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Abstract

Motivated by some issues in Ulam stability, we prove a fixed point theorem for
operators acting on some classes of functions, with values in n-Banach spaces.
We also present applications of it to Ulam stability of eigenvectors and some
functional and difference equations.

Keywords: Fixed point theorem, n-normed space, Ulam stability, difference
equation, functional equation.

1. Introduction

The following natural question arises in many areas of scientific investiga-
tions: what errors we commit replacing the exact solutions to some equations by
functions that satisfy those equations only approximately (or vice versa). Some
efficient tools to evaluate those errors can be found in the theory of Ulam’s
stability.

Roughly speaking, nowadays we say that an equation is Ulam stable in
some class of functions if any function from that class, satisfying the equation
approximately (in some sense), is near (in some way) to an exact solution of the
equation (see Definition 2). The problem of such a stability was formulated for
the first time by Ulam in 1940 for homomorphisms of metric groups; a solution
to it was published a year later by Hyers for Banach spaces (for details see [23]).

In the last few decades, several stability issues of similar kind, for various
(functional, differential, difference, integral) equations, have been investigated
by many mathematicians (see [2, 6, 23, 24] for the comprehensive accounts of the
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subject), but mainly in classical spaces. However, the notion of an approximate
solution and the idea of nearness of two functions can be understood in various,
nonstandard ways, depending on the needs and tools available in a particular
situation. One of such non-classical measures of a distance can be introduced
by the notion of the n-norm.

Recall that the concept of linear 2-normed space was introduced by S. Gähler
in [18], and it seems that the first work on the Hyers-Ulam stability of functional
equations in the complete 2-normed spaces (i.e., 2-Banach spaces) is [19]. After
it some papers on the stability of other equations in such spaces have been
published. The notion of 2-normed space was generalized by A. Misiak in [29],
who introduced n-normed spaces. Results on the Hyers-Ulam stability of some
functional equations in n-Banach spaces were obtained in [12, 17, 28, 34, 35].

It has been shown that there is a close connection between some fixed point
theorems and the Ulam stability theory (see, e.g., [3, 14]). The aim of this
paper is to prove a fixed point theorem in n-Banach spaces (see Theorem 3) and
show that it has significant applications to the Ulam stability of eigenvectors
(see Corollary 11) and some functional and difference equations (see Corollary
10 and the part following it). Let us mention yet that our Theorems 3 and 4
correspond to several outcomes from [4, 5, 10].

Throughout this paper N stands for the set of all positive integers, N0 :=
N ∪ {0}, R denotes the set of all real numbers and R+ := [0,∞).

2. Preliminaries

In 1989, A. Misiak (see [29]) defined the n-normed spaces and studied their
properties. The concept of an n-normed space is a generalization of the notions
of a classical normed space and of a 2-normed space introduced by S. Gähler
(see [18]). Let us also mention here that H. Gunawan and M. Mashadi (see
[20]) showed that from every n-normed space one can derive an (n− 1)-normed
space and thus a normed space. More information on these spaces and on some
problems investigated in them, among others in fixed point theory, can be found
for instance in [11, 12, 13, 16, 17, 21, 27, 28, 34, 35].

Now, we recall some basic definitions and facts concerning n-normed spaces
(for more details, we refer the reader to [12, 20, 29, 34, 35]).

Let n ∈ N, X be a real linear space, which is at least n-dimensional, and
‖· , . . . , ·‖ : Xn → R be a function satisfying the following conditions:

(N1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent,
(N2) ‖x1, . . . , xn‖ is invariant under permutation,
(N3) ‖αx1, . . . , xn‖ = |α|‖x1, . . . , xn‖,
(N4) ‖x+ y, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖+ ‖y, x2, . . . , xn‖

for any α ∈ R and x, y, x1, . . . , xn ∈ X. Then the function ‖·, . . . , ·‖ is called an
n-norm on X, and the pair (X, ‖·, . . . , ·‖) is said to be an n-normed space.

Let us mention two standard examples of n-norms:
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1. The Euclidean n-norm ‖x1, . . . , xn‖E on R
n is given by

‖x1, . . . , xn‖E = | det(xij)| = abs

⎛
⎜⎝

∣∣∣∣∣∣∣

x11 · · · x1n

...
. . .

...
xn1 · · · xnn

∣∣∣∣∣∣∣

⎞
⎟⎠ , (1)

where xi = (xi1, . . . , xin) ∈ R
n for i ∈ {1, . . . , n}.

2. Let (X,< ·, · >) be an at least n-dimensional real inner product space.
The standard n-norm on X is given by

‖x1, . . . , xn‖S =

∣∣∣∣∣∣∣

< x1, x1 > · · · < x1, xn >
...

. . .
...

< xn, x1 > · · · < xn, xn >

∣∣∣∣∣∣∣

1/2

,

where xi ∈ X for i ∈ {1, . . . , n}. If X = R
n, then this n-norm is the same as

the previous one.
If (X, ‖·, . . . , ·‖) is an n-normed space, then the function ‖·, . . . , ·‖ is non-

negative and
∥∥∥

k∑
i=1

yi, x2, . . . , xn

∥∥∥ ≤
k∑

i=1

‖yi, x2, . . . , xn‖

for any k ∈ N, x2, . . . , xn ∈ X and yi ∈ X for i ∈ {1, . . . , k}.
A sequence (yk)k∈N of elements of an n-normed space (X, ‖·, . . . , ·‖) is called

a Cauchy sequence if

lim
k,l→∞

‖yk − yl, x2, . . . , xn‖ = 0, x2, . . . , xn ∈ X,

whereas (yk)k∈N is said to be convergent if there exists a y ∈ X (called the limit
of this sequence and denoted by limk→∞ yk) with

lim
k→∞

‖yk − y, x2, . . . , xn‖ = 0, x2, . . . , xn ∈ X.

An n-normed space in which every Cauchy sequence is convergent is called an
n-Banach space.

Let us also mention that in n-normed spaces every convergent sequence has
exactly one limit and the standard properties of the limit of a sum and a scalar
product are valid.

Moreover, we have the following properties stated in a form of a lemma in
[35] (see also [12]).

Lemma 1. Let (X, ‖·, . . . , ·‖) be an n-normed space. Then the following four
conditions hold:

(i) if x1, . . . , xn ∈ X,α ∈ R, i, j ∈ {1, . . . , n} and i < j, then

‖x1, . . . , xi, . . . , xj , . . . , xn‖ = ‖x1, . . . , xi, . . . , xj + αxi, . . . , xn‖;

3



(ii) if x, y, y2, . . . , yn ∈ X, then
∣∣‖x, y2, . . . , yn‖ − ‖y, y2, . . . , yn‖

∣∣ ≤ ‖x− y, y2, . . . , yn‖;

(iii) if x ∈ X and

‖x, y2, . . . , yn‖ = 0, y2, . . . , yn ∈ X,

then x = 0;

(iv) if (xk)k∈N is a convergent sequence of elements of X, then

lim
k→∞

‖xk, y2, . . . , yn‖ =
∥∥ lim

k→∞
xk, y2, . . . , yn

∥∥, y2, . . . , yn ∈ X.

The name of Ulam has been somehow connected with various definitions of
stability (see, e.g., [1, 23, 31]), but roughly speaking, the following one describes
our considerations in this paper (AB denotes the family of all functions mapping
a set B into a set A).

Definition 2. Let (Y, ‖·, . . . , ·‖) be an (n + 1)-normed space, S �= ∅ be a set,
D0 ⊂ D ⊂ Y S and E ⊂ R+

S×Y n

be nonempty, S : E → R+
S×Y n

and T : D →
Y S. We say that the equation

T (ψ) = ψ

is S–stable in D0 provided, for any ψ ∈ D0 and δ ∈ E with
∥∥T (ψ)(t)− ψ(t), y1, . . . , yn

∥∥ ≤ δ(t, y1, . . . , yn), t ∈ S, y1, . . . , yn ∈ Y,

there is a solution φ ∈ D of the equation such that
∥∥φ(t)− ψ(t), y1, . . . , yn

∥∥ ≤ (Sδ)(t, y1, . . . , yn), t ∈ S, y1, . . . , yn ∈ Y.

3. Fixed point theorem

In the rest of the paper we assume that m ∈ N and (Y, ‖·, . . . , ·‖) is an
(m+ 1)–Banach space. To simplify the notation we write

‖z, y‖ := ‖z, y1, . . . , ym‖, z ∈ Y, y = (y1, . . . , ym) ∈ Y m.

Moreover, E always denotes a nonempty set and Δ : Y E × Y E → R+
E×Y m

is
defined by

Δ(ξ, μ)(x, y) := ‖ξ(x)− μ(x), y‖, ξ, μ ∈ Y E , x ∈ E, y ∈ Y m.

Let ∅ �= D ⊂ R+
E×Y m

, ∅ �= C ⊂ Y E and Λ: D → R+
E×Y m

. We say that
T : C → Y E is Λ – contractive provided

Δ(T ξ, T μ)(x, y) ≤ Λδ(x, y), x ∈ E, y ∈ Y m,
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for any ξ, μ ∈ C and δ ∈ D with

Δ(ξ, μ)(x, y) ≤ δ(x, y), x ∈ E, y ∈ Y m.

Next, a subset F of Y E is called pointwise closed if every χ ∈ Y E such that

χ(x) = lim
n→∞χn(x), x ∈ E,

with a sequence (χn)n∈N of elements of F , belongs to F .
Given A �= ∅ and f ∈ AA, we define fn ∈ AA (for n ∈ N0) by:

f0(x) = x, fn+1(x) = f(fn(x)), x ∈ A,n ∈ N0.

Finally, if f, g ∈ R
A, then we write f ≤ g provided f(x) ≤ g(x) for every x ∈ A.

Now, we are in a position to present the above mentioned fixed point theo-
rem; its proof is provided in the last section of the paper.

Theorem 3. Let ∅ �= C ⊂ Y E be pointwise closed, Λn : R+
E×Y m → R+

E×Y m

for n ∈ N, and T : C → C. Assume also that T n is Λn – contractive for n ∈ N,
and there exist functions ε ∈ R+

E×Y m

and ϕ ∈ C such that
∥∥T ϕ(x)− ϕ(x), y

∥∥ ≤ ε(x, y), x ∈ E, y ∈ Y m, (2)

lim inf
n→∞ Λ1

( ∞∑
i=n

Λiε
)
(x, y) = 0, x ∈ E, y ∈ Y m, (3)

ε∗(x, y) :=
∞∑
i=0

Λiε(x, y) < ∞, x ∈ E, y ∈ Y m, (4)

where Λ0ε(x, y) := ε(x, y) for x ∈ E and y ∈ Y m. Then, for each x ∈ E, there
exists the limit

ψ(x) := lim
n→∞ T nϕ(x) (5)

and the function ψ ∈ C, defined in this way, is a unique fixed point of T with

‖T nϕ(x)− ψ(x), y‖ ≤
∞∑
i=n

Λiε(x, y), n ∈ N0, x ∈ E, y ∈ Y m. (6)

Moreover, the following two statements are valid:

(a) for every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞, ψ is
the unique function in C such that

‖T knϕ(x)− ψ(x), y‖ ≤
∞∑

i=kn

Λiε(x, y), n ∈ N, x ∈ E, y ∈ Y m; (7)
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(b) if

lim inf
n→∞ Λnε

∗(x, y) = 0, x ∈ E, y ∈ Y m, (8)

then ψ is the unique fixed point of T satisfying

‖ϕ(x)− ψ(x), y‖ ≤ ε∗(x, y), x ∈ E, y ∈ Y m. (9)

Now we show some simple consequences of Theorem 3. Let us start with a
result that corresponds to [10, Theorem 2.2] and [5, Theorem 2].

Corollary 4. Let ∅ �= C ⊂ Y E be pointwise closed, Λ: R+
E×Y m → R+

E×Y m

,
and T : C → C. Assume also that T is Λ – contractive, and there exist functions
ε ∈ R+

E×Y m

and ϕ ∈ C such that (2) holds,

ε∗(x, y) :=
∞∑
i=0

Λiε(x, y) < ∞, x ∈ E, y ∈ Y m, (10)

and

lim inf
n→∞ Λ

( ∞∑
i=n

Λiε
)
(x, y) = 0, x ∈ E, y ∈ Y m. (11)

Then limit (5) exists for each x ∈ E and the function ψ ∈ C, defined in this
way, is a unique fixed point of T with

‖T nϕ(x)− ψ(x), y‖ ≤
∞∑
i=n

Λiε(x, y), n ∈ N0, x ∈ E, y ∈ Y m. (12)

Moreover, the following two statements are valid:

(a) for every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞, ψ is
the unique fixed point of T such that

‖T knϕ(x)− ψ(x), y‖ ≤
∞∑

i=kn

Λiε(x, y), n ∈ N, x ∈ E, y ∈ Y m; (13)

(b) if

lim inf
n→∞ Λnε∗(x, y) = 0, x ∈ E, y ∈ Y m, (14)

then ψ is the unique fixed point of T such that condition (9) holds true.

Proof. Write Λn := Λn for n ∈ N0. Clearly, T is Λ1 – contractive. Next,
assume that T n is Λn – contractive for a fixed n ∈ N. Take ξ, μ ∈ C and
δ ∈ R+

E×Y m

such that Δ(ξ, μ) ≤ δ. Then, by the Λ1 – contractivity of T ,
Δ(T ξ, T μ) ≤ Λδ and therefore

Δ(T n+1ξ, T n+1μ) = Δ(T nT ξ, T nT μ)) ≤ ΛnΛδ = Λn+1δ.
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Thus we have proved that T n is Λn – contractive for every n ∈ N. Consequently,
Theorem 3 yields the assertions. �

In what follows we need yet the following hypothesis concerning the operator
Λ: R+

E×Y m → R+
E×Y m

.

(C) If (δn)n∈N is a sequence of elements of R+
E×Y m

with

lim
n→∞ δn(x, y) = 0, x ∈ E, y ∈ Y m, (15)

then

lim inf
n→∞ Λδn(x, y) = 0, x ∈ E, y ∈ Y m. (16)

Remark 5. Note that if Λ1 fulfils hypothesis (C), then (3) results at once from
(4). Analogously, (10) implies (11) when Λ satisfies (C).

Remark 6. Let j ∈ N. Fix fi : E → E and Li : E → R for i = 1, . . . , j. Then
the operator T : Y E → Y E , given by

T φ(x) :=

j∑
i=1

Li(x)φ(fi(x)), φ ∈ Y E , x ∈ E, (17)

is Λ – contractive, with Λ: R+
E×Y m → R+

E×Y m

defined by the formula

Λδ(x, y) :=

j∑
i=1

|Li(x)|δ(fi(x), y),

δ ∈ R+
E×Y m

, x ∈ E, y ∈ Y m. (18)

Moreover, it is easily seen that Λ fulfils (C). Next, for every function ε : E×
Y m → R+ (with ε∗ given by (10)) we have

Λε∗(x, y) =
j∑

i=1

|Li(x)|
∞∑
k=0

(Λkε)(fi(x), y) =

∞∑
k=0

j∑
i=1

|Li(x)|(Λkε)(fi(x), y)

=
∞∑
k=1

(Λkε)(x, y), x ∈ E, y ∈ Y m,

and analogously, by induction, we get

Λnε∗(x, y) =
∞∑

k=n

(Λkε)(x, y), x ∈ E, y ∈ Y m, n ∈ N0.

Consequently, (10) implies (14). Therefore, one can easily derive from Corollary
4 an analogue of [4, Theorem 1] for n-Banach spaces.
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Remark 7. Let F : E × Y m × R+ → R+ be subadditive and nondecreasing
with respect to the third variable (i.e., F (x, y, a + b) ≤ F (x, y, a) + F (x, y, b)
and F (x, y, a) ≤ F (x, y, c) for a, b, c ∈ R+ with a ≤ c, x ∈ E and y ∈ Y m). Let
f : E × Y m → E × Y m be given and Λ: R+

E×Y m → R+
E×Y m

be defined by

Λε(x, y) = F (x, y, ε(f(x, y))), x ∈ E, y ∈ Y m, ε ∈ R+
E×Y m

.

We show that for such a Λ condition (10) yields (11) and (14).
So, assume that (10) holds for a suitable ε. Fix x ∈ E, y ∈ Y m and define

Fxy : R+ → R+ by
Fxy(a) = F (x, y, a), a ∈ R+.

Since Fxy is nondecreasing and, for each n ∈ N0, Λnε(f(x, y)) ≥ 0, we have

Λn+1ε(x, y) = Fxy

(
Λnε(f(x, y))

)
≥ Fxy(0).

Hence, by (10), we get Fxy(0) = 0.
Next, we show that either Fxy is continuous at 0 or there is an l0 ∈ N such

that Λnε(f(x, y)) = 0 for n > l0. So, suppose that Fxy is not continuous at 0 and
there exists a strictly increasing sequence

(
kn

)
n∈N

∈ N
N with Λknε(f(x, y)) �= 0

for n ∈ N. Since Fxy is nondecreasing and Fxy(0) = 0, there is a d > 0 such
that Fxy(c) > d for c > 0 and therefore

Λkn+1ε(x, y) = Fxy

(
Λknε(f(x, y))

)
≥ d, n ∈ N,

which is a contradiction to (10).
We have thus proved that

lim
j→∞

Fxy

( ∞∑
n=j

Λnε(f(x, y))
)
= 0.

Further, by the subadditivity of Fxy, for any k, j ∈ N0 with j > k, we get

Fxy

( ∞∑
n=k

Λnε(f(x, y))
)
≤

j∑
n=k

Λn+1ε(x, y) + Fxy

( ∞∑
n=j+1

Λnε(f(x, y))
)
,

whence letting j → ∞ we obtain

Λ
( ∞∑

n=k

Λnε
)
(x, y) = Fxy

( ∞∑
n=k

Λnε(f(x, y))
)
≤

∞∑
n=k+1

Λnε(x, y),

and consequently, by induction (with k = 0),

Λj
( ∞∑

n=0

Λnε
)
(x, y) ≤

∞∑
n=j

Λnε(x, y), j ∈ N.

It is easy to see that, using the last two inequalities, we can derive (11) and (14)
from condition (10).
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Now, consider a very special situation, when the set E has only one element,
i.e. E = {s}. Then, actually, the set E × Y m can be identified with Y m and
each C ⊂ Y E can be considered as a subset C := {φ(s) : φ ∈ C} of Y . Define
Δ : Y × Y → R+

Y m

by

Δ(y1, z1)(y) := ‖y1 − z1, y‖, y1, z1 ∈ Y, y ∈ Y m.

Given Λ: R+
Y m → R+

Y m

and C ⊂ Y , analogously as before, we say that
T : C → C is Λ – contractive provided

Δ(Ty1, T z1)(y) ≤ Λδ(y), y ∈ Y m,

for any y1, z1 ∈ Y and δ ∈ R+
Y m

such that Δ(y1, z1)(y) ≤ δ(y) for y ∈ Y m.
Next, for Λ1 : R+

Y m → R+
Y m

, hypothesis (C) takes the following form.

(C0) If (δn)n∈N is a sequence of elements of R+
Y m

with

lim
n→∞ δn(y) = 0, y ∈ Y m, (19)

then

lim inf
n→∞ Λ1δn(y) = 0, y ∈ Y m. (20)

Finally, we say that a set F ⊂ Y is closed provided

lim
n→∞ yn ∈ F

for every convergent sequence (yn)n∈N of elements of F .
Theorem 3 (with y0 = ϕ(s) and z0 = ψ(s))) takes in this situation the

following form.

Theorem 8. Let ∅ �= C ⊂ Y be closed, T : C → C, Λn : R+
Y m → R+

Y m

for n ∈ N, and Λ1 satisfy hypothesis (C0). Let Tn be Λn – contractive for each
n ∈ N. Suppose also that there exist a y0 ∈ C and a function ε ∈ R+

Y m

fulfilling
the following two conditions:

∥∥T (y0)− y0, y
∥∥ ≤ ε(y), y ∈ Y m, (21)

ε∗(y) :=
∞∑
i=0

Λiε(y) < ∞, y ∈ Y m, (22)

where Λ0ε(y) := ε(y) for y ∈ Y m. Then the limit

z0 := lim
n→∞Tn(y0) (23)

exists and z0 ∈ C is a unique fixed point of T with

‖Tn(y0)− z0, y‖ ≤
∞∑
i=n

Λiε(y), n ∈ N0, y ∈ Y m. (24)

Moreover, the following two statements are valid:

9



(a) for every sequence (kn)n∈N of positive integers with limn→∞ kn = ∞, z0
is the unique fixed point of T with

‖T kn(y0)− z0, y‖ ≤
∞∑

i=kn

Λiε(y), n ∈ N, y ∈ Y m; (25)

(b) if

lim inf
n→∞ Λnε

∗(y) = 0, y ∈ Y m, (26)

then z0 is the unique fixed point of T such that

‖y0 − z0, y‖ ≤ ε∗(y), y ∈ Y m. (27)

Observe that if T is a λ – contraction with a λ ∈ (0, 1), i.e.,

‖T (x)− T (z), y‖ ≤ λ‖x− z, y‖, x, z ∈ Y, y ∈ Y m,

then taking Λnδ(y) = λnδ(y) for δ ∈ R+
Y m

, y ∈ Y m and n ∈ N we obtain from
Theorem 8 an analogue of the Banach Contraction Principle for (m+1)–Banach
spaces with

ε∗(y) =
ε(y)

1− λ
, y ∈ Y m.

4. Further consequences of Corollary 4

From Corollary 4 we obtain the following corollary.

Corollary 9. Let ∅ �= C ⊂ Y E be pointwise closed, Λ: R+
E×Y m → R+

E×Y m

,
and T : C → C. Assume also that T is Λ – contractive, and functions ε : E ×
Y m → R+, ϕ ∈ C and q : E × Y m → [0, 1) are such that (2) holds and

Λφ(x, y) ≤ q(x, y)φ(x, y), x ∈ E, y ∈ Y m, φ ∈ R+
E×Y m

. (28)

Then limit (5) exists for each x ∈ E and the function ψ ∈ C so defined is a
unique fixed point of T . Moreover,

‖ϕ(x)− ψ(x), y‖ ≤ 1

1− q(x, y)
ε(x, y), x ∈ E, y ∈ Y m. (29)

Proof. From (28) it follows that

ε∗(x, y) =

∞∑
l=0

(Λlε)(x, y) ≤
∞∑
l=0

q(x, y)lε(x, y)

=
1

1− q(x, y)
ε(x, y), x ∈ E, y ∈ Y m,
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so condition (10) holds. Next,

lim inf
n→∞ Λ

( ∞∑
i=n

Λiε
)
(x, y) ≤ q(x, y) lim inf

n→∞

∞∑
i=n

Λiε(x, y) = 0,

x ∈ E, y ∈ Y m.

Consequently, also (11) is valid. Thus, by Corollary 4, limit (5) exists for each
x ∈ E and the function ψ ∈ C so defined is a fixed point of T such that (29)
holds (in view of (12) with n = 0).

It remains to prove the uniqueness of ψ. So, suppose that ξ ∈ C is a fixed
point of T . Define φ : E × Y m → R+ by

φ(x, y) := ‖ψ(x)− ξ(x), y‖, x ∈ E, y ∈ Y m.

Then, by (28), we have

‖ψ(x)− ξ(x), y‖ = ‖T nψ(x)− T nξ(x), y‖ ≤ Λnφ(x, y)

≤ q(x, y)nφ(x, y), x ∈ E, y ∈ Y m, n ∈ N0, (30)

which (with n → ∞) implies that ‖ψ(x) − ξ(x), y‖ = 0 for any x ∈ E and
y ∈ Y m, i.e., ξ = ψ. �

Clearly, the simplest situation, when (28) holds, occurs for Λ given by

Λδ(x, y) := q(x, y)δ(x, y), δ ∈ R+
E×Y m

, x ∈ E, y ∈ Y m.

For the next corollary, which also can be easily deduced from Corollary 4,
we need the subsequent hypothesis.

(H1) j ∈ N, Li : E → R+ for i = 1, . . . , j, Φ : E × Y j → Y , and

‖Φ(x,w1, ..., wj)− Φ(x, z1, ..., zj), y‖ ≤
j∑

k=1

Lk(x)‖wk − zk, y‖ (31)

for any x ∈ E, y ∈ Y m and (w1, ..., wj), (z1, ..., zj) ∈ Y j .

Corollary 10. Assume that (H1) is fulfilled, fi : E → E for i = 1, . . . , j,
ε : E × Y m → R+ satisfies (10) with Λ : RE×Y m

+ → R
E×Y m

+ given by

Λδ(x, y) =

j∑
k=1

Lk(x)δ(fk(x), y), δ ∈ R
E×Y m

+ , x ∈ E, y ∈ Y m, (32)

and ϕ : E → Y is such that

‖ϕ(x)− Φ(x, ϕ(f1(x)), ..., ϕ(fj(x))), y‖ ≤ ε(x, y), x ∈ E, y ∈ Y m. (33)

Then limit (5) exists for each x ∈ E with

T ϕ(x) := Φ(x, ϕ(f1(x)), ..., ϕ(fj(x))), ϕ ∈ Y E , x ∈ E, (34)
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and the function ψ : E → Y defined by (5) is a unique solution of the functional
equation

Φ(x, ψ(f1(x)), ..., ψ(fj(x))) = ψ(x), x ∈ E, (35)

such that inequality (9) holds.

Proof. Let us note that inequality (33) implies (2). Next, (11) and (14) are
valid in view of Remarks 5 and 6. Therefore, by Corollary 4, the function ψ
defined by (5) is a unique fixed point of T (that is a solution of (35)) satisfying
(9). �

Stability of functional equations of form (35) (or related to it) has been
already studied by several authors and for further information we refer to survey
papers [1, 6] and monograph [7]. A particular case of (35) is a linear functional
equation of the form

φ(x) =

j∑
i=1

Li(x)φ(fi(x)), x ∈ E, (36)

under the assumptions as in Remark 6 (some recent results concerning stability
of less general cases of it can be found in [25, 26, 30]).

As an example of applications of Corollary 10 let us consider stability of the
difference equation

ψ(i) = Φ(i, ψ(i+ 1)), i ∈ N, (37)

where Φ : N × Y → Y is given and ψ : N → Y is unknown. Clearly, (37) is a
very simple particular case of (35), with E = N, j = 1 and f1(i) = i + 1 for
i ∈ N.

Assume that (an)n∈N is a sequence of positive real numbers with

∞∑
k=1

k−1∏
l=0

ai+l < ∞, i ∈ N. (38)

For instance, if we take

a2n = 2, a2n−1 =
1

4
, n ∈ N,

then

2k∏
l=0

ai+l =
1

2

2k−2∏
l=0

ai+l,
2k+1∏
l=0

ai+l =
1

2

2k−1∏
l=0

ai+l, i, k ∈ N,

whence (38) holds.
Let Λ : RN×Y m

+ → R
N×Y m

+ be given by

Λδ(i, y) = aiδ(i+ 1, y), δ ∈ R
N×Y m

+ , i ∈ N, y ∈ Y m. (39)
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It is easily seen that, for every δ ∈ R
N×Y m

+ ,

Λkδ(i, y) = δ(i+ k, y)
k−1∏
l=0

ai+l, i, k ∈ N,

and consequently

n∑
k=1

Λkδ(i, y) =

n∑
k=1

δ(i+ k, y)

k−1∏
l=0

ai+l, i, n ∈ N. (40)

Suppose that γ > 0 and φ : N → Y fulfils (33) with an ε : N× Y m → [0, γ],
that is

‖φ(i)− Φ(i, φ(i+ 1)), y‖ ≤ ε(i, y), i ∈ N, y ∈ Y m. (41)

Then, by (40),

ε∗(i, y) :=
∞∑
k=0

Λkε(i, y)

≤ γ
(
1 +

∞∑
k=1

k−1∏
l=0

al+i

)
< ∞, i ∈ N, y ∈ Y m.

Next, if

‖Φ(i, z)− Φ(i, w), y‖ ≤ ai‖z − w, y‖, w, z ∈ Y, y ∈ Y m, i ∈ N,

(e.g., Φ(i, z) = aiz), then (H1) holds and the assumptions of Corollary 10 are
fulfilled with j = 1 and

L1(i) = ai, f1(i) = i+ 1, i ∈ N.

Therefore, the limit

ψ(i) := lim
n→∞ T nφ(i) (42)

exists for each i ∈ N, with

T ξ(i) := Φ(i, ξ(i+ 1)), ξ ∈ Y N, i ∈ N, (43)

and the function ψ : N → Y , defined by (42), is a unique solution of difference
equation (37) such that

‖φ(i)− ψ(i), y‖ ≤ ε∗(i, y), i ∈ N, y ∈ Y m. (44)

For some earlier results and references concerning the Ulam type stability of
difference equations of form (37) see [6, 7, 8, 9, 32, 33].

Finally, we present one more application of Corollary 4. Namely, if T is
linear, then we can easily obtain from this theorem the following corollary con-
cerning stability of eigenvectors, which corresponds to the investigations in, e.g.,
[15, 22].
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Corollary 11. Let Λ: R+
E×Y m → R+

E×Y m

, C be a pointwise closed linear
subspace of Y E, T0 : C → C be linear, γ > 0 and T := γ−1T0. Assume also that
T is Λ – contractive, and there exist functions ε ∈ R+

E×Y m

and ϕ ∈ C such that
(10) and (11) are valid and

∥∥T0ϕ(x)− γϕ(x), y
∥∥ ≤ γε(x, y), x ∈ E, y ∈ Y m. (45)

Then limit (5) exists for each x ∈ E and the function ψ ∈ C, defined in this
way, is an eigenvector of T0, with the eigenvalue γ, such that

‖ϕ(x)− ψ(x), y‖ ≤
∞∑
i=0

Λiε(x, y), x ∈ E, y ∈ Y m. (46)

Moreover, ψ is the unique eigenvector of T0, with the eigenvalue γ, such that

‖T n
0 ϕ(x)− γnψ(x), y‖ ≤ γn

∞∑
i=n

Λiε(x, y), n ∈ N, x ∈ E, y ∈ Y m. (47)

Proof. It is enough to notice that (45) implies (2) and use Corollary 4.
Clearly, (46) follows from (12) with n = 0. Next, it is easily seen that (47) is
just (13) with kn = n for n ∈ N. �

5. Proof of Theorem 3

Note that, by (2) and (4), for any k ∈ N, n ∈ N0, x ∈ E and y ∈ Y m we
have

Δ(T nϕ, T n+kϕ)(x, y) ≤
k−1∑
i=0

Δ(T n+iϕ, T n+i+1ϕ)(x, y)

≤
n+k−1∑
i=n

Λiε(x, y) ≤ ε∗(x, y). (48)

Therefore, for each x ∈ E, (T nϕ(x))n∈N is a Cauchy sequence in Y . Thus, the
fact that Y is an (m+1)–Banach space implies that this sequence is convergent.
Consequently, (5) defines a function ψ ∈ C.

Letting k → ∞ in (48), in view of Lemma 1 (iv) and (5) we get

Δ(T nϕ,ψ) ≤
∞∑
i=n

Λiε, n ∈ N0, (49)

which is (6). Moreover, using (49), we obtain

Δ(T ψ, T n+1ϕ) ≤ Λ1

( ∞∑
i=n

Λiε
)
, n ∈ N0,
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whence with n → ∞ we get T ψ = ψ, on account of (3) and Lemma 1 ((iii) and
(iv)).

Let (kn)n∈N be a sequence of positive integers with limn→∞ kn = ∞ and
ξ ∈ C be such that

‖T knϕ(x)− ξ(x), y‖ ≤
∞∑

i=kn

Λiε(x, y), n ∈ N, x ∈ E, y ∈ Y m.

Then

‖ξ(x)− ψ(x), y‖ ≤ ‖ξ(x)− T knϕ(x), y‖+ ‖T knϕ(x)− ψ(x), y‖

≤ 2
∞∑

i=kn

Λiε(x, y), n ∈ N, x ∈ E, y ∈ Y m,

whence letting n → ∞ we get ξ = ψ.
It remains to prove the last statement on the uniqueness of ψ. So, assume

that (8) holds and ξ ∈ C is a fixed point of T with

‖ϕ(x)− ξ(x), y‖ ≤ ε∗(x, y), x ∈ E, y ∈ Y m.

Then, for any n ∈ N, x ∈ E and y ∈ Y m we have

‖ψ(x)− ξ(x), y‖ ≤ ‖ψ(x)− T nϕ(x), y‖+ ‖T nϕ(x)− T nξ(x), y‖
≤ ‖ψ(x)− T nϕ(x), y‖+ Λnε

∗(x, y), (50)

whence we can easily see that ‖ψ(x)− ξ(x), y‖ = 0 for any x ∈ E and y ∈ Y m,
which means that ξ = ψ.

This completes the proof of Theorem 3. �
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