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1. Introduction

In this paper, we are interested in studying the weighted trace Hardy inequality on the half spaces
endowed with a Finsler norm. Let n > 2, we denote by Rﬁﬁ“ =R" x (0,00) the half space, i.e.,

R = {(z,t) e R*"*! : 2 € R", t > 0}.

Its boundary is ORT " = {(2,0) : » € R"} which we identify with R™. Given s € (—1,1), let us denote
ns = n+ 14 s which plays the role of dimension in our analysis and define the weight function w(z,t) := ¢*
on R, Let W(RTFI, w,) denote the weighted Sobolev space on R’ which is the completion of C§° (R} )
under the Dirichlet norm

ullyirmntt ) = / \Vul2wedzdt |

n-+1
]R+

here we say a function u € C§°(RH) if it is the restriction to R} of a function in Cg°(R™+1). In [4,29],
the following weighted trace Hardy inequalities were established for functions u € W(Rf_ﬂ, wg)
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for any 2 < 8 < ng, where H(n, s, 8) is given by

F( lgs )F(n3+ﬁz2—2s )F(n3—51-2—23)

P T (T ()

H(n,s,p)=2 (1.2)

Notice that the constant H(n,s, ) is sharp and never achieved. We refer the reader to [23] for a gener-
alization of (1.1) to the polyhedral convex cone. The interest of (1.1) is that it contains two important
inequalities which are the sharp weighted Hardy inequality and the sharp weighted trace Hardy inequality.
Indeed, we have H(n,s,) — 0 as § — ng, so by letting 8 — ng, the inequality (1.1) implies the sharp
weighted Hardy inequality in half space

—2)?2 u(z,t)?
2 gt > U / ) y3 dzdt. 1.
/ Vuredrdr > " i (1.3)

n+1 n+1
R™ R"

(77'572)2
4

Again, the constant is sharp in (1.3) and is never achieved. Taking § = 2, the inequality (1.1)

reduces to the sharp weighted trace Hardy inequality

/ Vul2t*dedt > 2 (;ET{;) /ﬁf;o): da. (1.4)

n+1 R
RJr

ntl—sy\ 2
NG )
)

becomes Kato’s inequality (see [4,13,15]). By a result of Caffarelli and Silvestre on the extension problem

Again, the constant 2 ( in (1.4) is sharp and is never attained. The case s = 0, the inequality (1.4)

concerning to the fractional Laplacian [11], the inequality (1.4) is equivalent to the Hardy inequality for
fractional Laplacian on R™ or fractional Hardy inequality [21] (see also [7,19] for alternative proofs).

Both the Hardy type inequality and the trace Hardy type inequality have many applications to boundary
value problems in partial differential equations and nonlinear analysis. They have been developed by many
authors in may different setting by many different methods. Here we just recall some recent papers and
references therein [3-5,16-18,23,29].

The aim of this paper is to extend the inequality (1.1) to Finsler context. The interest in the so-called
Finsler geometry arose from the works of G. Wulff on crystal shapes and minimization of anisotropic surface
tensions in 1901 and it is becoming increasing important in different contexts, as in the field of phase changes
and phase of separation in multiphase materials (see, e.g., [6,8]). This justifies the necessity to extend to
Finsler case many of the classical tools, which are useful in classical variational problems. The basic idea
is to endow the space RY with the distance obtained by a Finsler metric and to extend classical results to
such a new geometrical context. For example, the Finsler Hardy inequalities were recently established in [22]
(We also refer the reader to seminal works of Ruzhansky [24,26-28] in which the Hardy inequalities were
established in the more general context of homogeneous groups). The interest reader may consult [2,30] for
the symmetrization method related to the Finsler norm with applications to Sobolev type inequalities and
to comparison results for several partial differential equations.

Let H be a Finsler norm on R™,n > 2 and H® is its dual norm (we refer the reader to Section 2 for the
precise definition of Finsler norm and the dual norm). We then define a new norm ® on R"*! by

O(x,t) = (H(z)> +12)7, (x,t) € R*H. (1.5)
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The dual norm of & is given by
®°(3,1) = (H°(x)? + %)%, (2,1) € R"H, (1.6)

The main result in this paper is the following sharp weighted Finsler trace Hardy inequality on the half
space.

Theorem 1.1. Given n > 2 and s € (—1,1). Let H be a Finsler norm on R™ and H® be its dual norm. For
any 2 < B < ng, the following inequality

u(x,0)?

O(Vu)t dwdt > (-2 / u(x’t)22tsdxdt+H(n,s,ﬁ)/ da (1.7)
Rn

4 Do (z,t)

n+41 n+41
RY R%:

holds for any u € W(RT‘I, wg), where ® and ®° are given by (1.5) and (1.6) respectively, and H(n, s, 3) is
given by (1.2). Furthermore, the constant H(n, s, 3) is sharp and is never attained.

Let us make some comments on Theorem 1.1. By taking H to be the Euclidean norm in R™, Theorem 1.1
yields the inequality (1.1). In the case s = 0, Theorem 1.1 implies the Finsler Hardy-Kato’s inequality
which recently was established by Alvino et al. (see [5]),

o(Vu)2dedt > ° 2 / G0

1 ®°(z, 1)2
R R+
I(r=lt8\p(nt3=5 0)2
+2 (n_g_,_[g) (n+411_5) Ulfll; ) de. (1.8)
D(==SE)P(22) ) Hea)

The Euclidean version of (1.8) was previously proved by Alvino, Ferone and Volpicelli [4]. By taking § = 2
in Theorem 1.1, we obtain the following sharp Finsler weighted Hardy trace inequality on the half space

2 4

” (2 (Te2)\ [ u(0y
BT dedt > 2 1 <F(ns_2)> RZ e (1.9)

n+1
R+

for any u € W(Riﬂ,ws). The inequality (1.9) extends the weighted trace Hardy inequality (1.4) to the
Finsler context. Finally, by letting 8 1 ns, we get a sharp Finsler weighted Hardy inequality on half space
as follows

u(x,t)?
s 1.1
(. t)zt dzdt, (1.10)

s 2 2
o(Vu)2 dadt > " - ) /

n+1 n+1
RY R

for any u € W(RT™, wy).

The proof of Theorem 1.1 follows the method developed in [23,29] which is based on the factorization
technique. This method is different with the one used in [5] to prove Theorem 1.1 in the case s = 0. Indeed,
in [5] the authors obtained their result by using a classical method of Calculus of Variations introduced by
Weierstrass and developed by Schwartz, Lichtenstein and Morrey (see [20] and references therein for more
details). More precisely, they construct a special free divergence vector field on ]RT'l x R and then using
divergence theorem to obtain their result. One important ingredient in our method is the construction of a
singular solution ¢ for the equation
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Sat<p(x7t) + (5 - 2)2 @(xvt)

: T = W R (111)

A@@(m? t) +

such that ¢(z,0) = H® (w)*nSsz, here Ag is Finsler Laplacian with respect to ® (see Section 2 for definition).
An explicit form of ¢ and its properties are given in Section 2 below. For a function u € W(Rﬁ“, wg), We
factorize it as u = vy and replace this in to fRi+1 ®(Vu)?t*drdt and using integration by parts to derive
Theorem 1.1. The detail proof of Theorem 1.1 is given in Section 4 below.

The rest of this paper is organized as follows. In Section 2 we recall the definition of Finsler norm and list
some its useful properties. In Section 3, we construct an explicit singular solution for the equation (1.11)
which plays an important role in our proof. The proof of Theorem 1.1 is given in Section 4.

2. Preliminaries

In this section, we recall the definition of the Finsler norm and some its properties. Let N be an integer.
A function H : RN — [0, 00) is called a Finsler norm if it is a norm on RY and is strongly convex in the
sense that H € C?(RY\ {0}) and the Hessian matrix of H? (i.e., V2H? = (8i2jH2)1§i7j§N) is positive define.
From the definition of H, there exist a,b > 0 such that

alz] < H(x) < blz, z e RV, (2.1)
here | - | denotes the Euclidean norm on RY. The dual norm (or polar function) H° of H is defined by
Ho(z) = sup  (z,y), (2:2)

yEeRN H(y)<1

here (-,-) denotes the canonical scalar product on RY. Notice that H° : RY — [0, 00) is also a Finsler norm
on RY and the following equality

(H®)° = H, (2.3)
holds. From the definition of H°, we have
1 o 1 N
Z|x| < H°(z) < —lz|, x e RY, (2.4)
a
and the following Schwartz inequality holds true
(z,9)| < H(x) H(y), =,y €R™ (2.5)
For references on Finsler norms (or, more general, on Finsler metric), we refer the reader to [6,8].
We next recall some useful and further properties concerning to H and H° whose proof can be found in

[8, Lemma 2.1 and 2.2] and in [30, Proposition 6.2] (see also [22, Proposition 2.1] for a review).

Proposition 2.1. Let H be a norm on RN which is C?(RN \ {0}). Then the following properties hold true

O(VH(CL‘)‘) =1 forxz #0.
( o
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Given a Finsler norm H on RY | the Finsler-Laplace operator Ay with respect to H is defined by
Apgu(z) = div(H(Vu)VH(Vu))(z)

for any function v € C?(R™). Note that unlike the classical Laplace operator, the Finsler-Laplacian is a
nonlinear operator. However, the strongly convexity of H ensures that Ay is a uniformly elliptic operator
locally. The Finsler Laplacian has been widely investigated in literature and its notion goes back to the
work of G. Wulff who considered it to describe the theory of crystals. Since then, many authors developed
the related theory in several settings, considering both analytic and geometric points of view (see, e.g.,
[8-10,12,14] and references therein).

3. Construction of extremals

Given n > 2, s € (=1,1) and 8 € [2,n,). For a function u on Riﬂ, its gradient is denoted by Vu =
(Vzu, 0yu) where Vyu = (0,4, ..., 0,, 1) is the gradient in variable x of u. Let H be a Finsler norm on
R™. We define a new Finsler norm ® on R"*! by (1.5). Its dual norm ®° is given by (1.6). Considering the
functional

J(u) = / <I>(vu)2t8dxdt—(ﬁ;2)2 / gfé’?;tsdmdt, ue WRM w,).

Ri+1 RiJrl
The Euler-Lagrange equation associated with functional J is given by

Ou(e,t)  (B=27° wt) o . onp
Agu(x,t) + s ; + T @iE 0, in RI™, (3.1)

which is nothing the equation (1.11). Our aim is to construct a singular solution ¢(x,t) of (3.1) such that

o(z,0) = H°(z)~ = . To do this, we find the function @ in the form

ola,t) = B°(z,6) "7 w (#}) = (H°(2)? +5) " w (#) . (3.2)

1.)2 + 12

The next proposition shows that w is a solution of an ordinary differential equation which can be solved
explicitly.

Proposition 3.1. The function w is the solution of the following ordinary differential equation

(e — 1w (2) + <”—z - ﬂ) () + ((”S —2°_ (B 2)2) w(z) = 0, (3.3)

2 2 16 16

for z € (0,1] with the initial condition w(0) = 1 such that there exits the limit lim,41 w(z).
Proof. Recall that ®(z,t)? = H(z)? + t? and ®°(x,t)? = H°(x)? + t2, hence for any (z,t) € R"*! it holds
O(z,t)VO(z,t) = (H(zx)VH(z),t)

and then Ap = Ay + 02, here Ay is the Finsler Laplace operator on R™ with respect to H. Therefore, we
have

App(z,t) = Agp(z,t) + 0fp(a, t).
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By direct computations, we have

Vapla,t) = — 2 (Ho(2)? 4 £2) "5 Ho () VH (2) w <H(;;+t2)
—2(HO ()2 4+ 2)" Wlﬂm@)vm@) W' <#22+t2) : (3.4)
and
Ol t) = — nST_Q(HO(x)Q 1) (#22”2)
+o(HO(x)? + 12)” i H?g)g””fﬁ W (H(;; - t2> . (3.5)

By Proposition 2.1, we get

H(Vap(z,t))VH(Vip(x,t))
opng , —metz (Mg —2 t2 t? , t?
= —(H @) +1) ( 2 (Ho(x)2 +t2> +2H°(x)2 e <H°(x)2 +t2> )x

Using Proposition 2.1 (part (i) for H°) and denote z = W;?-‘th € (0,1], we have

App(z,t) = —n(H®(z)* + t2)_nST+2 (ns — 2w (2) + 220 (z))
+ HSTJFQ(HO(x)Q F2)7 (1 2) (ns2 2w (2) + 220’ (z))
+ (HO(2) + 2750 ((ns + 2)o (2)2(1 — 2) + 422(1 — 2)w"(2)) - (3.6)

Differentiating d;¢ in ¢ once, we get

ng — 2

(1 + )7 (M 2 () - 20 - 2 ()

ng + 2
el t) =+ =5

@+ (PR ) = 21— 2! () + (a4 20200 9 (9))

F(H ()2 + 12)7 "5 42(1 — 2)20"(2), (3.7)

2
Combining (3.5), (3.6) and (3.7) together, we arrive

A t) + 28D Aot ) + 0ol ) + s 2ATD
= —(H @)+ )7 (42(1 —2)w"(2) = 2(nsz — (14 5))w'(2)
(ns —2)?
- Ee), (3.8)

The conclusion of this lemma follows from (3.8), (3.2) and (3.1). This finishes our proof. O
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It was proved in [23] that the function w which is solution of (3.3) can be expressed in terms of hyper-
geometric functions and has the following form (see [23, Formula (3.5)])

ns+pf—4 n,—p 1+s
:F M
o) =F (" A
H(n,s,B) 1-s ns+B 1+sns—p 1—-8 3—s
Tios P T Ty 2 2 C) (3:9)

where F'(a,b,c;-) denotes the hypergeometric function (see [1,25] for the definition and further properties
of hypergeometric functions). Inserting (3.9) into (3.2), we get

P (ns+674 ne—B lts. _ t2 )
4 I 4 ’ 2 ’Ho(w)2+t2
So(x7 t) = ng—2
(@) + )
—s ns+ ns—pf — —s. 2
H(n,s, () t! F( 4B _%’ 4[ +lTsvsTs’H°(£)2+t2) (3.10)
1—s (He(z)? + tz)”sg% ’
It follows from Proposition 3.2 in [23] that w(z) > 0 for z € [0,1], w'(2) < 0 for z € (0,1) and
H
lim 2175w/ (2?) = _7(71’8’5),
20 2
hence it holds ¢(z,t) > 0 on Ri“,
W'(z)| < Cs™ 2,  se(0,1] (3.11)
for some constant C > 0, and
ts t H(n,s, if 0
lim Orp(a, ) _ [Hsf) e (3.12)
t0 (He(z)?2 4+12) 2 ¢(z,t) 0 ife=0.

4. Proof of Theorem 1.1

In this section, we provide the proof of Theorem 1.1. Our proof is based on the factorization method
which is very familiar in proving the Hardy type inequalities (for examples, see [19,23,29] and references
therein).

Proof of Theorem 1.1. By density argument, it is enough to prove Theorem 1.1 for function v € C§° (Rﬁ“).

Define the function v(z,t) = ulz:) Since p > 0 on R”! then v x,t) is well-defined. We have
o(@,1) ¥ +

Vu = vV + pVu.

For any z,y € R"*!, we have
1
Hiz +y)* = H@) + 2(H@VHE).0) + [ (FH @+ 6)y.)(1 - 0)d.
0

Applying the preceding equality to Vu = vV + Vv, we get
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B(Vu)? =0°®(Vp)® + p@(Vp)(VE(V), Vo?)

1
+ ¢? /(VH2(UV<p + 0pVo) Vo, Vo)(1 — 6)d6.
0

For any € > 0 and § > 0, we denote
Qs = {(z,t) e R"™ 1 ¢ > 63\ {(2,8) e R« Ho(z) < €}

Using (4.1) and integration by parts, we have

/ O(Vu)*tidzdt = / V2 ® (V)2 dadt + / P®(V)(VO(Vp), Vo )t*dodt
Qs.e Qs,e Qs.e

1
+ / ©? /(VHz(vVga + 0oVo)Vo, Vo) (1 — 0)dot®dzdt
Q. 0

= / V2 (V)2 t*drdt — / t=5div(t° p® (V) VO (Vo)) vt drdt

Qs,e Qs.e
+ / PB(V)(VE(Vop), i, £)) vt dH" (x., 1)

005, e

1
+ / ©* /<VH2(’UV<,O + 0pVu)Vo, Vo) (1 — 0)dot*dzdt,
Qé,e 0

1205

(4.2)

here 7 denotes the outer normal unit vector on 9€)5 . and H" denotes the n—dimensional Hausdorff measure

on 025 .. Note that

3 div(t5p® (Vo) VO(Vp)) = o (AW + S&T@) + B(Vy)?

(B -2)2 P
T %o(x0)2 +8(Ve)”,

here we have used (3.1) and part (i) of Proposition 2.1 for H°. In other hand, we have
0N = {(x,0) : H°(x) > ey U{(x,t) e R"™ . H°(2) = ¢, and t > §},
and

Az, t) = {(0,...,0,—1) on {(z,6) : H°(z) > ¢},

7%,0) on {(x,t) € R"™! : H°(x) =¢, and t > §}.

From the definition of ® and ¢ and Proposition 2.1, we have
O(z,t)VO(z,t) = (H(x)VH(z),t)

and hence

(4.4)
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(I)(VQO)V‘I)(VQO) = (H(vw@(xa t))VH(vng(.I, t)’ 875()0)

() ). o

with z = Wzﬂz Inserting (4.3), (4.4) and (4.5) into (4.2), we get

_ 2

/CID(Vu)Qtsdxdt: (B-2) / U D gt — / 5200 @0) 52
1 T°(z, t)? 5

Qs,e Qs.¢ {H°>e}

’n,s_2 ZUJI(Z)
e("52 +2 w(z) ’Z 1%7) / Md}["—l(x)tsdt

+/ &1 2 NV Ho ()]
§

{Ho=c}

1
©* / (VH?(vV ¢ + 0pVv) Vo, Vo) (1 — 0)dots dadt. (4.6)

Qs.e

Notice that Z:}ES) is bounded in [0,1]. Moreover, since H(VH®(x)) = 1 for x # 0 and by (2.1), it holds
b=! < |VH°(z)| < a! for any x # 0. Hence, it is true that

o0 2 ,
lim <” —2 ()
2
§

€ U(],‘,t)Q —1
w(z) Z_:z%’2> €2 + 2 / |VH°(I’)‘ H (CE) )

{HS=c}

for any § > 0 (here we used u € Cg°(R"")). Since u has compact support, then % is bounded on
the support of u(z,d). Therefore, letting € — 0 in (4.6) and using the Lebesgue’s monotone and dominated

convergence theorems, we get

/ @(W)%Sdagdt:(ﬁf)z / u, t)) # dadt — /553“0 .9) (2, 6)2da

oo (x (z,0)
{t>d} {t>d6}
1
+ / ©? /<VH2(’UV<,O + 0pVu)Vu, Vo) (1 — 0)dot*dzdt, (4.7)
{t>d} 0

for any 6 > 0. Our next aim is to let § — 0. Notice that, by Lebesgue’s monotone convergence theorem, we
have

lim / O(Vu)*tdrdt = / O(Vu)?t*ddt,

0—0
{t>d} Ry
and
. u(z,t)? u(x,t)?
1 ———t%dxdt = ————t%dxdt.
550 / ooz, )2 " /<I>°(ar,t)2 v
(t55) RiH

By (3.5), we have
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It follows from the preceding equality and (3.11) that

55

duple,d)| _ (ma=2  , Ho(@)? C 52 - gi+s
olx,d) |~ 2 He(x)? + 6% min,cpoqyw(z) \ Ho(x)? + 62 He(z)2 + §2

1+s
2

ns 2 o 2C He(x)? 0,2 2
< ( 2 <H0(1)2+52> + minze[o71]w(z) HO(I)Q +52) (H (.Z’) +46 )

S C/HO(I)S_l,

s—1
2

for some C’ > 0, and for any § > 0. Since v is bounded and has compact support, then by Lebesgue’s
dominated convergence theorem and (3.12), we have

lim 58 5t80($a 5)

2 _ U(lL’,O)z
lim o(.0) u(z,d) dx = H(n,s,,@)/—Ho(x)l_sdx.
R” Rn

Putting all the previous limits together and letting 6 — 0 in (4.7), we obtain

—2)? u(w,t)? u(z,0)?
o 2,5 _ (B / ; s H /%
(Vu)?t*dzdt 1 Do 2 dzdt + H(n, s, ) Ho(x)l,sdx
RO R+ R
1
+ / @2 / (VH?*(vV ¢ 4 0pVv) Vo, Vo) (1 — 0)dot® dxdt, (4.8)
]RiJrl 0

which immediately implies our desired result (1.7).
It remains to check the sharpness of the constant H(n,s,) in (1.7). Let K(n,s,) denote the best
constant for which (1.7) holds, i.e.,

S @(Vu)Ptedadt — 22 [ g0 dadt

K(n,s,8) = inf

. " ,0 2
UEW(R++17U}3)7U$O fR” %dl‘

Obviously, K (n, s, 3) > H(n, s, 3). We next show that K(n,s,3) < H(n,s, 3). Let v € C*([0, 00)) such that
P(t)=1if t <1 and ¥(t) = 0 if ¢t > 2. Define the function ¢(x,t) = (P°(z,t)) and ¢, (z,t) = ¢(x/a,t/a)
for a > 0. For € > 0, we consider the functions

pe(x,t) = @1 (2, 1) (1 = el 1)) p(x, 1).
Using triangle inequality and the convexity of the function f(t) = 2, we have
(21 4+ 22)% < (1+8)P(21)? + CsP(20)?, (4.9)
for any § > 0, 21, 20 € R with C5 = (1 + §)/d. Applying (4.9) to Vo, we get
/ O (Vi )2t dzdt <(1 +6) / (@(1 — 0 )2 ® (V) t drdt
R R

G5 / PO(V(01 (1 — 6,))*t dudt. (4.10)

n41
RJr
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Notice that ®(V)? = (®(Vp)V®(Vyp), V). Using integration by parts and the approximation argument
in the proof of (1.7), we easily obtain

s ﬁ - 2 2 € € 70 2
0% (1 602 B(Vep)t dadt = . ) / (;f) t*dxdt + H(n, s, ) 7;’}0((’;)1)&:5
R’n

n41 n41
R} R}

— | e(V(@1 (L = 6)), ®(Vp)VE(Vip))t* dad.

R
Combining the preceding equality and (4.10) together implies

2
(8- Joner @t dudt

K(”?‘%ﬁ) S z.0 2
T e e

(V(63 (1 - 6)%), (V) VO(Vip))t*dadt

+ (1+9)H(n,s,pP)

f n+1 (p
— (14 6) -
oo

fRn+1 (Vv (¢)1 (1- (bs))) tsdl‘dt. (4.11)

(z,0)2
Jen et e

We next estimate the integrals in the right-hand side of (4.11). Denote

Spo 4 = {(z,t) € R:L_+1 L 0°(x,t) = 1)

= (by (3.2)) and @ (x,t) = 0 if ®°(z,1) < € or B°(x,) > 2.

Recall that ¢(z,t) = w(gstegz)®°(2,1)”
Using the co-area formula, we have

<p2 +2 2
€ 4s < H° Y.
/ tidxdt < / w <—<I>°(x,t)2> (z,t) " t°dxdt

(®°)?
{(z,t) R e<Po(x,t)< 2}

n+1
R+
2

€

_ 22 t n/ -1
= /w(t) |V<I>°(x,t)|dH r~odr

€

S<1>°,+
= / w(t?)? Ld?—l"ln— (4.12)
B Ve (z,t)] '
S<I50\+

where H™ is the surface area measure on Sge 1. Moreover, for € > 0 small enough (such as 2¢* < 1),
have (1 — ¢e(z,1))p1 (z,t) = 1if 2¢ < °(z,t) < 1, and hence ¢ (,t) = p(x,t) if 2¢ < ®°(z,t) < L. By the

co-are formula, we have

2
7%(%’0) dz > / H°(x) "dx

He (J?)l_s
R™ 2e<HO (2)<

1
1
= / |VH°|*1H”*1/r*1dr

{H°=1} 2¢



V.H. Nguyen / J. Math. Anal. Appl. 474 (2019) 1198-1212 1209

1

oo (4.13)

= / [VH?|7'H" ! In
{Heo=1}
here we use w(0) = 1 and H" ! is the surface are measure on the set {H° = 1}.

Notice that the supports of V¢ and V1 are disjoint for € > 0 small enough. Therefore, for € > 0 small
enough, we have

PO(V(h1(1— @)t dadt = O*®(Ve)*t*dadt
R {(z,t) R e<Po(z,t)<2e}
+ P*O(Vp1)*t*dudt. (4.14)
{(x,t)e]R1+1 L1<@po(a,t)<2}

ve =

Furthermore, by using the co-are formula, we have

O B(Vo )t drdt

{(z,t) R} e<®e (z,t)<2¢}

_ elg / P20 (w ((m;t))>2tsdxdt

{(z,t)eRTT! e< @O (x,1)<2¢}

2
SUPRn+1 ‘I)O( V ¢)2 / t? ° .t
< —_— [} s
o) w <I>°( ,t)2 (m,t) t*dxdt

{(z,t)ERTT < Do (2,t)<2¢}
2¢€
SUpgn+1 °(Vo)? gvg t° n
< 5 w(t?) |V<I>°|H rdr

€
Sgo 4 €

supgn+1 ©°(V ¢)2 / 22 17 n
= w H"™. 4.1

Sgo 4

By the same argument, we get

. o 2 s
/ G2B(Vp1 )2t dudt < b“pR"“;b (V¢é) / w(t2)2|vt(bo|7-{”. (4.16)

{(I,t)GRi+l,%§(I>O(I,t)S%} S‘I’°,+

Inserting (4.16) and (4.15) into (4.14), we obtain

2 248 o 2 2\2 ts n
PR(V(0: (1~ 60))*Fdrdt < sup ¢°(Vo) / () (4.17)

Ry Spo 4
For € > 0 small enough, we have
P(V($3(1 = 6)°), B(Vip) VO(Vep)) tdardt
R+

-1 PV (1~ 6, (VO)(Vip)* dads

{(z,t)ERTT! e<Po(z,t)<2e}
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- % p(V(91)?, (VO?)(Vp))t*dudt. (4.18)

{(z,t) R, L <®o(a,)< 2}

The straightforward computations show that V®2(x,t) = 2(HVH,t) and

o nst2 2t2 ng — 2 oo [(2(H®)? Ng — 2
Vo= (9°) 2 <<(¢0)2w/+ 5 w)H VH,<(((I)O))2 W — 5 w)t).

It follows from the preceding equalities, the parts (ii), (iii) and (iv) of Proposition 2.1 that

%(wﬂ)(v@) _ (20)- 4 < ((;22)2”/ N n2— 2w> .. <2((§;;)22w/ B n2— 2w) t) '

Notice that ¢¢(x,t) = ¥(P°(x,t)/€) hence it holds

V(1 - 60 = (1 — )Y (3) UV, )

ede

€

Using part (i) of Proposition 2.1, we get

%<v(1—¢6)2,(vq>2)(w)> - 2; (1= )2 (3) 5 (a.t) %

Consequently, we have

% O(V(1 = ¢e)?, (V) (V) t dadt

z,t) R e< PO (2,8)<2e
+

(ns — 2) supg |((1 — ¥)?)’|

< 5 (2, t)®° (2, 1)~ 7 t*dadt
€
{(z,t) R e<Po(z,t)<2¢}
-2 1— )2 2
— (ns )Sup]RK( w) ) | w 3 (I’O(x,t)in'§+1tsd$dt
2¢ Do (z,t)?
{(z,t) R e<Po(z,t)<2e}
2e
_ _ 2\/
€
Sq;oy_*_ €
) 1— 2\/
— (ns ) Supﬂ; |(( ¢) ) | / w(tQ)tSdH", (419)

Seo 4

here we used again the co-area formula. By the same argument, we obtain

1
2 P(V (1) (V) (Ve))t dudt
{(z)eRy T <20 (2,1)< 2}
_ 2\/

Seo 4
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Inserting (4.20) and (4.19) into (4.18), we get

P(V($3(1 = 6)°), B(Vep) VO(Vep)) tdardt

n+1
RY

< 222 (swpl( =0 [ +swl@2)) [ w@ean (421)

Seo, 4

It follows from (4.13), (4.17) and (4.21) that

Juper oAV (8% (1 = 60%), (V) VB(Veo))t*

lim =0 (4.22)
e «(x,0) ’
-0 fRn %)lsdx
and
fRn+1 g02q)(V(¢1 (1 - ¢6)))2t8d$6dt
lim —* = 0. (4.23)
e—0 pe(x,0)?
fR7L He(z)l—+ dx

Furthermore, from (4.12) and (4.13), we see that

2
fRn+1 (qf—cf)ztsdl'dt

(z,0
fRn I}DOEI 1) ad

is bounded as € — 0. Consequently, letting ¢ — 0 in (4.11) and using the limits (4.22) and (4.23), we get

(8—2)

K(n,s,8) < €'

5+ (1+8)H(n,s,B), (4.24)
with

2
Pe s
C’ = liminf fRnH ((bo)Zt ot

€0 fRn ;1058 ?) _dx

< Q.

Since (4.24) holds for any § > 0, by letting 6 — 0 we obtain K(n, s, ) < H(n, s, ). Consequently, we have
K(n,s,8) = H(n,s, ). This proves the sharpness of H(n,s, ).

Finally, we prove the non-attainability of H(n, s, 8). Indeed, suppose that there exists u € W(Ri"’l, ws) \
{0} which realizes the equality in (1.7). By (4.8) we must have

1
©? / (VH? (V@ + 00oVv) Vo, Vo) (1 — 0)dot*dxdt = 0.

n+1
R’} 0

Nevertheless, the matrix V2H? is positive define since H is strongly convex. Hence, Vv = 0 on Rﬁ“.
Consequently, v is constant function which implies u(z,t) = cp(z,t) for some constant ¢ # 0. This is
impossible since ¢ ¢ W(Riﬂ, ws). Therefore, H(n,s, ) is not attained.

The proof of Theorem 1.1 is then completed. O
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