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The paper aims at constructing two different solutions to an elliptic system

u · ∇u + (−Δ)mu = λF

defined on the two dimensional torus. It can be viewed as an elliptic regularization 
of the stationary Burgers 2D system. A motivation to consider the above system 
comes from an examination of unusual properties of the linear operator λ sin y∂xw+
(−Δ)mw arising from a linearization of the equation about the dominant part of F . 
We argue that the skew-symmetric part of the operator provides in some sense a 
smallness of norms of the linear operator inverse. Our analytical proof is valid for 
a particular force F and for λ > λ0, m > m0 sufficiently large. The main steps of 
the proof concern finite dimension approximation of the system and concentrate on 
analysis of features of large matrices, which resembles standard numerical analysis. 
Our analytical results are illustrated by numerical simulations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of sets of solutions to elliptic systems/equations is of particular interest in the ongoing 
research on partial differential equations (PDEs). On the one hand, the question is challenging from the 
viewpoint of mathematical techniques. On the other hand, precise information about this set is crucial for 
understanding the dynamics of evolutionary problems behind the elliptic one. In general, existing theory 
provides us with two answers; either there exists a single solution or the system admits at least one solution 
with unknown multiplicity.

Existing methods of PDEs analysis provide only few example proofs of existence of multiple solutions for 
quite simple problems, like the classical Mountain Pass Theorem for a semilinear elliptic equation [17]. Other 
notable examples are: nonuniqueness of stationary solutions to the Navier–Stokes equations [18], geometric 
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results related to the mean curvature problems [9], and nonuniqueness of solutions for the one-dimensional 
viscous Burgers’ equation [4] or the evolutionary Burgers’ equation [16], [1]. A derivation of an asymptotic 
lower bound for the multiplicity of solutions of a semilinear problem can be found in [15], [22], and for 
a class of elliptic equations with jumping nonlinearities in [24]. Let us mention a related, but having a 
different flavor than the mentioned results, research on numerical multiplicity proofs for systems/higher 
dimensional PDEs. There exist several computer assisted proofs of existence of at least several solutions for 
certain parabolic PDEs. Let us emphasize that contrary to our approach, all results obtained using some 
direct computer assistance must hold essentially for some isolated parameter values or a compact set of 
parameter values, because computations performed by any digital computer are finite. Some representative 
results include: a proof of existence of four solutions to a semilinear boundary value problem [8], a proof 
of existence of nonsymmetric solutions to a symmetric boundary value problem [2], validated bifurcation 
diagrams [7], [19], structure of the global attractor [13,23], numerical existence proofs for a fluid flow, and 
convection problems [27], [20].

The subject studied in the present paper is the following elliptic system, which can be viewed as an 
elliptic regularization of the stationary Burgers system [10], [21], [11] in 2D

u · ∇u + (−Δ)mu = λF on T
2. (1)

Here u is sought as a vector function u : T2 → R
2. The vector F is an external force, and in this paper we 

define it as

F (x, y) =
(

sin y

sin x

)
. (2)

The magnitude of the external force is controlled using parameter λ and it is assumed to be greater than 
some positive number λ0. We shall note that the system has no a-priori estimate. The issue of the existence 
of a solution to the system (1) is still open for a general form of λF . To the best of our knowledge even the 
basic case of m = 1 is unclear.

Let us discuss what motivated the presented research. Our numerical investigations of (1) revealed a 
solution possessing a peculiar structure: one Fourier mode having λ magnitude, and the remainder bounded 
uniformly with respect to λ. We noticed further that the natural symmetry embedded in this equation implies 
the existence of a second solution, as the reflection of the dominant part produces a different symmetric 
solution. Further on, to convince ourselves that this structure is in fact conserved for λ large, we performed 
a numerical bifurcation analysis, which showed that the solution’s norm graph is approximately linear, and 
in fact the system admits an apparent pitchfork bifurcation.

We emphasize that the studied solutions are not trivial. For λ sufficiently small the solutions are still 
symmetric, and for some particular λ the symmetry gets broken, which allows for establishing the existence 
of at least two distinct solutions for λ sufficiently large. Nonetheless, for small λ regime we can claim only 
existence of a solution, as the two solutions from our main result merge into a single one there. The symmetry 
is elementary; it swaps x with y, and the first component of the solution with the second (denoted by x ↔ y

in the sequel). Apparently, a stronger diffusive regularization effect than the one provided by Laplacian is 
required for our method to work. This is why we state our main result (Theorem 1.1) for m sufficiently 
large. Our analytical results are supported by a numerical bifurcation analysis (Section 3).

The main tool of our technique is to exploit unusual features of a linearization of the system. Let ‖w‖l∞
denote the supremum norm of elements of the Fourier series w. Apparently, for the solutions to the following 
scalar problem

λ sin y∂xw + (−Δ)mw = λ sin x on T
2, (3)
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we obtain

‖w‖l∞ � 1, (4)

in other words, this quantity is free from λ dependence (for large λ), although other norms are growing 
with λ. We see an interplay between the growth of the right-hand side and an increase of influence of the 
term λ sin ∂x, which represents (in some sense) rotation effects. In particular, it causes that the amplitudes of 
modes are uniformly bounded. Such effect can be compared with the general phenomenon of hypocoercivity 
explained in [26]. We shall note, however, we do not apply the general theory for operators of type A∗A +B, 
since we want to avoid considerations in Hilbertian spaces. We work instead in the l1, l∞ framework, which is 
the optimal for our analysis. The technique is elementary, in order to obtain constructive bounds for inverses, 
we perform the large matrices analysis (Section 7). The features of a linear operator are first found for its 
finite dimensional truncation (Galerkin approximation), then the properties of the full infinite dimensional 
operator are obtained via a limit passage. The key result concerning (3) is described by Theorem 4.11 and 
its proof is the main part of this paper.

The main result of the present paper is the following theorem.

Theorem 1.1. Let m > 9/2 and λ > λ0 be sufficiently large. Then there exists at least two solutions to the 
system (1) with F given by (2) such that

u1 = λ

(
sin y

0

)
+ L1(x, y) + R1(x, y), (5)

and

u2 = λ

(
0

sin x

)
+ L2(x, y) + R2(x, y), (6)

where L1, L2 are solutions to the linearization and they are of order λ2/m in l∞ norm and R1, R2 are of 
order λ−α with α > 0.

The proof of Theorem 1.1 is based on a subtle analysis of (3). We impose the form of solutions and then 
we construct them via approximation on finite dimensional subspaces. The natural symmetry x ↔ y implies 
that we obtain at least two different solutions to (1), provided λ is sufficiently large.

Indeed, the properties of (1) established in Theorem 1.1 are the main impact of the present paper. We 
are ensured that this type of properties will allow to study precise dynamics of systems having the transport 
term u · ∇u. The most natural example would be the Navier–Stokes equations. We present here a brand 
new technique for studying quasilinear elliptic systems. Hence one can look at system (1) as a toy model 
for which we demonstrate our new method.

We are highly convinced that the explicit and dimension independent bounds for norms of inverses of 
tridiagonal differential operators obtained in this work, can be applied for studying also other problems, 
including bounding solutions of some linear PDEs, computer assisted proofs for nonlinear PDEs, numerical 
analysis of certain PDEs discretizations and slow-fast systems. Existing research efforts in understanding 
structure of some tridiagonal operators arising in PDEs can be found in [6]. Let us also note that methods 
based on Fourier series may be applied for systems in pipe-like domains. An example is [25], where analysis 
of the Oseen operator yield very precise space asymptotic of solutions in the front and behind an obstacle.

Literature concerning issue of the existence of solutions to the stationary Burgers equation is not close 
to being exhaustive. Most of the results consider only the mono-dimensional case [3–5]. This motivated us 
to perform a numerical analysis for various cases. We observe that for system (1) there exist critical value 
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m̂ > 1, such that the main result is valid in super-critical case (i.e. for all m > m̂) – the two distinct solutions 
can be still constructed. Whereas, for the sub-critical case (m < m̂), including the case of stationary forced 
2D Burgers equations (m = 1), the global picture is significantly different, and for m = 1, the two solutions 
cannot anymore be certainly isolated as in the other cases.

We note that since finishing the first version of this paper the first author has significantly improved 
the bounds of the inverse tridiagonal operators norms [14] by the large matrices analysis. The motivation 
has been to develop a validated numerical scheme for forward integration of a class of parabolic PDEs. 
We are now convinced that a proof along the lines presented in this paper is possible for the stationary 
Burgers system with smaller exponents m defining the linear operator in (3). Moreover, we are convinced 
that a similar proof is also possible for other problems, including the stationary 2D viscous Navier–Stokes 
equations. We will investigate this possibilities in future research.

The paper is organized as follows. We present in Section 2 the subject of this paper written in coordinates, 
in Section 3 bifurcation diagrams, and a brief technical explanation. In Section 4, the relevant symmetries 
of the problem, which are crucial in our analysis. In Section 4.1, the matrix form of the linearized operator, 
along with some important inverse operators bounds. In Section 5, a-priori bounds for the solutions of finite 
dimensional truncations, and in Section 6, an existence argument for the infinite dimensional system. Finally, 
in Section 7, some technical lemmas necessary to prove crucial inverse operators bounds from Section 4.1.
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2. Preliminaries

We start our analysis with the preparation of our system

u · ∇u1 + (−Δ)mu1 = λ sin y,

u · ∇u2 + (−Δ)mu2 = λ sin x.
(7)

We fix the notation

u = v̄ + V, where v̄ = λ

(
sin y

0

)
. (8)

We focus just on construction of solution (5), the symmetry will imply existence of the second one – see 
Section 4 (Definition 4.4). The above relations restate the system (7) as follows

λ sin y∂xV
1 + (−Δ)mV 1 = −λ cos y V 2 − V · ∇V 1,

λ sin y∂xV
2 + (−Δ)mV 2 = λ sin x− V · ∇V 2.

(9)

Observe that the term λ sin y is not present in (9), as it disappears due to the ansatz (8). In order to split 
the solution into two parts, the first with small amplitudes and the second with higher ones. We introduce 
a linearization of (9)
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λ sin y∂xA + (−Δ)mA = −λ cos y B, (10a)

λ sin y∂xB + (−Δ)mB = λ sin x, (10b)

and define V as the following pair

V =
(

A

B

)
+
(
a

b

)
. (11)

Vector (A, B)T defines L1 appearing in (5). This step of prescription of constructing solutions to (1) is 
important, since (10) implies a constraint on A and B. This relation turns out to be satisfied also by a
and b. By differentiating (10)1 with respect to x and (10)2 with respect to y, the system (10) takes the form

λ sin y∂xAx + (−Δ)mAx = −λ cos y Bx,

λ sin y∂xBy + (−Δ)mBy = −λ cos y Bx.
(12)

So we obtain

λ sin y∂x(Ax −By) + (−Δ)m(Ax −By) = 0. (13)

Testing it by (Ax −By) we get

∫
T2

|∇(−Δ)m/2−1(Ax −By)|2dxdy = 0, and of course
∫
T2

(Ax −By)dxdy = 0. (14)

Hence we get the desired constraint

Ax = By. (15)

Returning to V we find equations for a and b

λ sin y∂xa + (−Δ)ma = −λ cos y b−
(
a + A

b + B

)
· ∇(a + A),

λ sin y∂xb + (−Δ)mb = −
(
a + A

b + B

)
· ∇(b + B).

(16)

Here again one can check constraint (15) for a and b. Taking suitable differentiation of system (16) we 
find

λ sin y∂xax + (−Δ)max = −λ cos y bx −
(
ax + Ax

bx + Bx

)
· ∇(a + A) −

(
a + A

b + B

)
· ∇(ax + Ax),

λ sin y∂xby + (−Δ)mby = −λ cos y bx −
(
ay + Ay

by + By

)
· ∇(b + B) −

(
a + A

b + B

)
· ∇(by + By).

(17)

So then we find, keeping in mind (15)

λ sin y∂x(ax − by) + (−Δ)m(ax − by) = − [(ax + Ax + By + by)(ax − by)] −
(
a + A

b + B

)
· ∇(ax − by). (18)
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Observe that as the rhs of (18) would be zero than we find the desired constraint

ax = by. (19)

This relation will be guaranteed by the construction presented at the beginning of Section 6. In few words, 
the construction is performed via an iteration scheme, so vanishing of the rhs will be guaranteed by the 
previous step, see (56).

Looking at the above problems we see that the analysis depends on the properties of the following 
operator

Lλ(w) = λ sin y∂xw + (−Δ)mw. (20)

The key element of the proof of Theorem 1.1 is a result concerning norm estimates for the Lλ inverse 
operator. The precise statement of the result we find in Section 4.2, it is Theorem 1.1.

Notation In bold we denote complex coefficients, e.g. ak =
(
a1
k, a

2
k

)
∈ C

2, where a1
k, and a2

k denote the 
first, and the second component of ak respectively. Let k, k1, k2 ∈ Z

2 denote pairs of integers. By k1, k1
1, k

1
2, 

and k2, k2
1, k

2
2 we denote the first, and the second components respectively.

We rewrite the problem (1) using Fourier’s coordinates, being the most natural way to consider problems 
on a torus.

u(x) =
∑
k∈Z2

ake
ik·(x,y), ak = (a1

k, a
2
k) ∈ C

2, (21a)

F (x) =
∑
k∈Z2

F ke
ik·(x,y), F k = (F 1

k , F
2
k ) ∈ C

2. (21b)

∑
k1+k2=k
k1, k2∈Z

2

a1
k1
ik1

2a
j
k2

+
∑

k1+k2=k
k1, k2∈Z

2

a2
k1
ik2

2a
j
k2

+
(
(k1)2m + (k2)2m

)
ajk − λF j

k = G(a, λ)jk = 0, j = 1, 2, k ∈ Z
2.

(21c)

The operator (−Δ)m is diagonal in Fourier’s basis, having 
(
(k1)2 + (k2)2

)m as the eigenvalues. In order to 
simplify the arguments in the remainder of the paper as the operator (−Δ)m we will consider an operator 
having (k1)2m + (k2)2m as the eigenvalues. Of course, all of the presented arguments are also valid for the 
original case, as 

(
(k1)2 + (k2)2

)m clearly bounds (k1)2m + (k2)2m from above.
For the particular choice of the external forcing, F is given by

F 1
(0,1) = F 2

(1,0) = − i

2 , F 1
(0,−1) = F 2

(−1,0) = i

2 , F j
k = 0 for all the other cases. (1d)

Definition 2.1. In the space of complex sequences {ak}k∈Zd , we will say that the sequence {ak} satisfies the 
reality condition iff

ak = a−k, k ∈ Z
d. (22)

In the considered problem we impose odd periodic boundary conditions, i.e.

uj(x, y) = −uj(−x,−y)
uj(x, y) = uj(x + 2π, y) = uj(x, y + 2π)

j = 1, 2, x, y ∈ R, (23)
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which on the level of the Fourier series means that we restrict the basis to odd functions, or equivalently 
the coefficients are purely imaginary numbers satisfying

Re(ajk) = 0, ajk = −aj−k j = 1, 2, k ∈ Z
2. (24)

It is immediately verified that the space of coefficients satisfying (24) is invariant under the equation (21), and 
we skip the formal calculations. Observe that (24) together with the reality condition implies automatically 
the following ’zero mass’ constraint

aj0 = 0, j = 1, 2. (25)

Immediately, also we recognize that symmetry (23) implies that our solutions will be constructed as series 
in sinus only.

From now on we are going to consider the following finite dimensional approximation of the system (21)

Definition 2.2. Let N > 0. We call the N -th Galerkin approximation of (21) the following system
∑

k1+k2=k
|k1|, |k2|≤N

a1
k1
ik1

2a
j
k2

+
∑

k1+k2=k
|k1|, |k2|≤N

a2
k1
ik2

2a
j
k2

+
(
(k1)2m + (k2)2m

)
ajk − λF j

k = GN (a, λ)jk = 0,

j = 1, 2, |k| ≤ N. (1P)

Definition 2.3. We introduce the following Banach spaces for sequences {ak} equipped with the following 
norms

‖{ak}‖l∞ = sup
k∈Z2

|ak|, ‖{ak}‖l∞p = sup
k∈Z2

(|k1| + |k2|)p|ak|,

‖{ak}‖l1 =
∑
k∈Z2

|ak|, ‖{ak}‖l11 =
∑
k∈Z2

(|k1| + |k2|)|ak|. (26)

The norm used for multi-indices is taken to be the ∞ norm, i.e.

|k| := max
{
|k1|, |k2|

}
.

Definition 2.4. Let us define the following space

H = H(N) =
{
{ak} ∈ C

(2N+1)2−1 : ak = a−k, Re(ak) = 0, for 0 < |k| ≤ N
}
,

we are going to look for solutions a of (1P), such that a ∈ H × H. In the sequel, whenever H appears, 
N will either be fixed or clear from context.

3. Numerical bifurcation analysis

We analyze the bifurcation structure of the problem (1P), and we present the results on Fig. 2. Starting 
from the zero solution at λ = 0 we follow the branch of solutions. We detected a pitchfork bifurcation at a 
value of λ, which depends on the parameter m appearing in (1P). From the point of the pitchfork bifurcation 
we follow both the stable (one of two) and unstable branch (it is unique).

For a given λ we solve for a(λ) such that GN (a(λ), λ) = 0. We implemented a path following procedure 
in order to track a(λ). To make any path following procedure work the partial derivative ∂a(λ)

∂λ is required, 
as bifurcation points are detected by monitoring for its eigenvalues crossing zero. We implemented our path 
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Fig. 1. Bifurcation diagram for u · ∇u + (−Δ)u = λF . Each diagram was computed with different approximation dimension N
(given in the title). For this problem, the linear structure is not anymore evident, the question of the existence of two distinct 
solutions is left open in this case. The bifurcation point depends heavily on the dimension. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

following procedure on the top of the existing C++ software [12] in which the partial derivative is calculated 
by means of automatic differentiation and fast Fourier transforms, refer to [12] for details.

We computed bifurcation diagrams for two specific cases

• Fig. 1, m = 1 is fixed, and the truncation dimension N is varied. This case is excluded from our theory.
• Fig. 2, m = 6 is fixed, and the truncation dimension N is varied. This case is excluded from our theory.

There are some apparent differences between those two cases. In Figs. 1 and 2 in blue we marked the 
unstable branch of index 1, and in black the stable solution(s) – this branch represents in fact two solutions 
having the same norm related with a symmetry. The symmetry is denoted by S in Section 4. Apparently, 
the considered pitchfork bifurcation is the point where the symmetry S breaks. Let us relate the presented 
diagrams with our theoretical results presented in the sequel. We prove that on the stable branch in Fig. 2
there are two distinct solutions, and this branch is approximately linear with respect to λ for sufficiently 
large λ.

The diagrams were generated using the approximation with N = 8, corresponding to 172/2 degrees of 
freedom.

We approximate the solution using a fixed number of Fouriers’ functions. On Fig. 1 we present a few 
bifurcation diagrams obtained using Fouriers’ approximation with varying approximation dimensions (lim-
ited by our computational resources). To construct the diagrams, we start from the zero solution at λ = 0, 
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Fig. 2. Bifurcation diagram for u · ∇u + (−Δ)6u = λF . Clearly, the stable (black) solutions curve is almost ‖u(λ)‖ = λ, as there is 
only one mode of λ magnitude. Single pitchfork bifurcation was detected at λ0 = 8.0629.

the branch of solutions (u(λ)) is followed until a bifurcating solution is found. In case a bifurcating solution 
is found, both of the branches: the original, and the new bifurcating branch are followed.

Observe that those diagrams significantly differ. For instance the value of λ for which the numerical 
pitchfork bifurcation occurs is proportional to the approximation dimension, we mean that λ is significantly 
larger, when a larger approximation dimension is used. This leads us to the conjecture that the apparent 
bifurcation is only a numerical artifact. It appears that in the case of stationary forced 2D Burgers equations 
(m = 1) the dynamics is either not finite dimensional, or the dimension of the attractor is really high. This 
is in contrary to the cases included in our theory (e.g. m = 6), in which the dynamics is essentially finite 
dimensional (the bifurcation diagrams computed using different approximation dimensions does not differ 
much). One possible explanation is that in case m = 1 the Laplacian operator does not provide strong 
enough smoothing effect compared to the higher order elliptic operators.

4. Definition of a subspace of symmetric solutions

In this section we define the symmetry exhibited by the studied problem, and which we will use in the 
sequel. We make a standing assumption that the external forces that we consider are also symmetric. Later 
on it will became evident that the second solution is obtained through the reflection by the symmetry Sx↔y

(Definition 4.4).
Recall our working space of sequences of complex Fourier modes satisfying the reality condition

H = H(N) =
{
{ak} ∈ C

(2N+1)2−1 : Re(ak) = 0, ak = −a−k

}
.

Instead of working directly with the space H, we will work with the following product space of sequences 
of complex Fourier modes satisfying certain symmetry exhibited by the solutions of the system (21).

Definition 4.1. Let H ′ be the following space

H ′
(N) =

{
a ∈ H(N) ×H(N) : a satisfies S a = a

}
.

The symmetry S : H ×H → H ×H is the following symmetry. We define the symmetry directly on the 
level of Fourier modes
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S
(
a1
(k1,k2), a

2
(k1,k2)

)
=
(
−a1

(−k1,k2), a
2
(−k1,k2)

)
for k1, k2 ∈ Zeven, or k1, k2 ∈ Zodd,

S
(
a1
(k1,k2), a

2
(k1,k2)

)
=
(
a1
(−k1,k2),−a2

(−k1,k2)

)
for k1 ∈ Zeven, k

2 ∈ Zodd, or k1 ∈ Zodd, k
2 ∈ Zeven.

(27)

In Lemma 4.3 we show that the nonlinearity appearing in the system (21) is symmetric with respect 
to S, i.e. G(a) = 0 ⇐⇒ G(Sa) = 0 as long as F is symmetric.

Observation 4.2. Using the isomorphism of the space of sequences of Fourier modes with the space of 
functions spanned by the trigonometric basis, space H(N) is isomorphic to a space of functions spanned by 
sines, i.e.

H(N) ∼

⎧⎪⎪⎨
⎪⎪⎩

∑
−N≤l≤N
0≤k≤N

vlk sin(lx + ky)

⎫⎪⎪⎬
⎪⎪⎭ . (28)

Lemma 4.3. Let Nonl be the nonlinear part of (21c) modulo the imaginary unit factor. Nonl satisfies

Nonl(Sa) = SNonl(a).

Proof.
Nonl(a) =

(
Nonl1(a), Nonl2(a)

)
.

Below, we check that the first component Nonl1 satisfies the symmetry, by the same arguments the 
symmetry of the second component Nonl2 follows. To verify the claim let us consider two subcases

Case 1 k = (k1, k2), k1, k2 even or k1, k2 odd.

Nonl1(a)(−k1,k2) =
∑

k1+k2=k

a1
(−k1

1,k
2
1)(−k1

2)a1
(−k1

2,k
2
2) +

∑
k1+k2=k

a2
(−k1

1,k
2
1)k

2
2a

1
(−k1

2,k
2
2) =

−
∑

k1+k2=k

(Sa)1(k1
1,k

2
1)k

1
2(Sa)1(k1

2,k
2
2) −

∑
k1+k2=k

(Sa)2(k1
1,k

2
1)k

2
2(Sa)1(k1

2,k
2
2) =

−Nonl1(Sa)(k1,k2) = Nonl1(Sa)(−k1,k2).

If we consider indices k1, k2 such that k = k1 + k2, it holds that either k1
j , k

2
j are even (odd) (k1, k2 even 

case) or one of k1
j , k

2
j is even and the second one is odd (k1, k2 odd case), j = 1, 2. This implies the second 

equality above, where in the first term the symmetry generates either none or two minuses, as both of the 
modes come from the same component, hence, the only minus appears in front of the index −k1

2. Whereas 
in the second term there is single minus generated, as the modes come from different components, this is 
seen clearly from (27).

Case 2 k = (k1, k2), k1 even, and k2 odd or k1 odd, and k2 even.

Nonl1(a)(−k1,k2) =
∑

k1+k2=k

a1
(−k1

1,k
2
1)(−k1

2)a1
(−k1

2,k
2
2) +

∑
k1+k2=k

a2
(−k1

1,k
2
1)k

2
2a

1
(−k1

2,k
2
2) =

+
∑

k1+k2=k

−(Sa)1(k1
1,k

2
1)(−k1

2)(Sa)1(k1
2,k

2
2) +

∑
k1+k2=k

(Sa)2(k1
1,k

2
1)k

2
2(Sa)1(k1

2,k
2
2) =

Nonl1(Sa)(k1,k2) = Nonl1(Sa)(−k1,k2).

If we consider indices k1, k2 such that k = k1 + k2, it holds that both of the indices in one of the pairs 
k1
j , k

2
j are even (odd), and in the second pair indices are of different parity (one even, and the other odd). 
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This implies that in the last equality, in the first term the symmetry generates single minus, as both of the 
modes come from the same component, the second minus appears in front of the index −k1

2. Whereas in 
the second term, as the modes come from different components, the symmetry generates either two minuses 
(k1

1 even, k2
1 odd or vice-versa, and k1

2, k
2
2 even (odd)), or none minuses (k1

1, k2
1 even (odd), and k1

2 even, k2
2

odd or vice-versa). Finally, we obtain the claim. �
We remark that there is another symmetry exhibited by the solutions of (21c), which we denote by Sx↔y. 

Existence of the second solution in Theorem 1.1 follows from the bounds we establish in Section 4.2 and 
the symmetry defined below.

Definition 4.4. Symmetry Sx↔y by reflection by this symmetry we will obtain the existence of the second 
solution from Theorem 1.1. Let Sx↔y : H ×H → H ×H be the following symmetry (denoted x ↔ y in the 
prequel)

Sx↔y (a)1(k1,k2) = a2
(k2,k1),

Sx↔y (a)2(k1,k2) = a1
(k2,k1), for k ∈ Z

2.

It is immediately verified that the solutions of the system (21) and all its Galerkin approximations are 
invariant under this symmetry, i.e. G(a) = 0 ⇐⇒ G(Sx↔ya) = 0 as long as F is symmetric.

4.1. Structure of the linear operator

Now, let us present the linear operator

Lλ(w) = λ sin y∂xw + (−Δ)mw (29)

in Fouriers’ coordinates introduced previously. Here we argue how to reduce the problem of deriving di-
mension independent bounds for L−1

λ to the problem of bounding particular matrix norms. Recall that the 
operator (−Δ)m in Fouriers’ coordinates is diagonal

(−Δ)m = diag (. . . , l2m + k2m, . . . ).

In order to show the action of the λ sin y∂xw component, we introduce the following subspaces

Definition 4.5. Let l ∈ {0, 1, . . . , N}. We denote the following subspace of H(N)

H(N) ⊃ H l
(N) = {sin(lx), sin(lx + ky), sin(−lx + ky) : k = 1, . . . , N} .

It is easy to see that H l subspaces are invariant for the operator Lλ(w) in the following sense LλH
l
(N) ⊂

H l
(N+1). Also we have

H(N) = H0
(N) ⊕H1

(N) ⊕ · · ·HN
(N).

For M ⊂ H(N), by PM we denote the projection operator PM : H(N) → M .

Definition 4.6. Let us denote the projection of Lλ onto H l
(N) by

Ll
λ := PHl

(N)
◦ Lλ : H l

(N) → H l
(N).
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We define the projection of Lλ onto the following space

Definition 4.7. Let R ⊂ H(N) denote the following space

R := H1 ⊕ · · · ⊕HN . (30)

The projection of Lλ onto R will be denoted by

LR
λ := PR ◦ Lλ : R → R.

In order to present action of the operator Lλ on a vector in H l
(N) we take

H l
(N) � w = w0 sin(lx) +

N∑
j=1

w+
j sin(+lx + jy) +

N∑
j=1

w−
j sin(−lx + jy)

λ sin ywx = lλ sin y

⎛
⎝w0 cos lx +

N∑
j=1

w+
j cos(lx + jy) − w−

j cos(−lx + jy)

⎞
⎠

= l

2λ

⎡
⎣w0 sin(lx + y) + w0 sin(−lx + y) +

N∑
j=1

w+
j [sin(lx + (j + 1)y) − sin(lx + (j − 1)y)]

−
N∑
j=1

w−
j [sin(−lx + (j + 1)y) − sin(−lx + (j − 1)y)]

⎤
⎦ .

Therefore

(
Ll
λw
)
l,0 = −λl

2 w+
1 − λl

2 w−
1 + l2mw0, (31a)

(
Ll
λw
)
±l,j

= ±λl

2 w±
j−1 ∓ λl

2 w±
j+1 + (l2m + j2m)w±

j for j = 1, . . . , N − 1, (31b)

(
Ll
λw
)
±N,j

= ±λl

2 w±
j−1 + (N2m + j2m)w±

j , (31c)

where we used the convention w±
0 = w0.

We will study the structure of the linear operator Ll
λ acting on the subspace Gl

(N)

H l
(N) ⊃ Gl

(N) = {w : w ∈ span {sin(lx), sin(lx + ky) for k = 1, 2, . . . , N}} . (32)

The subspace Gl
(N) does not include in its span the part of the basis functions {sin(−lx + ky), k =

1, 2, . . . , N}, which are present in the span of H l
(N). As we always work with vector solutions satisfying 

symmetry S (Definition 4.1), for a given (w1, w2) ∈ Gl
(N) ×Gl

(N) there is a unique (v1, v2) ∈ H l
(N) ×H l

(N). 
In other words, the coefficients (w−

1 , . . . , w−
j , . . . , w

−
N ) are determined by the corresponding coefficients with 

’+’, i.e. (w+
1 , . . . , w+

j , . . . , w
+
N ) through symmetry S (Definition 4.1).

In the sequel we will study the operator

Ll
λ := PGl

(N)
◦ Lλ : Gl

(N) → Gl
(N),

which has the following tridiagonal form
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Ll
λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

l2m − lλ
2 0 · · · 0

lλ
2 l2m + 1 − lλ

2 0 · · · 0

0
. . . . . . . . . . . . 0

0 · · · 0 lλ
2 l2m + (N − 1)2m − lλ

2
0 · · · 0 lλ

2 l2m + N2m

⎤
⎥⎥⎥⎥⎥⎥⎦
. (33)

We will study the following full (projected) linear operator

P⊕N
l=0G

l
(N)

◦ Lλ : ⊕N
l=0 G

l
(N) → ⊕N

l=0G
l
(N).

In the sequel, we will use simply Lλ to denote the full linear operator, which has the following block 
diagonal form

Lλ =

⎡
⎢⎢⎢⎢⎢⎢⎣

L0
λ 0 · · · 0
0 L1

λ 0 0
...

. . . . . .
...

0 0 LN−1
λ 0

0 · · · 0 LN
λ

⎤
⎥⎥⎥⎥⎥⎥⎦
. (34)

4.2. Bounds for matrices inverse to Ll
λ, Lλ

In this part we provide results on bounds of the particular norms of inverse tridiagonal matrices. Some 
technical lemmas used to prove the presented bounds are provided in Section 7.

Lemma 4.8. Let N > 0, m > 1, l = 1, . . . , N . The following uniform bound holds

∣∣∣(Ll
λ

−1)j,k
∣∣∣ ≤ 22m

(
lλ

2

)−1

, for k, j = 1, . . . , N.

Lemma 4.9. Let N > 0, m > 1, l = 1, . . . , N . There exist C(m) > 0 (independent of λ and N), such that 
for λ > 2 the following bounds hold

∑
j=1,...,N

∣∣∣(Ll
λ

−1)ij
∣∣∣ ≤ C(m)

(
lλ

2

)−1+1/2m

,
∑

j=1,...,N

∣∣∣(Ll
λ

−1)ji
∣∣∣ ≤ C(m)

(
lλ

2

)−1+1/2m

,

for all i = 1, . . . , N .

In the next theorem we present the main result of this section, which is composed of bounds for the 
following norms ‖LR

λ

−1‖l1→l1 , ‖LR
λ

−1‖l1→l∞ , ‖LR
λ

−1‖l1→l11
, see Definition 2.3. Where first two are standard 

norms, and the third (which we call the gradient norm) is defined

Definition 4.10. Let A ∈ R
N2×N2 be a block-diagonal matrix

A =

⎡
⎢⎢⎢⎢⎣
A1 0 0 0
...

. . . . . .
...

0 0 AN−1 0
0 · · · 0 AN

⎤
⎥⎥⎥⎥⎦ ,

where A1, . . . , AN−1, AN are N dimensional square matrices.
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We call the gradient norm of A the following matrix norm

‖A‖l1→l11
= max

j=1,...,N2
‖A(j)‖l11 = max

l=1,...,N
j=1,...,N

‖Al(j)‖l11 = max
l=1,...,N
j=1,...,N

N∑
k=1

(l + k)
∣∣∣(Al)k,j

∣∣∣, (35)

where A(j) denotes the j-th column of A.

Theorem 4.11. Let l = 1, . . . , N . Let Ll
λ be the matrix given by (33), LR

λ be the truncated matrix PRLλ

(projection of Lλ onto the space R (30)).
The following estimates hold for the matrices Ll

λ

−1 (diagonal submatrices of LR
λ

−1).

‖Ll
λ

−1‖l1→l1 ≤ C1(m)
(
lλ

2

)−1+1/2m

,

‖Ll
λ

−1‖l1→l∞ ≤ 22m
(
lλ

2

)−1

,

‖Ll
λ

−1‖l1→l11
≤ C2(m)

(
lλ

2

)−1+1/m

.

The following estimates hold for the matrix LR
λ

−1

‖LR
λ

−1‖l1→l1 ≤ C1(m)
(
λ

2

)−1+1/2m

,

‖LR
λ

−1‖l1→l∞ ≤ 22m
(
λ

2

)−1

,

‖LR
λ

−1‖l1→l11
≤ C2(m)

(
λ

2

)−1+1/m

.

We present a proof of this theorem in Section 7.

5. Fixed point argument

Having the estimate for the operator (LR
λ )−1 we are prepared to prove the main result of the paper. 

We assume that the considered solutions to (16) are finite dimensional. This assumption allows to use the 
results about the matrices norms presented in Section 4.2. Let us define two projections of the space H

PR projection onto H1 ⊕ · · · ⊕HN (the rotation like part), (36)

PD = I − PR projection onto PH0 (the diagonal part), (37)

where PD is the projection onto the subspace free of x dependence. We proceed as follows. First, we construct 
an a-priori estimate for the solution of (10). Let us display basic features of (A, B) ∈ H ′ – the solutions to 
(10), which follows directly from the bounds presented in Theorem 4.11 (where we absorb the 1

2 factor into 
the constant), namely

‖LR
λ

−1‖l1→l1 � λ−1+1/2m,

‖LR
λ

−1‖l1→l∞ � λ−1,

‖LR
λ

−1‖l1→l11
� λ−1+1/m.
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It holds that PDB = 0, which is clearly seen from (10b) (the right hand side does not depend on y, then 
from (10a) and PDB = 0, it also follows PDA = 0).

Observe that due to the identities PDA, PDB = 0 it is enough to use the bounds for (LR
λ )−1, and we 

obtain

‖B‖l1 � λ1/2m ‖A‖l1 � λ1/m,

‖B‖l11 � λ1/m ‖A‖l11 � λ3/2m,

‖B‖l∞ � 1 ‖A‖l∞ � λ1/2m.

(38)

Consequently

‖(A,B)T · ∇A‖l1 � ‖(A,B)T ‖l1‖A‖l11 � λ1/mλ3/2m � λ5/2m, (39)

‖(A,B)T · ∇B‖l1 � ‖(A,B)T ‖l1‖B‖l11 � λ1/mλ1/m � λ2/m, (40)

‖(A,B)T · ∇A‖l∞ � ‖(A,B)T ‖l∞‖A‖l11 � λ1/2mλ3/2m � λ2/m. (41)

In the estimations above, and generally in the estimates derived in this section we use often Young’s 
inequality for products, i.e.

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1, and ‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖1.

Now we split V – the solution to the system (9) in the following way

V =
(

A

B

)
+
(
a

b

)
, (42)

where (A, B)T is the solution of the linearized system (10).
In order to obtain the desired a priori estimate we are required to find a special property of function b. 

Namely, we prove that

PDb = 0, (43)

i.e. in b there is no element depending only on y. To show (43) we look at the rhs of (16) on the equation 
on b. We see that by (15) and (19)

(a + A)(bx + Bx) + (b + B)(by + By) = (a + A)(bx + Bx) + (b + B)(ax + Ax) = ∂x ((a + A)(b + B)) . (44)

Hence

PD ((a + A)(bx + Bx) + (b + B)(by + By)) = 0, i.e. PDb = 0. (45)

Standing assumptions. At the formal level of the a-priori estimate we assume that solutions to (16) fulfill

∥∥∥(a, b)T∥∥∥
l11

≤ λ1−1/m, (46a)

‖PRa‖l1 ≤ 1, (46b)

m > 9/2. (46c)

Recall (16)
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λ sin y∂xa + (−Δ)ma = −λ cos y b−
(
a + A

b + B

)
· ∇(a + A),

λ sin y∂xb + (−Δ)mb = −
(
a + A

b + B

)
· ∇(b + B).

(47)

In order to find the bound we apply the estimates for LR
λ formally, assuming that the solutions are finite 

dimensional. Treating the right hand side of (47) we have the following bounds

Bound for ‖b‖l11 = ‖PRb‖l11

‖b‖l11 � ‖LR
λ

−1‖l1→l11

(
‖(A,B)T · ∇B‖l1 + ‖abx‖l1 + ‖bby‖l1 + ‖aBx‖l1 + ‖bBy‖l1 + ‖(A,B)T · ∇b‖l1

)
� λ−1+1/m

(
λ2/m + ‖a‖l1‖b‖l11 + ‖b‖l1‖b‖l11 + ‖a‖l1λ1/m + ‖b‖l1λ1/m + λ1/m‖b‖l11

)
� λ−1+3/m + ‖a‖l1λ−1+2/m, (48)

where the last inequality is obtained after cleaning the absorbed terms, which is due to the assumptions 
(46a), and (46c). We will also need the following estimate for ‖b‖l1 , derived analogously as above

‖b‖l1 � λ−1+5/2m + ‖a‖l1λ−1+3/2m. (49)

Let us define

‖PDa‖l∞2m = sup
k∈Z

|k|≤N

k2m|a(0,k)|. (50)

Bound for ‖PDa‖l∞2m In this case the operator PDLλ is diagonal, therefore we bound the particular norm 
‖PDa‖l∞2m , it is trivially bounded by the l∞ norm of the right hand side. Moreover, observe that l∞2m norm 
bounds l11, i.e. we have ‖PDa‖l11 � ‖PDa‖l∞2m for m > 3/2, remembering that the dimension is two.

‖PDa‖l∞2m � ‖(A,B)T · ∇A‖l∞ + ‖PD(aax)‖l∞ + ‖PD(bay)‖l∞ + ‖PD(aAx)‖l∞ + ‖PD(bAy)‖l∞

+ ‖PD((A,B)T · ∇a)‖l∞

� λ2/m + ‖PRa‖l1‖PRa‖l11 + ‖b‖l1‖PRa‖l11 + ‖PRa‖l1λ3/2m + ‖b‖l1λ3/2m + λ1/m‖PRa‖l11 .
(51)

We removed all terms, which do not generate PD, i.e. any product of terms, one of them being in PD, and 
the other one in PR. When the bound (51) is used (potentially the worst term ‖PDaPDax‖ is not present 
as PDax = 0) we get

‖PDa‖l∞2m � λ2/m + ‖PRa‖2
l11

+ λ−1+3/m‖PRa‖l11 + ‖a‖l1‖PRa‖l11λ
−1+2/m

+ ‖PRa‖l1λ3/2m + λ−1+9/2m + ‖a‖l1λ−1+7/2m + λ1/m‖PRa‖l11
� λ2/m.

To get last inequality we used the assumption (46b) and (46c), the term λ2/m is clearly of the highest 
order from the terms that are left. Here we use that m > 9/2.
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Bound for ‖PRa‖l11 Observe that we have ‖PDa‖l11 � ‖PDa‖l∞2m � λ2/m

‖PRa‖l11 � λ−1+1/m (λ‖b‖l1 + ‖(A,B)T · ∇A‖l1 + ‖a‖l1‖a‖l11 + ‖b‖l1‖a‖l11 + ‖a‖l1‖A‖l11
+‖b‖l1‖A‖l11 + ‖(A,B)T ‖l1‖a‖l11

)
� λ−1+1/m

(
λ‖b‖l1 + λ5/2m + ‖PRa‖2

l11
+ ‖PRa‖l11λ

2/m + ‖b‖l1‖PRa‖l11+

λ2/mλ3/2m + ‖PRa‖l11λ
3/2m + ‖b‖l1λ3/2m + λ1/mλ2/m

)
� λ−1+1/m

(
λ‖b‖l1 + ‖PRa‖2

l11
+ ‖PRa‖l11λ

2/m + ‖b‖l1λ3/2m + ‖b‖l1‖PRa‖l11 + λ7/2m
)
.

Observe that after the second inequality the term ‖b‖l1‖a‖l11 is not present as PDax = 0, clearly the highest 
order term is ‖PDa‖l1‖A‖l11 = λ2/mλ3/2m = λ7/2m.

Now we use the bound (51), and remove some of the terms that were absorbed by using the assumptions 
(46a), (46b), and (46c), observe in the inequality above the bad looking term λ‖b‖l1 , we estimate it using (49)

λ‖b‖l1 � λ5/2m + λ3/2m (‖PDa‖l1 + ‖PRa‖l1) ,

‖PRa‖l11 � λ−1+1/m
(
λ5/2m + λ2/mλ3/2m + ‖PRa‖2

l11
+ ‖PRa‖l11λ

2/m+

+(λ−1+5/2m + ‖a‖l1λ−1+3/2m)(λ3/2m + ‖PRa‖l11) + λ7/2m
)
.

After using the assumption (46b) all terms with ‖PRa‖l11 are being absorbed, and clearly the highest order 
term in the parenthesis is λ7/2m, so finally we end up with

‖PRa‖l11 � λ−1+9/2m. (52)

Observe that PRa is mapped into itself by the operator L−1
λ , due to the assumption (46c), namely m > 9/2.

Going back to (48) we get that

‖b‖l11 ≤ λ−1+4/m. (53)

Summing up the considerations from this part we obtain the following result

Lemma 5.1. Let a, b be a small solution to problem (47), then it obeys the following dimension independent 
a-priori estimate

‖b‖l11 ≤ Cλ−1+4/m, ‖PRa‖l11 ≤ Cλ−1+9/2m, ‖PDa‖l11 ≤ Cλ2/m. (54)

6. Proof of main theorem

Using the so far presented results, we may now proceed to proving our main result – Theorem 1.1. Here 
we want to construct the solutions, using the system (47) and the a-priori estimates (Lemma 5.1).

We start with the construction of the sequence of solution’s approximations. We define the solution 
(an+1, bn+1) as the solution to the following problem

λ sin y∂xan+1 + (−Δ)man+1 = −λ cos y bn+1 −
(
an + An

bn + Bn

)
· ∇(an + An),

λ sin y∂xbn+1 + (−Δ)mbn+1 = −
(
an + An

bn + Bn

)
· ∇(bn + Bn).

(55)
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We take (a0, b0) = (0, 0) and define recursive sequence of approximating solutions An, Bn (also an, bn), 
where An, Bn ∈ H(N+2), and N determines the number of active modes. It holds that if (An, Bn) ∈ H(N), 
then (An+1, Bn+1) ∈ H(2N+2).

Note, in addition, that (55) guarantees the constraint (19). It is clear that from ∂xan = ∂ybn it follows

∂x

[(
an + An

bn + Bn

)
· ∇(an + An)

]
− ∂y

[(
an + An

bn + Bn

)
· ∇(bn + Bn)

]
≡ 0. (56)

And this implies ∂xan+1 = ∂ybn+1. Thus constraint (19) is guaranteed, refer (18).
Repeating the estimates for the system (47) we find that if

‖bn‖l11 ≤ Cλ−1+4/m, ‖PRan‖l11 ≤ Cλ−1+9/2m, ‖PDan‖l11 ≤ Cλ2/m, (57)

then

‖bn+1‖l11 ≤ Cλ−1+4/m, ‖PRan+1‖l11 ≤ Cλ−1+9/2m, ‖PDan+1‖l11 ≤ Cλ2/m, (58)

with the same constants C, provided λ sufficiently large.
We shall underline that for a fixed n we are allowed to apply results for the finite dimensional approxi-

mation of Lλ. We emphasize that all constants in Theorem 4.11 are independent on N .
We want to prove that {an, bn} is a Cauchy sequence. We consider the following system

λ sin y∂x(an+1 − an) + (−Δ)m(an+1 − an) = −λ cos y (bn+1 − bn)

−
(
an + An

bn + Bn

)
· ∇(an + An) +

(
an−1 + An−1
bn−1 + Bn−1

)
· ∇(an−1 + An−1),

λ sin y∂x(bn+1 − bn) + (−Δ)m(bn+1 − bn) =

−
(
an + An

bn + Bn

)
· ∇(bn + Bn) +

(
an−1 + An−1
bn−1 + Bn−1

)
· ∇(bn−1 + Bn−1).

(59)

Taking a large n we want to prove that

‖PR(an+1 − an), bn+1 − bn‖l11 + λ−2/m‖PD(an+1 − an)‖l11 ≤
1
2

(
‖PR(an − an−1), bn − bn−1‖l11 + λ−2/m‖PD(an − an−1)‖l11

)
+ εn, (60)

where εn → 0 as n → ∞, the quantity εn is related by norms of terms like (An −An−1) and (Bn −Bn−1).
In order to justify (60) we point out few estimates which provides the inequality. Here we use the same 

tools as in the proof of Lemma 5.1. Hence we estimate the right hand side of (59). We have to estimate the 
following terms.

For ‖bn+1 − bn‖l11 we have

‖
(
an + An

bn + Bn

)
· ∇(Bn −Bn−1)‖l1 ≤ εn. (61)

For n sufficiently large it clear that ‖Bn −Bn−1‖l11 → 0 as n → ∞. Next,

‖
(
an + An

bn + Bn

)
· ∇(bn − bn−1)‖l1 � λ2/m‖bn − bn−1‖l11 (62)
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and

‖
(
an − an−1 + An −An−1
bn − bn−1 + Bn −Bn−1

)
· ∇(bn−1 + Bn−1)‖l1

� εn + (λ−1+4/m + λ1/m)‖(an − an−1), bn − bn−1‖l11
� εn + (λ−1+4/m + λ1/m)‖PR(an − an−1), bn − bn−1‖l11

+ (λ−1+4/m + λ1/m)λ2/mλ−2/m‖PD(an − an−1)‖l11 . (63)

Hence

‖bn+1 − bn‖l11 � λ−1+3/m‖P1(an − an−1), bn − bn−1‖l11
+ (λ−2+7/m + λ−1+4/m)λ−2/m‖PD(an − an−1)‖l11 + εn. (64)

For ‖PD(an+1 − an)‖l11 we have

‖PD

((
an + An

bn + Bn

)
· ∇(an − an−1)

)
‖l1 � λ1/m‖PR(an − an−1)‖l11 , (65)

‖PD

((
an − an−1
bn − bn−1

)
∇An

)
‖l1 � λ3/2m‖PR(an − an−1), bn − bn−1‖l11 . (66)

The remaining terms here are simpler. So

‖PD(an+1 − an)‖l11 � λ3/2m‖PR(an − an−1), bn − bn−1‖l11 + better terms. (67)

For ‖PR(an+1 − an)‖l11 we have

‖PR

((
an + An

bn + Bn

)
· ∇(an − an−1)

)
‖l1

� λ2/m‖PR(an − an−1)‖l11 + (λ−1+4/m + λ1/m)λ2/mλ−2/m‖PD(an − an−1)‖l11 (68)

and

‖PR

((
an − an−1
bn − bn−1

)
· ∇An

)
‖l1 � λ3/2m‖PR(an − an−1), bn − bn−1‖l1 + λ7/2mλ−2/m‖PD(an − an−1)‖l1 .

(69)

The last term is ‖λ cos y(bn+1− bn)‖l1 , and using the estimates for ‖LB
λ ‖l1→l1 from Theorem 4.11 we find

‖λ cos y(bn+1 − bn)‖l1 � λ1/2m‖RHS(59)2‖l1

� λ1/2m
(
λ2/m‖PR(an − an−1), bn − bn−1‖l11

+λ3/mλ−2/m‖PD(an − an−1)‖l11 + εn

)
. (70)

Hence
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‖PR(an+1 − an)‖l11 (71)

� λ−1+1/m
(
λ5/2m‖PR(an − an−1), bn − bn−1‖l11 + λ7/2mλ−2/m‖PD(an − an−1)‖l11 + εn

)
(72)

� λ−1+7/2m‖PR(an − an−1), bn − bn−1‖l11 + λ−1+9/2mλ−2/m‖PD(an − an−1)‖l11 + εn. (73)

Summing up (64),(67) and (71) we conclude

‖PR(an+1 − an), bn+1 − bn‖l11 + λ−2/m‖PD(an − an−1)‖l11 �
λ−1+7/2m‖PR(an − an−1), bn − bn−1‖l11 + λ−1+9/2mλ−2/m‖PD(an − an−1)‖l11 + εn (74)

For m > 9/2 and large λ we got (60).
The condition (60) implies that the sequence {PRan, bn, PDan} has a limit in the space l11. It means 

that there exists a solution to problem (47) obeying estimates from Lemma 5.1. In other words we have 
constructed the solution (5). We shall underline that the limit in l11 implies that the derivative is uniformly 
bounded, thus the nonlinear term is described pointwisely. A bootstrap method implies that the solutions 
constructed in the above way are indeed smooth.

Existence of the solution (6) follows from the symmetry x ↔ y from Definition 4.4 that we recall here 
for completeness

Sx↔y ((a, b))1(k1,k2) = b(k2,k1),

Sx↔y ((a, b))2(k1,k2) = a(k2,k1),

where it should be understood on the level of the Fourier modes of (a, b). Largeness of λ implies there are 
two different solutions. Theorem 1.1 is proved.

7. Analysis of large matrices and proof of Theorem 4.11

Notation Let N > 0 be an even number, m > 1, l > 0, λ ∈ R.
Let us denote

R
2×2 � T l(a, b) =

[
a − lλ

2
lλ
2 b

]
.

We denote a tridiagonal matrix with elements {aj}Nj=1 on the diagonal, −lλ over diagonal, and lλ under 
diagonal by

R
N×N � T l(a1, . . . , aN ) =

⎡
⎢⎢⎢⎢⎣
a1 − lλ

2 0 0 0 . . .
lλ
2 a2 − lλ

2 0 0 . . .
. . . . . .

0 lλ
2 aN

⎤
⎥⎥⎥⎥⎦ .

Let the increasing sequence {dlj}Nj=1 be given by

dl1 = l2m, dl2 = l2m + 1, · · · , dlN = l2m + (N − 1)2m for l > 0.

We denote the tridiagonal matrix with the increasing sequence {dlj}Nj=1 on the diagonal by

Ll
λ := T l(dl1, . . . , dlN ) ∈ R

N×N .
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Definition 7.1. In the sequel we will use the following notation to denote the off diagonal term of the 
tridiagonal matrices T l

λ̂ = λ̂(l) = lλ

2 .

The bound proved in the following lemma is visualized on Fig. 3.

Lemma 7.2. Let l > 1. Let the sequences {alj}, {blj} be given by the following recursive formulas

al0 = 0, bl0 = 0,

al1 = dlN
dlN−1d

l
N + λ̂2

, bl1 = dl1

dl1d
l
2 + λ̂2

,

al2 =
dlN−2 + al1λ̂

2

dlN−3d
l
N−2 + al1d

l
N−3λ̂

2 + λ̂2
, bl2 = dl3 + bl1λ̂

2

dl3d
l
4 + bl1d

l
4λ̂

2 + λ̂2
,

alj =
dlN−2j+2 + alj−1λ̂

2

dlN−2j+1d
l
N−2j+2 + alj−1d

l
N−2j+1λ̂

2 + λ̂2
, blj =

dl2j−1 + blj−1λ̂
2

dl2jd
l
2j−1 + blj−1d

l
2j λ̂

2 + λ̂2
,

for j ≥ 1. Then the following bounds hold for all j ≥ 0

0 ≤ alj ≤ 22m/λ̂, 0 ≤ blj ≤ 1/λ̂.

Proof. The alj , b
l
j ≥ 0 part of the bound is trivial.

Now we prove 22mλ̂−1 ≥ alj . We proceed by induction, first we prove that 22mλ̂−1 ≥ al1 holds. Observe 
that for all N > 1, and l ≥ 1 we have

l2m + (N − 1)2m

(l2m + (N − 1)2m)(l2m + (N − 2)2m) + λ̂2
<

l2m + 22m−1 [(N − 2)2m + 1
]

(l2m + (N − 2)2m)2 + λ̂2
<

22m [l2m + (N − 2)2m
]

(l2m + (N − 2)2m)2 + λ̂2
<

22ma

a2 + λ̂2
= 22m

a + λ̂2

a

<
22m

λ̂
, (75)

where a = l2m + (N − 2)2m, we used the estimate due to convexity (N − 1)2m < 22m
(

(N−2)+1
2

)2m
<

22m−1 ((N − 2)2m + 1
)
, the last inequality follows from a2 + λ̂2 > aλ̂.

Assuming 22mλ̂−1 ≥ aj−1 we verify that 22mλ̂−1 ≥ aj holds.
First, observe that f(a) := dl

N−2j+2+aλ̂2

dl
N−2j+2d

l
N−2j+1+aλ̂2dl

N−2j+1+λ̂2 is a strictly increasing function for all a ≥ 0
(denominator is positive), as

f ′(a) = λ̂4(
dlN−2j+2d

l
N−2j+1 + aλ̂2dlN−2j+1 + λ̂2

)2 ≥ 0, (76)

so we have

dlk+2 + aj−1λ̂
2

dlk+2d
l
k+1 + aj−1dlk+1λ̂

2 + λ̂2
≤ l2m + (k + 1)2m + 22mλ̂

(l2m + (k + 1)2m)(l2m + k2m) + 22mλ̂(l2m + k2m) + λ̂2
≤ 22m

λ̂
, (77)

where k = N − 2j. The last inequality reduces to
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Fig. 3. Graph showing numerically calculated recursive series {a1
j}, {b1j} for λ = 1000, and for m = 2 (top figures), m = 4 (bottom 

figures). Apparent upper bound for the series is also shown (1/λ).

l2m + 22m−1(k2m + 1) + 22mλ̂

(l2m + k2m)2 + 22mλ̂(l2m + k2m) + λ̂2
≤ 22m

λ̂
,

after grouping the terms in this inequality it is easy to see that it is satisfied for all l ≥ 1, and k ≥ 0.
Obviously λ̂−1 ≥ b1 holds. Analogically as above, assuming λ̂−1 ≥ bj we verify that λ̂−1 ≥ bj+1 holds (it 

can also be verified that f ′(b) is strictly positive, and it is enough to verify the inequality setting bj = λ̂−1)

d2j+1 + bj−1λ̂
2

d2j+2d2j+1 + bj−1d2j+2λ̂2 + λ̂2
≤ l2m + (2j)2m + λ̂

(l2m + (2j + 1)2m)(l2m + (2j)2m) + λ̂(l2m + (2j + 1)2m) + λ̂2
≤ 1

λ̂
.

(78)

The last inequality holds due to following inequality, which is clearly satisfied

a + λ̂

a2 + aλ̂ + λ̂2
≤ 1

λ̂
,

where a = l2m + (2j)2m. �
Lemma 7.3. Let l > 1. All elements in 2 × 2 diagonal blocks of Ll

λ

−1 are estimated uniformly. Precisely, the 
following inequalities hold for j = 0, . . . , N/2 − 1

|(Ll
λ

−1)2j+1,2j+1| ≤ 22m/λ̂, |(Ll
λ

−1)2j+1,2j+2| ≤ 1/λ̂,
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|(Ll
λ

−1)2j+2,2j+1| ≤ 1/λ̂, |(Ll
λ

−1)2j+2,2j+2| ≤ 1/λ̂.

Proof. Here we assume that l is fixed, and we drop the superscript in the notation of T l, alk, blk, and dlk, we 
use simply T , ak, bk, and dk respectively. First, all matrices considered are invertible, which is obvious by 
calculating the determinant of tridiagonal matrices.

We use the notation Inv(D) to denote the D×D dimensional upper-left corner block of Ll
λ

−1. Analogously 

we use the notation Inv(D) to denote the D×D dimensional lower-right corner block of Ll
λ

−1. We are going 
to use the following convention for block decomposition of Ll

λ

−1 = Inv(N).

Ll
λ

−1 =
[

Inv(N)
11 Inv(N)

12
Inv(N)

21 Inv(N)
22

]
:=
[
T (d1, . . . , dN−2) −A

AT T (dN−1, dN )

]−1

, (79a)

Ll
λ

−1 =
[

Inv(N)
11 Inv(N)

12

Inv(N)
21 Inv(N)

22

]
:=
[
T (d1, d2) −A′T

A′ T (d3, . . . , dN−1, dN )

]−1

, (79b)

where

A =

⎡
⎢⎢⎢⎢⎣

0 0
...

...
0 0
λ̂ 0

⎤
⎥⎥⎥⎥⎦ , A′ =

⎡
⎢⎢⎢⎢⎣

0 λ̂
...

...
0 0
0 0

⎤
⎥⎥⎥⎥⎦ .

We will call Inv(N)
j,k , Inv(N)

j,k the inverse blocks. In the remainder of the proof we will compute recursively 

Inv(N−2), Inv(N−2) ... Inv(2), Inv(2).
The explicit formulas for the inverse blocks are obtained from the following system of equations (simpli-

fying the notation by dropping the brackets with parameters, i.e. TI = T (d1, . . . , dN−2), TII = T (dN−1, dN )
etc.)

TIInv(N)
11 −AInv(N)

21 = I, TIInv(N)
12 −AInv(N)

22 = 0, (80a)

AT Inv(N)
11 + TIIInv(N)

21 = 0, AT Inv(N)
12 + TIIInv(N)

22 = I. (80b)

When the equations for diagonal blocks are decoupled we obtain

Inv(N)
11 =

[
T (d1, . . . , dN−2) + AT (dN−1, dN )−1AT

]−1
,

Inv(N)
22 =

[
T (dN−1, dN ) + ATT (d1, . . . , dN−2)−1A

]−1
,

where

AT (dN−1, dN )−1AT =

⎡
⎢⎢⎢⎢⎣

0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 λ̂2T (dN−1, dN )−1

11

⎤
⎥⎥⎥⎥⎦ ,

ATT (d1, . . . , dN−2)−1A =
[
λ̂2T (d1, . . . , dN−2)−1

NN 0
0 0

]
.

Now, we state the crucial observation – the inverse diagonal blocks W11 and W22 are inverses of tridiagonal 
matrices, i.e.
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Inv(N)
11 = T (d1, . . . , dN−3, dN−2 + λ̂2a1)−1 = Inv(N−2), (81a)

Inv(N)
22 = T (dN−1 + λ̂2T (d1, . . . , dN−2)−1

NN , dN )−1, (81b)

where a1 = T (dN−1, dN )−1
11 = dN

dN−1dN+λ̂2 . The same holds for the diagonal inverse blocks Inv(N)
11 and Inv(N)

22

by symmetric calculations, i.e.

Inv(N)
11 =

[
T (d1, d2) + A′TT (d3, . . . , dN )−1A′

]−1
= T

(
d1, d2 + λ̂2T (d3, . . . , dN )−1

11

)−1
, (82a)

Inv(N)
22 =

[
T (d3, . . . , dN ) + A′T (d1, d2)−1A′T

]−1
= T (d3 + λ̂2b1, d4, . . . , dN )−1, (82b)

where b1 = T (d1, d2)−1
22 = d1

d1d2+λ̂2 .
Observe that the decoupling of the diagonal blocks described above can be iterated, and the matrix 

Inv(N−2) = T (d1, . . . , dN−3, dN−2 + λ̂2a1)−1 is further decomposed

Inv(N−2) =
[

Inv(N−2)
11 Inv(N−2)

12
Inv(N−2)

21 Inv(N−2)
22

]
=
[
T (d1, . . . , dN−4) −A

AT T (dN−3, dN−2 + λ̂2a1)

]−1

,

thus we write the formula for the inverse diagonal block Inv(N−2)
11 = Inv(N−4)

Inv(N−2)
11 = Inv(N−4) =

[
T (d1, . . . , dN−4) + AT (dN−3, dN−2 + λ̂2a1)−1AT

]−1

= T (d1, . . . , dN−5, dN−4 + λ̂2a2)−1,

where

a2 = T (dN−3, dN−2 + λ̂2a1)−1
11 = dN−2 + a1λ̂

2

dN−3dN−2 + a1dN−3λ̂2 + λ̂2
.

From repeating j times the procedure of taking the upper-left inverse diagonal block and decompose it 
further like in (79a), we obtain the explicit formula for the N − 2j dimensional upper-left diagonal block of 
Ll
λ

−1

Inv(N−2j) =
[
T (d1, . . . , dN−2j) + AT (dN−2j+1, dN−2j+2 + λ̂2aj−1)−1AT

]−1
(83)

= T (d1, . . . , dN−2j−1, dN−2j + λ̂2aj)−1, (84)

where

aj = T (dN−2j+1, dN−2j+2 + λ̂2aj−1)−1
11 = dN−2j+2 + aj−1λ̂

2

dN−2j+1dN−2j+2 + aj−1dN−2j+1λ̂2 + λ̂2
.

Performing iteratively j times the symmetric procedure to the one described above (performing decompo-
sition like in (79b)), we obtain the explicit formula for N − 2j dimensional lower right diagonal inverse 
block

InvN−2j =
[
T (d2j+1, . . . , dN ) + A′T (d2j−1 + λ̂2bj−1, d2j)−1A′T

]−1
(85)

= T (d2j+1 + λ̂2bj , d2j+2, . . . , dN )−1, (86)
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where

bj = T (d2j−1 + λ̂2bj−1, d2j)−1
22 = d2j−1 + λ̂2bj−1

d2j−1d2j + bj−1d2j λ̂2 + λ̂2
.

Note that the recursive series {aj}, {bj} are generated from the procedures described above. Using above 
results, we may now derive an explicit formulas for the 2 × 2 diagonal blocks of Ll

λ

−1. Let us present an 
example how it is done. Observe that from (83) we have that the N − 2j dimensional upper-left block of 
Ll
λ

−1 is Inv(N−2j) = T (d1, . . . , dN−2j−1, dN−2j + λ̂2aj)−1.
Then, for j = (N − 2)/2 we are left with Inv(2), whereas if j < (N − 2)/2 we apply j times to Inv(N−2j)

the procedure of taking the lower right diagonal block, and decomposing like in (79b), and we get that the 
j-th (counting from the bottom) 2 × 2 diagonal block of Ll

λ

−1 equals to

T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1 =
[
dN−2j−1 + λ̂2bk −λ̂

λ̂ dN−2j + λ̂2aj

]−1

, where k = (N − 2j − 2)/2.

Let us denote D = λ̂2 + dN−2j−1dN−2j + dN−2jbkλ̂
2 + dN−2j−1aj λ̂

2 + λ̂4ajbk, we have

T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
11 =dN−2j + λ̂2aj

D
,

T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
22 =dN−2j−1 + λ̂2bk

D
,

T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
12

T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
21

=±λ̂

D
.

We have that for f(aj , bk) = dN−2j+λ̂2aj

D = N
D the partial derivatives equal to

∂f(aj , bk)
∂aj

= λ̂4

D2 > 0, ∂f(aj , bk)
∂bk

= −λ̂2N2

D2 < 0.

Hence, to bound T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
11 we use the upper end of the bound for aj from 

Lemma 7.2, i.e. we set aj = 22mλ̂−1, and we use the lower end of the bound for bk, i.e. we set bk = 0. We 

are left with bounding dN−2j+22mλ̂

λ̂2+dN−2j−1dN−2j+dN−2j−122mλ̂
, which was already showed in (77) to be bounded by 

22mλ̂−1.
To bound T (dN−2j−1+ λ̂2bk, dN−2j + λ̂2aj)−1

22 , analogously as above, we set aj = 0, and bk = λ̂−1, and we 

are left with bounding dN−2j−1+λ̂

λ̂2+dN−2j−1dN−2j+dN−2j λ̂
, which was already showed in (78) to be bounded by λ̂−1. 

To bound the remaining two elements, i.e. T (dN−2j−1 + λ̂2bk, dN−2j + λ̂2aj)−1
12 , T (dN−2j−1 + λ̂2bk, dN−2j +

λ̂2aj)−1
21 we set aj = 0, bk = 0, and we obtain the claimed bounds immediately. �

Lemma 7.4. Let l > 0. The following uniform bound hold

|(Ll
λ

−1)2j+1,2k+1| ≤ 22m/λ̂ |(Ll
λ

−1)2j+1,2k+2| ≤ 1/λ̂
|(Ll

λ

−1)2j+2,2k+1| ≤ 1/λ̂ |(Ll
λ

−1)2j+2,2k+2| ≤ 1/λ̂
, for k, j = 0, . . . , [(N − 1)/2]. (87a)

Proof. Here we assume that l is fixed, and we drop the superscript in the notation of T l, alk, blk, and dlk, we 
use simply T , ak, bk, and dk respectively. We use the same notation as in Lemma 7.3, i.e. we use Inv(D) to 
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denote the D ×D dimensional upper-left corner block of Ll
λ

−1. Analogously we use the notation Inv(D) to 
denote the D ×D dimensional lower-right corner block of Ll

λ

−1.
First, for the sake of presentation, let us prove that the claimed bounds are true for the 4 × 4 upper left 

corner submatrix of Ll
λ

−1, i.e. Inv(4), the general result will follow

Inv(4) = T (d1, d2, d3, d4 + λ̂2aN/2−2)−1 =
[

Inv(4)
11 Inv(4)

12
Inv(4)

21 Inv(4)
22

]
:=
[
T (d1, d2) −A

AT T (d3, d4 + λ̂2aN/2−2)

]−1

.

(88)

From the equations for inverse blocks (80) it follows that the block beyond diagonal satisfies

Inv(4)
21 = T (d3, d4 + λ̂2aN/2−2)−1AT Inv(4)

11 .

From Lemma 7.2 follows that 22mλ̂−1 ≥ aN/2−2 ≥ 0, hence the bounds for all elements of T (d3, d4 +
λ̂2aN/2−2)−1 are the same as those derived in Lemma 7.3. Observe that

Inv(4)
21 = T (d3, d4 + λ̂2aN/2−2)−1AT Inv(4)

11 =[
T (d3, d4 + λ̂2aN/2−2)−1

11 λ̂(Inv(4)
11 )21 T (d3, d4 + λ̂2aN/2−2)−1

11 λ̂(Inv(4)
11 )22

T (d3, d4 + λ̂2aN/2−2)−1
21 λ̂(Inv(4)

11 )21 T (d3, d4 + λ̂2aN/2−2)−1
21 λ̂(Inv(4)

11 )22

]
,

as we have from Lemma 7.3 the bounds |λ̂(Inv(4)
11 )21|, |λ̂(Inv(4)

11 )22| ≤ 1, and |T (d3, d4 + λ̂2aN/2−2)−1
11 | ≤

22mλ̂−1, |T (d3, d4 + λ̂2aN/2−2)−1
21 | ≤ λ̂−1. Elements from the block Inv(4)

21 clearly satisfy the following 
bounds

|(Inv(4)
21 )11|, |(Inv(4)

21 )12| ≤ 22mλ̂−1, |(Inv(4)
21 )21|, |(Inv(4)

21 )22| ≤ λ̂−1.

The block Inv(4)
12 satisfies symmetric bounds by a symmetric argument. Observe that the bounds for the 

diagonal blocks Inv(4)
11 , Inv(4)

22 were derived in the previous lemma, hence at this point we have bounded 
uniformly all elements in Inv(4) = T (d1, d2, d3, d4 + λ̂2aN/2−2)−1. Observe that in order to derive the 

bounds for the off-diagonal blocks, we used only the bound for the last row of Inv(4) ((Inv(4)
11 )21 =

Inv(4)
41 , (Inv(4)

11 )22 = Inv(4)
42 , (Inv(4)

22 )21 = Inv(4)
43 , (Inv(4)

22 )22 = Inv(4)
44 see (88)). From the bounds estab-

lished so far all elements in the last row of Inv(4) satisfy |Inv(4)
4j | ≤ λ̂−1. It is easy to see that, if we now 

consider Inv(6) = T (d1, d2, d3, d4, d5, d6 + λ̂2aN/2−3)−1, by a similar argument for j = 1, . . . , 6 we obtain the 
bounds ∣∣∣Inv(6)

6j

∣∣∣ ≤ λ̂−1,∣∣∣Inv(6)
5j

∣∣∣ ≤ 22mλ̂−1.

Finally, from the presentation above follows that assuming that absolute value of all of the elements in 
the last row of the inverse block Inv(2k) = T (d1, . . . , d2k−1, d2k + λ̂2aN/2−k)−1 are bounded by λ̂−1, and 
the rest by 22mλ̂−1, the same bounds for the larger inverse block Inv(2k+2) = T (d1, . . . , d2k+1, d2k+2 +
λ̂2aN/2−(k+1))−1 will follow, thus, we showed that the bounds (87) are propagated for the whole Ll

λ

−1 =
Inv(N). �
Lemma 7.5. Let N > 0, m > 1, l = 1, . . . , N . There exist C(m) > 0 (independent of λ and N), such that 
for λ > 1 the following bounds hold
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∑
j=1,...,N

∣∣∣(Ll
λ

−1)ij
∣∣∣ ≤ C(m) · λ̂−1+1/2m,

∑
j=1,...,N

∣∣∣(Ll
λ

−1)ji
∣∣∣ ≤ C(m) · λ̂−1+1/2m,

for all i = 1, . . . , N .

Proof. Here we assume that l is fixed, and we drop the superscript in the notation of T l, alk, blk, and dlk, we 
use simply T , ak, bk, and dk respectively.

For the sake of clarification let us restrict our attention to the first column of Ll
λ

−1.
From Lemma 7.3 it follows that n = [cλ̂1/2m] dimensional upper left corner submatrix of Ll

λ

−1 is equal 
to Inv(n) = T (d1, . . . , dn−1, dn + λ̂2a(N−n)/2)−1, and the absolute values of elements in this matrix are 
uniformly bounded by 22mλ̂−1, thus the straightforward estimate for the first part of the sum is

∑
i=1,...,n

∣∣∣(Ll
λ

−1)i1
∣∣∣ ≤ n22mλ̂−1 = cλ̂1/2m · 22mλ̂−1 = 22mcλ̂−1+1/2m.

Next, we are going to show that the terms in remainder

∑
i=n+1,...,N

∣∣∣(Ll
λ

−1)i1
∣∣∣ =

∑
i=n+1,...,N

∣∣∣Inv(N)
i1

∣∣∣
obey a geometric decay rate, and can be bounded uniformly with respect to the dimension.

As in the previous lemmas we take the block decomposition of

Ll
λ

−1 = Inv(N), i.e.

Inv(N) =
[

Inv(N)
11 Inv(N)

12
Inv(N)

21 Inv(N)
22

]
=
[
T (d1, . . . , dN−2) −A

AT T (dN−1, dN )

]−1

.

From (80) it follows that Inv(N)
21 can be expressed in terms of Inv(N)

11 , namely, for the first column of Inv(N)
21

the identities are

Inv(N)
N−1,1 = T (dN−1, dN )−1

11 λ̂Inv(N)
N−2,1, Inv(N)

N,1 = T (dN−1, dN )−1
21 λ̂Inv(N)

N−2,1.

Analogously, for Inv(N)
N−3,1, Inv(N)

N−2,1 we have

Inv(N)
N−3,1 = T (dN−3, dN−2 + λ̂2a1)−1

11 λ̂Inv(N)
N−4,1, Inv(N)

N−2,1 = T (dN−3, dN−2 + λ̂2a1)−1
21 λ̂Inv(N)

N−4,1.

From repeating this argument we obtain

Inv(N)
N−5,1 = T (dN−5, dN−4 + λ̂2a2)−1

11 λ̂Inv(N)
N−6,1, Inv(N)

N−4,1 = T (dN−5, dN−4 + λ̂2a2)−1
21 λ̂Inv(N)

N−6,1,

. . . ,

Inv(N)
n+1,1 = T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1

11 λ̂Inv(N)
n1 ,

Inv(N)
n+2,1 = T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1

21 λ̂Inv(N)
n1 .

This is a recursive series, all elements can be expressed in terms of Inv(N). Therefore



J. Cyranka, P.B. Mucha / J. Math. Anal. Appl. 465 (2018) 500–530 527
∑
i=n+1,...,N

∣∣∣Inv(N)
i1

∣∣∣ ≤ ∣∣∣Inv(N)
n1

∣∣∣ N∑
j=n+1

|cj |,

where

cn+1 := T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
11 λ̂,

cn+2 := T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
21 λ̂,

cn+3 := T (dn+3, dn+4 + λ̂2a(N−n)/2−2)−1
11 λ̂ · T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1

21 λ̂,

cn+4 := T (dn+3, dn+4 + λ̂2a(N−n)/2−2)−1
21 λ̂ · T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1

21 λ̂,

. . . ,

cN−1 := T (dN−1, dN )−1
11 λ̂ · T (dN−3, dN−2 + λ̂2a1)−1

21 λ̂ · · ·T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
21 λ̂,

cN := T (dN−1, dN )−1
21 λ̂ · T (dN−3, dN−2 + λ̂2a1)−1

21 λ̂ · · ·T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
21 λ̂.

From Lemma 7.2 it follows that 22mλ̂−1 ≥ aj ≥ 0, and f(a) = dj+1+λ̂2a

λ̂2+djdj+1+dj λ̂2a
is strictly positive for all 

j ≥ 1 (as the derivative is positive, compare (76)). Recall that dj = l2m+(j−1)2m, and we have the obvious 
inequality λ̂2 + djdj+1 + dj λ̂

2a < λ̂2 + dj+1dj+2 + dj+1λ̂
2a for a > 0. Therefore the following inequalities 

are satisfied∣∣∣T (dn+j , dn+j+1 + λ̂2a(N−(n+j+1))/2)−1
11

∣∣∣ ≤ ∣∣∣T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
11

∣∣∣
≤ dn+2 + 22mλ̂

λ̂2 + dn+1dn+2 + 22mλ̂dn+1
,

∣∣∣T (dn+j , dn+j+1 + λ̂2a(N−(n+j+1))/2)−1
21

∣∣∣ ≤ ∣∣∣T (dn+1, dn+2 + λ̂2a(N−n)/2−1)−1
21

∣∣∣ ≤ λ̂

λ̂2 + dn+1dn+2
.

Now to show the claim about the geometric decay, we take n > [2(2m+1)/2mλ̂1/2m]

λ̂

λ̂2 + dn+1dn+2
≤ dn+2 + 22mλ̂

λ̂2 + dn+1dn+2 + 22mλ̂dn+1
= l2m + (n + 1)2m + 22mλ̂

λ̂2 + (l2m + n2m)(l2m + (n + 1)2m) + 22mλ̂(l2m + n2m)

Similar argument to the one used in (75) shows that

l2m + (n + 1)2m + 22mλ̂

λ̂2 + (l2m + n2m)(l2m + (n + 1)2m) + 22mλ̂(l2m + n2m)
≤ 22ma + 22mλ̂

a2 + 22maλ̂ + λ̂2
≤ 24m+1λ̂ + 22mλ̂

24m+2λ̂2 + 24m+1λ̂2 + λ̂2

<
1
2λ̂

.

We thus demonstrated that for any N we have

∑
i=n+1,...,N

∣∣∣(Ll
λ

−1)i1
∣∣∣ =

∑
i=n+1,...,N

∣∣∣Inv(N)
i1

∣∣∣ < ∣∣∣Inv(N)
n1

∣∣∣ 2 ∞∑
i=1

(
1
2

)i

= 2
∣∣∣Inv(N)

n1

∣∣∣ ≤ 22m+1

λ̂
. (89)

Now taking C(m) > 2(2m+1)/2m + 22m+1 we obtain the claim.
To conclude, observe that the bound holds for the first row, as the matrices Ll

λ and Ll
λ

−1 commute 
(Ll

λ = D + A, where D is a diagonal, A is a skew-symmetric matrix). The bound is true for any other 
column/row, to see this note that for each column there are at most n = [cλ̂1/2m] elements beyond the 
geometric decay regime, therefore the bound is true for any column of Ll

λ

−1. �
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7.1. Proof of Theorem 4.11

Using lemmas presented in this section we prove the main result with inverse matrix bounds

Theorem 4.11. Let l = 1, . . . , N . Let Ll
λ be the matrix given by (33), LB

λ be the matrix (PBLλ)−1.
The following estimates hold for the matrices Ll

λ

−1 (diagonal submatrices of LB
λ

−1).

‖Ll
λ

−1‖l1→l1 ≤ C1(m)
(
lλ

2

)−1+1/2m

,

‖Ll
λ

−1‖l1→l∞ ≤ 22m
(
lλ

2

)−1

,

‖Ll
λ

−1‖l1→l11
≤ C2(m)

(
lλ

2

)−1+1/m

.

The following estimates hold for the matrix LB
λ

−1

‖LB
λ

−1‖l1→l1 ≤ C1(m)
(
λ

2

)−1+1/2m

,

‖LB
λ

−1‖l1→l∞ ≤ 22m
(
λ

2

)−1

,

‖LB
λ

−1‖l1→l11
≤ C2(m)

(
λ

2

)−1+1/m

.

Proof. The uniform l1 estimate for each column of LB
λ

−1 follows directly from Lemma 7.5. The uniform l∞

estimate for each column of LB
λ

−1 follows directly from Lemma 7.4.
In order to estimate uniformly the gradient norm of LB

λ

−1 we are going to consider two cases separately.
Let c > 2(2m+1)/2m, α =

[
c
(
λ
2
)1/(2m−1)], where [·] is the integer part. Let us demonstrate the result for 

the first column of LB
λ

−1.

Case I For l ≤ α we split the sum

N∑
k=1

(l + k)
∣∣∣∣(Ll

λ

−1)
k,1

∣∣∣∣ =
n∑

k=1

∣∣∣∣(Ll
λ

−1)
k,1

∣∣∣∣+
N∑

k=n+1

(l + k)
∣∣∣∣(Ll

λ

−1)
k,1

∣∣∣∣,

where n = l1/2m
(
λ
2
)−1/[2m(2m−1)]

α =
[
c
(
lλ
2
)1/2m] (this particular choice is due to technical reasons). The 

finite part of the sum above can be estimated

n∑
k=1

∣∣∣∣(Ll
λ

−1)
k,1

∣∣∣∣ ≤ max
k=1,...,N

∣∣∣∣(Ll
λ

−1)
k,1

∣∣∣∣
n∑

k=1

l + k ≤ 22m
(
lλ

2

)−1 (
ln + n2) ≤ c1

(
lλ

2

)−1(
lλ

2

)1/m

= c1

(
lλ

2

)−1+1/m

,

where we estimated ln = l(2m−1)/2ml1/m
(
λ
2
)1/2m ≤ α(2m−1)/2ml1/m

(
λ
2
)1/2m ≤ c̃

(
lλ
2
)1/m. As dln > 22m+1 lλ

2
from the proof of Lemma 7.5 it follows that the remaining part of the sum is within the geometric decay 
regime, therefore we can estimate like in (89)



J. Cyranka, P.B. Mucha / J. Math. Anal. Appl. 465 (2018) 500–530 529
N∑
k=n+1

(l + k)
∣∣∣∣(Ll

λ

−1)
k,1

∣∣∣∣ ≤
∣∣∣∣(Ll

λ

−1)
n,1

∣∣∣∣ 2
(
l

∞∑
k=1

1
2k +

∞∑
k=1

k

2k

)
≤ c2

∣∣∣∣(Ll
λ

−1)
n,1

∣∣∣∣ (l + 1) ≤ C2

(
λ

2

)−1

,

in the last inequality we used the estimate from Lemma 7.4, i.e. 
∣∣∣∣(Ll

λ

−1
)
n,1

∣∣∣∣ ≤ 22m ( lλ
2
)−1.

The final uniform bound for this case is

N∑
k=1

(l + k)
∣∣∣∣(Ll

λ

−1)
k,1

∣∣∣∣ ≤ C2

(
λ

2

)−1+1/m

.

Case II For l > α.
For this case we have dl1 > 22m+1 lλ

2 , and therefore from the proof of Lemma 7.5 it follows that the whole 
column is within the geometric decay regime, therefore the whole column can be estimated like in (89)

N∑
k=1

(l + k)
∣∣∣∣(Ll

λ

−1)
k,1

∣∣∣∣ ≤
∣∣∣∣(Ll

λ

−1)
1,1

∣∣∣∣ 2
(
l

∞∑
k=1

1
2k +

∞∑
k=1

k

2k

)
≤ c3

∣∣∣∣(Ll
λ

−1)
1,1

∣∣∣∣ l ≤ C3

(
λ

2

)−1

.

Final bound The bound in Case I is clearly of higher order, hence it is the final uniform bound. The bound 

is true for other than the first columns, as there are at most n = [c 
(
lλ
2
)1/2m] elements beyond the geometric 

decay regime. �
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