roo n—oo m—roo n—roo
= lim (fo— fo,Urt)+ lim (fo — fo, 0" 25, — Uri)
n— 00 n—00
=0
< Onh_{lgo [0 25, — Up+ ||L2(Q)
< C lim V(1" 25, = Uri)|| 2, = 0. (3.10)

n—oo

‘We now have that

lim lim Az:= lim lim (g, — gn,’yl:lh”zan> = nllﬁ\H;O (g0 — gm’Yﬁh"Zén>

n—oo m—roo n—oo m—roo

= lim (go — gn, /11" 25, ) — 027" Tim (go — gn, (11" 25, ))

with
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lim (go — gn, YII"" 25, )
n— o0

= lim (go — gn, (11" 25, —Upt)) + lim (go — gn,YWr+)
n—oo

n—roo

=0

. hn
< CnILII;O lgo — gn||L2(8Q) ||’YH£(H1(Q),H1/2(852)) HH 25, — Urt HHl(Q)

< C lim [0 25, = Upt| g ) = O
and
Jim (go = gn, (1,711 25,)) < lim (1,911 25, )] [(go = g, 1)]
< O lim 10" 25, || 1 g {90 = g, 1)]
< Cnlgrolo I{90 — gn,1)| =0
so that

lim lim As =0. (3.11)

n—o0 Mm—o0

Next, we rewrite

lim lim Ay:= lim lim [ (Qn, — Qn) VUL - VUL
Nn—00 M—r00 Nn—00 M—r00 nm m

Q

. . hn hp
= Nt | @ = Q) VU - VU,

Q

+ it [ (@u, - Q)Y (Ul —uty) v (Ul +uly).

Q

By (2.7), likewise as (3.9), we get that

lim lim [ (Qn,, — Qn) VUL - VUL = 0.

n—o0 m—roo

Q

Furthermore, we have

/ (Qun = Qu) Y (Ul —uly) v (Ul +ufy) <C Huﬂgm —up
Q

HY(Q)

By Lemma 2.3, for each fixed n we have that the sequence (L{#: ) C V'™ converges to Z/l#(’;‘ in the
m ) m

H'(Q)-norm as m tends to co. Then we deduce that

it | [ @ = Quy (s, —uly) - (s, +uly)

Q

<C lim lim |[Upr e =

—Yhn
n—00 M—00 nm Lo

] hn hn
=0 lim, - uty

H1(Q
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Thus, we obtain

lim lim Ay = 0. (3.12)

n—oo m—roo

Finally, we also get that

lim lim As:= lim lim (fnm —fn77/l1’f:m>

n—o0 m—»o0 n—o0 mMm—o0

=t tim (fo, = Sty )+ lim T (fa, = ot —uUly)

n—oo0 m—»o0 n—o0 m—»o0

IN

Tim (fo— fastly ) +C lim i |l — ~0 (3.13)

n—00 Mm—00 nm Hl(Q)
and

lim lim Ag:= lim lim <gnm —gnﬁufﬂl:’ >

n—oo m—oo n—oo m—oo

= lim lim <gnm - gnﬁ(ul}‘l:m _UI}‘L;L)>

n—oo m—roo

< ¢ gim tim |y@f - uly)

n—o00 m—oo L2(8Q)
: ; hn hn —
< ¢ lim tim uly - ul; I (3.14)

Therefore, it follows from the equations (3.8)—(3.14) that

. . han'! . _
3 i T (Trm) (i = Tn) =0
Combining this with (3.7), we obtain that Ur, = Ur+. Then, by the definition of ', the weakly L.s.c. property
of R and (3.5), we get

R(I'M) < R(Ty) < liminf R (T,,) < limsup R (T',,) < R(T'T).
n n

Thus, R(I'") = R([y) = lim,, o R ([,). By the uniqueness of I'f, we have I'y = I'l. Furthermore, since
(Tn),, weakly converges in L2, (Q) x L*(2) x L*(99) to I'g, we conclude from the last equation that (T',),,
converges to I'g in the L2 (Q) x L?(Q) x L*(99)-norm.

It remains to show that the sequence (Z/{I’}")n converges to ®' = U+ in the H'(Q)-norm. We first get

from (2.7) that

Jim [t = Ut || 1 ) = 0- (3.15)

Furthermore, in view of (2.12) we also have that

Cag
ety Ul [y < [ Q1 = QuvUy -Vl ) (3.16)
Q

 (fo = SR U = U + (g — gt Ul — U

Since f,, — f!in the L?(Q)-norm and g, — g% in the L?(9Q)-norm together with the uniform boundedness
(2.5), it follows that
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Tim ((f = LU —Ul) + (g — g AUl —Uf))) =0, (3.17)
‘We now rewrite
/ Q' — Qu)VUly - Tl —uly)

Q

:/(QT — Qu)VlUpi - V(UL — Ul +/ V(U —Ups) -V (U — Uy ).
Q Q

We will estimate for two terms in the right hand side of the above equation. For simplicity of notation we
here set

Q" = Qun = (g} j—1a VUpi:=(U1,..,Us) and V(UL —Uk) = (V... Vi)

Then, we have

/(QT—Qn)W/IFT-V( n Ul :/ qugUJ»,.. Zq ) Vi, ..V
=1

: . , J ’ , 1/2 , , 1/2

< /(Zq?jUj) —l—...—&—(ZqQ;Uj) /(Vln) +...+(Vd7L)

o J=1 Jj=1 Q

. 1/2 , , 1/2

([(Zw )(zﬂ J () e ()

Q bi=l Q

1/2

- /HQf_Qandwumﬁ /‘v (U —ul)

Q

1/2 1/2

<o | [1e - Qug e ) | [+ [veds )
Q Q Q
1/2
1/2 _

< O (R* (L) + R* (1)) / 1Q" = Qull3, [V * |, by (25)

1/2
<c( 10"~ Qul IVt | by (35,

Similarly, we get

/ (Q = Qu)V (Upy = Upe) -V (Up; = Upy) < Clthe = Up [ 11
Q
and arrive at
1/2

J@ - aovuty v -u) < / Q" ~ Qula VUi |+l — s
Q

(@)
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Since Q,, — Q' in the Lzym(Q)—norm, up to a subsequence we assume that (Q,,), converges to Q' a.e. in Q.

Then, by the Lebesgue dominated convergence theorem, we deduce that
T [1Q" - QuI3, 9 2 o
Q

Thus, together with (3.15), we have

lim QT = Qu)VUM -V (Ul — Uk ) = 0. (3.18)
Q

It follows from (3.16)—(3.18) that lim, HUI@: - U{fﬂ Q)

conclude that lim, . HZ/I{«L: — Urt HHI(Q) = 0, which finishes the proof. O

= 0. By serving of (3.15) again, we then

4. Error bounds

In this section we investigate error bounds of discrete regularized solutions to the identification problem.
For any I' := (Q, f,g) € Haq the mapping

U LS (Q) x LA(Q) x L*(0) —  HXQ)

sym

is linear, continuous with the dual

Uz HX Q)T = L () x L2(Q) x L2(99).

sym
Theorem 4.1. Assume that a function w* € HL(Q)" exists such that

Up " w* =TT, (4.1)
Then

2 2
||u#h — Urt HHl(Q) +p HFh - FTHL2 (Q)x L2(Q) x L2(8%)

sym

=0 (h_252 + (ng)Q + (32%)2 + (X?U)Q + ,02) , (4.2)

where TP = (Qh, fh,gh) 1s the unique solution to (775'}”) and w € HL(Q) is the unique weak solution of the
Neumann problem

~V-(Q'Vw) = fT+w* in Q and Q'Vw-i=g" on 0. (4.3)

Remark 4.2. Due to Remark 3.2, in case Upt, w € H%(Q)) we have 0 < ng, @Zpt’ X" < Ch. Therefore,
with § ~ h? and p ~ h we obtain the following error bounds

et = Upt|[ ;1 o) = O(h)  and (4.4)
(A

_ 1/2

L2, (Q)xL2(Q)xL2(dQ) O(h / )- (4.5)
Remark 4.3. Let T := (Q, f,5) € Z(®') be such that the equation (4.1) is satisfied with T for some
w* € H} (Q)*, ie. Ulé*w* = T. Then T is the unique minimum norm solution of the identification, i.e.

r=rt.
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Indeed, due to (2.2) we have for all T := (Q, f, g) € Z(®T) that

U:=(I,T — F)Lgym(g)xL2(Q)xL2(aQ) =(I.T - f>(Lg;m(Q) * % L2(92)x L2(89), Lg;m(ﬂ)xLz(Q)xLz(aQ))
= <L{%*w*,F - f>( Leg,, (Q)* X L2(Q) x L2(89), Lg;m(g)xLZ(Q)xLZ(aQ))
= (w*, Uz (T f)>(H1(Q)*,H1(Q))
:/QV% (C-T) - vw
Q
for some W € H(Q), since the expression [u,v] := fQ QVu - Vv generates a scalar inner product on the

space H}(Q) which is equivalent to the usual one. By (2.1) we then get
<

U=—/(Q—@)vuf~VW+<f—f,W>+<g—mW>

/ QU - YW — (F.W) — (g AW) / QVUs - VW — (£.W) — (g.4W) | =0,

due to (1.6) and the fact Uy = Ur = ®T. Therefore, we deduce that

||F||L§ym(§2)><L2(Q)><L2(BQ -

()X L2(Q) x L2(99)

=3 lr- FHLQ

bym

@xr2@xr2oe) TO =2 0;
which completed the proof.
Proof of Theorem 4.1. Due to the optimality of I'", we get that

T3 (T + pR (T") < g3 (T1) + pR (TT)

which implies

T (T +p | = T

L2, (Q)x L?(Q)x L?(9Q)

<Jf () +2p (01,17 —-T") (Q)x L2(Q) x L2(99)

sym

_ 2
<C (h 262+ (xar)” + (ﬁﬁpr) ) +2p (DL,T =17, (Q)x L2(Q) x L2(9Q) * (4.6)

sym

by Lemma 3.3. Now, by (2.2) and (4.1), we infer that

I:=(frt-r"),,

ivm

* T h
(Q)x L2(Q) x L2(99) = (" Up; (I" =T )>(H1(Q)*,H1(Q))'

Thus, by the definition of the weak solution to (4.3) and (2.1), we obtain
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I— /vau;.r (T~ T%) - Y — (f1, e (T = T)) = (g2 (T — T%))

Q ~ Jo QT VU4 VUL (TT=T"), by (1.6),

= /QTVZ/{& (T —1") - V(w—Up)
Q

:—/«f—QﬂVmwWﬁwf%ﬂ+%ﬂffﬂwf%ﬂ+%f—gﬂﬂw—%ﬂ>
Q

=—/QW%VVW—%O+UUW¢M%M¢WW—%O>
Q

=0, by (1.6),

+/Q}LVZ/{N ~V(w —Uﬁ) — (fh,w —Um) - <gh7’Y(w —UFT)>
Q

= Jo @"VUpn »V(w—uﬂ)

= /th (Upi —Upn) -V (w — Upy)
Q

which yields

I=/th (Ups —T1"25) - V (w — Ur+) +/th (T — Upn) -V (w — Up+)
Q

Q
+ /th (25 —UP) - V(w —Upi) =11 + I + I5. (4.8)
Q

For I; we have from (3.2) that

I := /th (Upi —T"z5) - V(w —Upi) < C||Ups — HhZ5||H1(Q) < Ch7lo 4\ (4.9)
Q

Due to (1.6) and (2.4), we get [, Q"V (U}, —Urn) - VII"(w — Upi) = 0 and then infer that
L= [@" (Ut ) - V(- th)
Q

B
Q

<C (Hw - th||H1(Q) + ||thet — T Ut ||H1(Q)) <O (X +x%). (4.10)

Finally, we have that

L= [ QP (s~ ) - V(0 th)
Q

1/2 1/2
< (/th (U —10"25) - V (U —th(;)) , (/QhV(w—L{m) -v(w—uﬁ)>

Q Q
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1
<5 /th Uty —zs) -V (UP — T 25) +p/QhV(w —Upi) - V(w — Upi)
Q Q

J(Th)

IN

L nph
— T . 4.11
L7 (T") +Cp (4.11)
It follows from (4.8)—(4.11) that

1
I1<c (h_15 + ng + XZ; + p) + %jgh (Fh) .

Thus, together with (4.6)—(4.7), we get

1
§~76h (") +p 0" - ‘ L2, (@12 @)xL202) = C (h_252 + (i) + (IBZZFTY + (XZJ)Q + P2> ;

which finishes the proof. O
5. Gradient projection algorithm with Armijo steplength rule

In this section we present the gradient projection algorithm with Armijo steplength rule (cf. [31,42]) for
numerical solution of the minimization problem (7).
We first note that for each I' := (Q, f,g) € Haa, in view of (2.14), the £2-gradient of the strictly convex
cost function T2" of the problem (P7") is given by VTg’h(I‘) = (Yq(I), Ts(I), Ty(T)) with
To(T) = V' 25 @ VIT"zs — VUL @ VUE + 2pQ,
Yy(T) = 2(Uft — " z5 + pf),
Ty() = 2(y(Up —11"z5) + pg)

and ITI" generating from IT"* according to (2.13).
The algorithm is then read as: given a step size control 5 € (0, 1), an initial approximation (cf. Remark 2.6)
Lo := (Qo, fo,90) € Haa N (Vh dxd o Vi x Ef), number of iteration N and setting k = 0.

1. Compute L{flk from the variational equation
[ v, 9t = () + (e forall o eVt (51)

as well as

Th () = / QuY (Ul —TT2) - (Ul — Ti"z)

+n( ot 1Fill72c) + 19601 72c00))- (5.2)

2. Compute the gradient VTg’h(l"k) = (Yq,(Tk), Y7, (Tk), Ty, (Tx)) with

Yo, ([Tx) = VII"zs @ VII"z5 — VUL @ VUL + 2pQy,
Y5, (Te) = 2(Uf, — "z + pfi),
Yo, (Tk) = 2(y (U, — T"25) + par)-
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3. Set Ty = (Qk. fi, Gr) with Qi(x) = Pe(Qu(x) = Yo, (Pa)(®), fu(x) = fi(x) = A, (Ix)(z) and
(@) = gr(x) — BT g, (L) (). N
(a) Compute L{lijk according to (5.1), TZ(; (I'x) according to (5.2), and with 7 = 1074

Li="05(Tk) = Y s(0%) + 78Ik — Qul

igym(ﬂ) 1 fi = frllZz) + 19 — 9xll72(00))-

(b) L <0
go to the next step (c) below
else
set B := g and then go back to (a)
(¢) Update I'y, = Iy, set k =k + 1.
4. Compute

Tolerance := ‘ | VTZ(; (Tk) |

—T1 — TQHVTZV(;(F()”

L2 (Q)x L?(Q)x L?(Q) (5.3)

sym

L2, () xL2(Q)x L2(9%)

sym

with 7, := 1073k and 75 := 10~2h. If Tolerance < 0 or k > N, then stop; otherwise go back to Step 1.
6. Numerical implementation

For illustrating the theoretical result we consider the Neumann problem

~V-(Q'vel) = fTinQ, (6.1)
QTVd' -7 = g on 00 (6.2)
with Q = {z = (v1,22) € R? | — 1 < 21,73 < 1}.

The special constants in the equation (1.3) are chosen as ¢ = 0.05 and g = 10. For discretization we divide

the interval (—1,1) into £ equal segments, and so the domain Q = (—1,1)? is divided into 2¢? triangles,

where the diameter of each triangle is hy = @.

We assume that entries of the symmetric diffusion matrix Q' are discontinuous which are defined as

qu = 2XQ11 + XQ\Qllﬂ qIQ = qz] = X912 and q$2 = 3XQQQ + 2XQ\QQQ7

where xp is the characteristic functional of the Lebesgue measurable set D and
Q1 = {($1,$2) € Q | |$1| < 3/4 and |I’2| < 3/4},

Qg == {(z1,22) € Q| [w1] + |22| <3/4} and
Qoo 1= {(.’ﬂl,(ﬂg) e | SL'% +£B% < 9/16} .

The source functional fT is assumed to be also discontinuous and defined as

93 — 27 45 — 27 3427
= 48 X 48 XQo — TXQ\(QlLJQgﬁ

£
where

Q1= {(z1,22) € Q| I(z1 +1/2)* +16(z2 — 1/2)* <1} and
Q= {(21,22) € Q| |z1 — 1/2] < 1/4 and |22+ 1/2| < 1/4}.
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The Neumann boundary condition gf is chosen with

9" = =2X (1001} F X(0,1]x{—1} — X[~1,0]x {1} T 2X(0,1]x {1}
+3X{—1yx(=1,00 — AX{=11x(0,1) T 4X{1}x(=1,00 — 3X{1}x(0,1)-

The exact state ®' is then computed from the finite element equation KU = F, where K and F are the
stiffness matrix and the load vector associated with the problem (6.1)—(6.2), respectively.

We mention that in the above example the sought functions are chosen to be discontinuous. To reconstruct
such discontinuous functions one usually employs the total variation regularization which was originally
introduced in image denoising by authors of [41]. This regularization method was proved to be very effective
and analyzed by many authors over the last decades for several ill-posed and inverse problems. We also
note that the space of all functions with bounded total variation is a mon-reflerive Banach space and
the Tikhonov-function of the total variation regularization is non-differentiable, which cause some certain
difficulties in numerically treating for non-linear, ill-posed inverse problems. In the present work the cost
function is convex and differentiable, the convergence history given in Table 1 and Table 2 below shows that
the algorithm presented in Section 5 performs well for the identification problem with the discontinuous
coefficients.

We start the computation with the coarsest level £ = 3. To this end, for constructing observations with
noise of the exact state ® on this coarsest grid we use

25, 1= of +Ng and 6y := ||Z52 - <I>THL2(Q),
where §; = 10/)}/2%5’/27 pr = 1073k, and /\/’5 is a MM x 1-matrix of random numbers in the interval
(—6¢,0), M"e = (£41)? is the number of nodes of the triangulation 7"¢. Therefore, the exact state ®T is
only measured at 16 nodes of 7.

We use the algorithm described in §5 for computing the numerical solution of the problem (Ph‘ ). The

pesSe
step size control is chosen with 8 = 0.75. As the initial approximation we choose

2 0
Qo := lo 2] y Jori= X[-1,0)x[-1,1] — X[0,1]x[~1,1] and

9o 1= X[-1,1]x{1} — X[-1,1]x{-1} T X{1}x(=1,1) — X{-1}x(=1,1)-

At each iteration k we compute Tolerance defined by (5.3). Then the iteration was stopped if Tolerance < 0
or the number of iterations reached the maximum iteration count of 800.

After obtaining the numerical solution I'y = (Qp, f¢, g¢) and the computed numerical state Uy = Z/llillf of
the first iteration process with respect to the coarsest level ¢ = 3, we use their interpolations on the next
finer mesh ¢ = 6 as an initial approximation and an observation of the exact state for the algorithm on this
finer mesh, i.e. for the next iteration process with respect to the level £ = 6 we employ

(Qo, fo,90) == I{“"Fg, and zs5, = Ifﬁug with dg := Hz56 — @THL2(Q)

and I{” being the usual node value interpolation operator on 7", and so on £ = 12,24, .... We note that

the computation process only requires the measurement data of the exact data for the coarsest level £ = 3.
The numerical results are summarized in Table 1 and Table 2, where we present the refinement level £,

mesh size hy of the triangulation, regularization parameter pg, noise d; and number of iterates as well as

the final L2-error in the coefficients, the final L? and H'-error in the states, and their experimental order

of convergence (EOC), where EOCg := % and ®(h) is an error function with respect to h.
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Table 1
Refinement level ¢, mesh size hy of the triangulation, regular-
ization parameter py, noise d; and number of iterates.

0 he pe ) Iterate
3 0.9428 9.4281e—4 0.1755 800
6 0.4714 4.7140e—4 0.3847 800
12 0.2357 2.3570e—4 0.3334 800
24 0.1179 1.1790e—4 0.1508 800

48 5.8926e—2 5.8926e—5 6.5163e—2 800
96 2.9463e—2 2.9463e—5 2.9896e—2 800

Table 2
Errors A, ¥ and A and experimental order of convergence between finest and
coarsest level.

A P A EOCa EOCy EOC,
0.6349 6.2551e—2 0.2789 - - -

0.1974 3.7602e—2 0.1847 1.6854 0.7342 0.5946
8.3571e—2 1.7066e—2 0.1382 1.2400 1.1397 0.4184
3.1600e—2 5.4913e—3 6.1769e—2 1.4031 1.6359 1.1618

1.1524e—2 9.4491e—4 2.0742e—2 1.4553 2.5389 1.5743
4.1183e—3 2.2575e—4 8.9372e—3 1.4845 2.0655 1.2147
Mean of EOC 1.4537 1.6228 0.9928

Fig. 1. Graphs of &' computed numerical state Uy of the algorithm at the 800th iteration, and the difference to of. (For interpre-
tation of the colors in this figure, the reader is referred to the web version of this article.)
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Fig. 2. Graphs of fy, g¢ at the 800th iteration and the differences fy — fT7 ge — gT. (For interpretation of the colors in this figure,
the reader is referred to the web version of this article.)

All figures are here presented corresponding to £ = 96. Fig. 1 from left to right shows the graphs of ®T,
computed numerical state Uy of the algorithm at the last iteration, and the difference to ®'. In Fig. 2 we
display the computed numerical source term and boundary condition f;, g, at the last iteration as well as
the differences f; — f1, go — g'. We write the computed numerical diffusion matrix at the last iteration as

qea1 qe2
Qe =
qe12  qe22
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Fig. 3. Graphs of g/ 11, g¢,12 and ge 22 at the 800th iteration. (For interpretation
to the web version of this article.)

Fig. 4. Differences q¢,11 — qh, qe,12 — qIQ and g 22 — qu. (For interpretation of the colors in this figure, the reader is referred to
the web version of this article.)

Fig. 3 then shows gz.11, g¢,12 and g 22 while Fig. 4 shows differences gp 11 — qL, qe12 — q;rg and g 22 — qu.

For abbreviation we denote by I'f := (QT, ft, gT) and errors

A= ||Fg—FT||L§y Y= ||ug—cI>T||L2(Q) and A= ||U

(Q)xL2(Q)x L2(d9) —of ||H1(Q) :
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