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We consider a frictional contact model, mathematically described by means of a 
nonlinear boundary value problem in terms of PDE. We draw the attention to 
three possible variational formulations of it. One of the variational formulations is 
a variational inequality of the second kind and the other two are mixed variational 
formulations with Lagrange multipliers in dual spaces. As main novelty, we establish 
the relationship between these three variational formulations. We also pay attention 
to the recovery of the formulation in terms of PDE starting from the mixed 
variational formulations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A large variety of real world phenomena involves bodies in interaction. Such phenomena are described by 
means of the contact models, see, e.g., [9,15,16]. From the mathematical point of view, the contact models 
are nonlinear problems described by differential equations with nonlinear boundary conditions, see [3] or, 
more recently, see for instance [5,12]. The formulations of the contact phenomena by means of the boundary 
value problems are called strong formulations; the solutions of the strong formulations are called strong 
solutions. Due to their complexity, generally, the contact problems don’t have strong solutions. Thus, in the 
analysis of the contact models under less restrictive conditions on the data, the concept of weak solution is 
crucial. The interest on the variational approach is due to computational reasons.

For a frictional contact model we can deliver several variational formulations. It is well known, for instance, 
that the bilateral frictional contact models with constant friction bound lead to variational inequalities of 
the second kind. At the same time such models lead to variational systems with Lagrange multipliers called 
mixed variational formulations. Each solution of a variational formulation will be called a weak solution of 
the model. So, we can define several weak solutions for a model.
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What is the relationship between the weak solutions corresponding to different variational formulations? 
Is it possible to recover the strong formulation of the model starting from the mixed variational formulations? 
These two questions will be answered in the present paper by means of an experiment involving an antiplane 
frictional contact model. Precisely, we consider the following boundary value problem.

Problem 1. Find u : Ω̄ → R such that

−ξΔu(x) = f0(x) in Ω, (1)

u(x) = 0 on Γ1, (2)

ξ
∂u

∂ν
(x) = f2(x) on Γ2, (3)∣∣∣∣ξ ∂u∂ν (x)

∣∣∣∣ ≤ g, ξ
∂u

∂ν
(x) = −g

u(x)
|u(x)| if u(x) �= 0 on Γ3. (4)

Problem 1 is a boundary value problem with nonlinear boundary conditions. The formulation (1)-(4) is 
called the strong formulation of Problem 1. Herein Ω ⊂ R2 is a bounded domain with smooth boundary 
Γ, partitioned in three measurable parts with positive measure, Γi, i ∈ {1, 2, 3}, g > 0, ξ > 0, f0 ∈ L2(Ω), 
f2 ∈ L2(Γ2), and, as usual, ∂u∂ν = ∇u ·ν, ν denoting the unit outward normal vector at Γ. Problem 1 models 
the frictional contact between a linearly elastic cylindrical body and a rigid foundation in the antiplane 
context, under the small deformation hypotheses; see, e.g., [13] for details on the frictional antiplane models 
in contact mechanics.

Three possible variational formulations of Problem 1 are described in the present paper. One of them, 
a variational inequality of the second kind, is a classical one. Another one is a variational formulation by 
means of Lagrange multipliers in the dual of a subspace of H1/2(Γ). As it is known, the weak solution defined 
via variational inequalities of the second kind can be approximated by means of a regularization technique. 
In contrast, the weak solution defined via mixed variational formulations with Lagrange multipliers in the 
dual of a subspace of H1/2(Γ) can be approximated directly, by means of modern numerical techniques, 
like the primal-dual active set strategy, see, e.g., [7] and the references therein. In addition to the afore-
mentioned variational formulations, in the present paper we deliver a new mixed variational formulation 
which is interesting in its own but it is also helpful to establish a connection between the mixed variational 
formulations and the classical variational formulation. After we study the relationship between the three 
weak formulations, assuming enough smoothness, we discuss the recovery of the strong formulation starting 
from the mixed variational formulations.

The present study is important for the numerical treatment of the model. Our analysis confirms that, if 
we approximate the solutions of the mixed variational formulations, then we really approximate the solutions 
of the mechanical model.

To end the introduction it is worth to underline some features of the model we consider in the present 
paper. Working in the antiplane context, the unknown herein is a scalar function, u being the third com-
ponent of the displacement field, see, e.g., [13]. In order to model the friction, we consider a particular 
case of the Coulomb friction law, the Tresca law, where the friction bound is a positive constant. Thus, 
Problem 1 can be related to a variational inequality of the second kind. In a next step, the present study can 
be continued by considering more general frictional contact models leading to quasi-variational inequalities; 
see, e.g., [13,14] for scalar and vectorial models leading to quasi-variational inequalities with constraint sets 
independent on the solution, and see, e.g., [17] for a study involving a quasi-variational inequality where 
the constraint set is dependent on the solution.

The rest of the paper has the following structure. Section 2 contains some preliminaries. Section 3
addresses three variational formulations of Problem 1, discussing the solvability in every case. In Section 4
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we analyze the relationship between the variational formulations we present in Section 3. The last section 
is devoted to the recovery of the strong formulation assuming enough smoothness of the data and weak 
solutions.

2. Preliminaries

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces.

Definition 1. A bilinear form e : X × Y → R is continuous (of rank Me) if there exists Me > 0 such that

|e(v, μ)| ≤ Me‖v‖X‖μ‖Y for all v ∈ X, μ ∈ Y.

Definition 2. A bilinear form e : X ×X → R is X−elliptic (of rank me) if there exists me > 0 such that

e(u, u) ≥ me‖u‖2
X for all u ∈ X.

Let us consider the following mixed variational problem.

Problem 2. Find u ∈ X and λ ∈ Λ such that

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X, (5)

b(u, μ− λ) ≤ 0 for all μ ∈ Λ, (6)

where:

• a : X ×X → R is a symmetric bilinear continuous (of rank Ma)

and X−elliptic (of rank ma) form; (7)

• b : X × Y → R is a bilinear continuous (of rank Mb) form, (8)

and, in addition,

∃α > 0 : inf
μ∈Y,μ�=0Y

sup
v∈X,v �=0X

b(v, μ)
‖v‖X‖μ‖Y

≥ α; (9)

• Λ is a closed convex subset of Y that contains 0Y . (10)

The following existence and uniqueness result takes place.

Theorem 1. Assume (7)–(10). Then, Problem 2 has a unique solution (u, λ) in X × Λ.

The proof is based on the saddle point theory; see, e.g., [4,6].
Let us associate to the form b(·, ·) the linear and continuous operator B : X → Y ′ defined as follows: for 

each v ∈ X,

〈Bv, λ〉Y ′,Y = b(v, λ) for all λ ∈ Y. (11)

Moreover, we can associate to B the linear and continuous operator Bt : Y → X ′ defined as follows: for 
each λ ∈ Y ,

〈Btλ, v〉X′,X = 〈Bv, λ〉Y ′,Y for all v ∈ X. (12)
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Actually, we can write

〈Btλ, v〉X′,X = 〈Bv, λ〉Y ′,Y = b(v, λ) for all v ∈ X,λ ∈ Y, (13)

see [1] (pages 210-213) and [2] (page 131).
According to, e.g., [1] (see 4.1.61-4.1.62), keeping in mind (8)-(9), we have to write

ImBt = (KerB)0, (14)

where, as it is known,

KerB = {v ∈ X |Bv = 0}

and (KerB)0 denotes, as usual, the polar of KerB, i.e.,

(KerB)0 = {l ∈ X ′ | 〈l, v〉X′,X = 0 for all v ∈ KerB}.

Notice that, (13) yields

KerB = {v ∈ X | b(v, λ) = 0 for all λ ∈ Y } (15)

= {v ∈ X | 〈Btλ, v〉X′,X = 0 for all λ ∈ Y };

see, e.g., (4.1.52) in [1].
Moreover,

Bt : Y → (KerB)0 ⊂ X ′ is an isomorphism; (16)

see, e.g., Theorem 3.6 page 125 and Lemma 4.2 page 131 in [2].

3. Weak formulations

In this section we present three possible variational formulations of Problem 1.

3.1. First variational formulation

In this first subsection we recall a variational formulation of Problem 1 in terms of variational inequalities 
of the second kind.

Problem 3. Find u0 ∈ X such that

a(u0, v − u0) + j(v) − j(u0) ≥ (f, v − u0)X for all v ∈ X, (17)

where

X = {v ∈ H1(Ω) | γv = 0 a.e. on Γ1}; (u, v)X = (∇u,∇v)L2(Ω)2 ; (18)

a : X ×X → R a(u, v) = ξ(u, v)X ; (19)

j : X → R j(v) =
∫

g|γv| dΓ; (20)

Γ3
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(f, v)X =
∫
Ω

f0 v dx +
∫
Γ2

f2 γv dΓ. (21)

Everywhere in this paper γ : H1(Ω) → L2(Γ) is the trace operator.

According to the theory of the variational inequalities of the second kind, the following result takes place:

Theorem 2. Problem 3 has a unique solution u0 ∈ X.

For details, see, e.g., [13] and the references therein.

3.2. Second variational formulation

Let us recall a variational formulation of Problem 1 in terms of Lagrange multipliers. In addition to the 
Hilbert space X, given by (18), we need in this subsection the following space,

M = γ(X) = {ṽ ∈ H1/2(Γ)| there exists v ∈ X such that ṽ = γ v a.e. on Γ},

where, recall,

H1/2(Γ) = {ṽ ∈ L2(Γ)| there exists v ∈ H1(Ω) such that ṽ = γ v a.e. on Γ}.

Let us denote by Z : H1/2(Ω) → H1(Ω) the right inverse of the trace operator. As it is known, Z is a linear 
and continuous operator. It is worth to emphasize that

Z(γv) ∈ X for all v ∈ X,

and

γ(Z(γv)) = γv for all v ∈ X. (22)

For details on the space H1/2(Γ), its structure and related operators, see, e.g., [8,11].
We also need the dual of the space M denoted by Y ,

Y = M ′. (23)

The space M is a Hilbert space, see, e.g., [10]. Furthermore, Y is a Hilbert space being the dual of the 
Hilbert space M . Everywhere below 〈·, ·〉Y,M will denote the dual pairing between Y and M .

For a regular enough function u which verifies Problem 1, a Lagrange multiplier λ ∈ Y can be introduced 
as follows:

〈λ, ṽ〉Y,M = −
∫
Γ3

ξ
∂u

∂ν
ṽ dΓ for all ṽ ∈ M.

The first mixed variational formulation of Problem 1 is the following.

Problem 4. Find u ∈ X and λ ∈ Λ ⊂ Y such that

a(u, v) + 〈λ, γv〉Y,M = (f, v)X for all v ∈ X, (24)

〈μ− λ, γu〉Y,M ≤ 0 for all μ ∈ Λ. (25)
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For the definition of a(·, ·) and f see (19) and (21), respectively. The set of the Lagrange multipliers Λ
in Problem 4 has the following definition.

Λ = {μ ∈ Y | 〈μ, γv〉Y,M ≤
∫
Γ3

g|γv| dΓ for all v ∈ X}. (26)

It is easy to observe that (7) and (10) are fulfilled.
Let us define

b : X × Y → R b(v, μ) = 〈μ, γv〉Y,M for all v ∈ X, μ ∈ Y. (27)

Obviously, the form b(·, ·) is a bilinear and continuous form. In addition,

‖μ‖Y = sup
w∈M, w �=0M

〈μ,w〉Y,M
‖w‖M

≤ sup
w∈X, γw �=0M

〈μ, γw〉Y,M
‖γw‖M

.

Let w ∈ X be such that γw �= 0M . Then Z(γw) �= 0X . Indeed, otherwise Z(γw) = 0X , and applying the 
trace operator γ we obtain γ(Z(γw)) = γ0X = 0M . Using now (22) it results that γw = 0M which is not 
true. Because Z is linear and continuous, there exists c > 0 such that,

‖Z(γw)‖X ≤ c‖γw‖M .

As γw �= 0M , then

1
‖γw‖M

≤ c

‖Z(γw)‖X
,

the right hand side of this inequality being well defined.
Therefore,

‖μ‖Y ≤ c sup
w∈X,Z(γw) �=0X

〈μ, γw〉Y,M
‖Z(γw)‖X

= c sup
w∈X,Z(γw) �=0X

〈μ, γ(Z(γw))〉Y,M
‖Z(γw)‖X

= c sup
w∈X,Z(γw) �=0X

b(Z(γw), μ)
‖Z(γw)‖X

≤ c sup
v∈X, v �=0X

b(v, μ)
‖v‖X

.

By consequence (8)-(9) hold true.
The following result is a direct application of Theorem 1.

Theorem 3. Problem 4 has a unique solution (u, λ) ∈ X × Λ.

From the numerical point of view, Problem 4 is a very convenient variational formulation, see, e.g., [7].
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3.3. Third variational formulation

Let us draw the attention on a new variational formulation via Lagrange multipliers. Everywhere in this 
subsection we denote by X the space given by (18), by X ′ its dual and by 〈·, ·〉X′,X the dual pairing.

Let ū be a regular enough function which verifies Problem 1. We introduce a Lagrange multiplier λ̄ ∈ X ′

as follows:

〈λ̄, v〉X′,X = −
∫
Γ3

ξ
∂ū

∂ν
γv dΓ for all v ∈ X.

We deliver the following mixed variational formulation.

Problem 5. Find ū ∈ X and λ̄ ∈ Λ̄ ⊂ X ′ such that

a(ū, v) + 〈λ̄, v〉X′,X = (f, v)X for all v ∈ X, (28)

〈μ̄− λ̄, ū〉X′,X ≤ 0 for all μ̄ ∈ Λ̄. (29)

Again, a(·, ·) is given by (19) and f is given by (21). Obviously, (7) holds true. The subset Λ̄ in Problem 5
has the following definition:

Λ̄ = {μ̄ ∈ X ′ | 〈μ̄, v〉X′,X ≤
∫
Γ3

g|γv| dΓ for all v ∈ X}. (30)

Clearly, Λ̄ in (30) is a closed convex subset of X ′ containing 0X′ , so (10) is fulfilled.
Now, we define b̄ : X ×X ′ → R as follows,

b̄(v, μ̄) = 〈μ̄, v〉X′,X for all v ∈ X, μ̄ ∈ X ′. (31)

This is a bilinear continuous form. In addition,

‖μ̄‖X = sup
v∈X, v �=0X

〈μ̄, v〉X′,X

‖v‖X
= sup

v∈X, v �=0X

b̄(v, μ̄)
‖v‖X

.

Clearly, b̄ fulfills (8)-(9).
Applying Theorem 1 we obtain the following existence and uniqueness result.

Theorem 4. Problem 5 has a unique solution (ū, ̄λ) ∈ X × Λ̄.

Problem 5 will play a crucial role in the next section.

4. On the relationship between the weak formulations

In this section we focus on the relationship between the variational formulations presented in Section 3.
Let u0 ∈ X be the unique solution of Problem 3. We define λ0 ∈ X ′ by means of the following relation.

〈λ0, v〉X′,X = (f, v)X − a(u0, v) for all v ∈ X. (32)
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Theorem 5. Let (ū, ̄λ) ∈ X×Λ̄ be the unique solution of Problem 5, let u0 be the unique solution of Problem 3
and let λ0 ∈ X ′ be defined in (32). Then,

ū = u0 and λ̄ = λ0.

Proof. Since u0 ∈ X is the unique solution of Problem 3, then

a(u0, u0) + j(u0) = (f, u0)X ; (33)

a(u0, v) + j(v) ≥ (f, v)X for all v ∈ X. (34)

By (32) and (34) we obtain that

〈λ0, v〉X′,X ≤ j(v) for all v ∈ X. (35)

Therefore,

λ0 ∈ Λ̄ (36)

where Λ̄ was defined by (30). Furthermore, by (32) we obtain

a(u0, v) + 〈λ0, v〉X′,X = (f, v)X for all v ∈ X. (37)

On the other hand, due to (30), for all μ̄ ∈ Λ̄,

〈μ̄, u0〉X′,X ≤ j(u0), (38)

and due to (33) and (32) we have

〈λ0, u0〉X′,X = j(u0). (39)

By (38) and (39) we obtain

〈μ̄− λ0, u0〉X′,X ≤ 0 for all μ̄ ∈ Λ̄. (40)

By (36), (37) and (40) we obtain that (u0, λ0) is a solution of Problem 5. But, according to Theorem 4, 
Problem 5 has a unique solution (ū, ̄λ) ∈ X × Λ̄. The conclusion is now immediate. �

According to (11) and (12), we can associate to the form b(·, ·) introduced in (27), two linear and 
continuous operators B : X → Y ′ and Bt : Y → X ′, such that, for all v ∈ X, λ ∈ Y ,

〈Btλ, v〉X′,X = 〈Bv, λ〉Y ′,Y = b(v, λ) = 〈λ, γv〉Y,M . (41)

Lemma 1. KerB = Kerγ.

Proof. Let v ∈ KerB. By (15) we have

b(v, λ) = 0 for all λ ∈ Y.

Consequently,
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〈λ, γv〉Y,M = 0 for all λ ∈ Y.

Then, γv = 0M . Indeed, for λ = RMγv we can write

0 = 〈λ, γv〉Y,M = ‖γv‖2
M .

Herein RM : M → M ′ is the operator which appear in Ritz’s Theorem, see Theorem 4.1.2 page 209 in [1]. 
Thus,

KerB ⊆ Kerγ. (42)

Let v ∈ Kerγ. Then γv = 0M . Therefore 〈λ, γv〉Y,M = 0 for all λ ∈ Y = M ′. According to (41), we can 
write 〈Bv, λ〉Y ′,Y = 0 for all λ ∈ Y . Consequently, Bv = 0Y ′ . So, v ∈ KerB. Therefore,

Kerγ ⊆ KerB. (43)

The conclusion is a straightforward consequence of the inclusions (42) and (43). �
Proposition 1. Let (ū, ̄λ) ∈ X × Λ̄ be the unique solution of Problem 5. Then

λ̄ ∈ (KerB)0. (44)

Proof. Keeping in mind (20), we observe that j(v) = j(−v) for all v ∈ X. Therefore,

|〈λ̄, v〉X′,X | ≤ j(v) for all v ∈ X. (45)

And from this, since j(v) = 0 for all v ∈ Kerγ, we obtain that

〈λ̄, v〉X′,X = 0 for all v ∈ Kerγ.

By Lemma 1 it follows that

〈λ̄, v〉X′,X = 0 for all v ∈ KerB

i.e. we have (44). �
According to (16), there exists a unique λ̃ ∈ Y such that

Btλ̃ = λ̄. (46)

Theorem 6. Let (ū, ̄λ) ∈ X×Λ̄ be the unique solution of Problem 5, let λ̃ given by (46) and let (u, λ) ∈ X×Λ
be the unique solution of Problem 4. Then,

ū = u and λ̃ = λ.

Proof. Due to (46) and (41),

〈λ̄, v〉X′,X = 〈Btλ̃, v〉X′,X = 〈Bv, λ̃〉Y ′,Y = b(v, λ̃) = 〈λ̃, γv〉Y,M . (47)

As λ̄ ∈ Λ̄, we conclude easily that λ̃ is an element of Λ; see (26) and (30). Moreover, due to (28) and (47),
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a(ū, v) + 〈λ̃, γv〉Y,M = (f, v)X for all v ∈ X.

On the other hand, for all μ ∈ Λ, we have

〈μ, γū〉Y,M ≤ j(ū). (48)

Recall that, according to (39), as u0 = ū and λ0 = λ̄, see Theorem 5, then

〈λ̄, ū〉X′,X = j(ū). (49)

By (47) and (49),

〈λ̃, γū〉Y,M = 〈Btλ̃, ū〉X′,X = 〈λ̄, ū〉X′,X = j(ū). (50)

By (48) and (50) we obtain

〈μ− λ̃, γū〉Y,M ≤ 0 for all μ ∈ Λ.

Thus, (ū, ̃λ) ∈ X × Λ verifies Problem 4. As Problem 4 has a unique solution (u, λ) ∈ X × Λ, we conclude 
this theorem. �
Remark 1. Let u0 be the unique solution of Problem 3, (u, λ) ∈ X ×Λ be the unique solution of Problem 4
and (ū, ̄λ) ∈ X × Λ̄ be the unique solution of Problem 5. Then,

u0 = u = ū

and

Btλ = λ̄,

where Bt is the operator defined by (41). Moreover,

〈λ, γv〉Y,M = 〈λ̄, v〉X′,X ≤ j(v) for all v ∈ X, (51)

〈λ, γu〉Y,M = 〈λ̄, u〉X′,X = j(u) =
∫
Γ3

g|γu| dx, (52)

and

a(u, v) + 〈λ̄, γv〉X′,X = (f, v)X for all v ∈ X. (53)

5. Recovery of the strong formulation

According to the study in the previous sections, Problems 4 and 5 are mixed variational formulations of 
Problem 1, each of them having a unique solution (u, λ) ∈ X × Λ and (u, ̄λ) ∈ X × Λ̄, respectively.

How the weak solutions (u, λ) ∈ X × Λ and (u, ̄λ) ∈ X × Λ̄ are related to Problem 1?
Let us assume everywhere below that the data and the weak solutions are smooth enough. First of all 

we notice that u ∈ X implies u(x) = 0 on Γ1, so (2) is recovered. Next, let us test in (24) with v ∈ C∞
c (Ω). 

Since γv(x) = 0 on Γ then, by (24) we obtain
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a(u, v) =
∫
Ω

f0 v dx.

And from this, keeping in mind (19), by using the First Green’s Formula and the Fundamental Lemma in 
the Calculus of Variations we are led to (1). By standard arguments we are also led to (3). The pointwise 
relations (1)-(3) are helpful for some error analysis of numerical schemes, see e.g. pages 170-172 in [5]; if 
Γ2 = ∅ the analysis is easier.

What about the frictional contact conditions (4)?
By means of (51), (53), (19), (21), the First Green’s Formula and (1)-(3) we obtain

〈λ̄, v〉X′,X = 〈λ, γv〉Y,M = −
∫
Γ3

ξ
∂u

∂ν
(x)γv(x) dΓ for all v ∈ X.

Notice that everywhere in this section u = γu on Γ3 due to the smoothness assumption. Keeping in mind 
(51) we can write

−
∫
Γ3

ξ
∂u

∂ν
(x)γv(x) ≤

∫
Γ3

g|γv(x)| dΓ for all v ∈ X.

Moreover, using (52) we have

−
∫
Γ3

ξ
∂u

∂ν
(x)u(x) =

∫
Γ3

g|u(x)| dΓ.

Therefore, for all v ∈ X,∫
Γ3

ξ
∂u

∂ν
(x)(γv(x) − u(x)) dΓ ≥ −

∫
Γ3

g(|γv(x)| − |u(x)|) dΓ.

Below, we will test with functions v = ±tw + u, where t ∈ (0, ∞) and w ∈ X such that γw is smooth 
enough, with compact support on Γ3, and γw ≥ 0 a.e. on Γ3.

If v = tw + u then ∫
Γ3

ξ
∂u

∂ν
(x)γw(x) dΓ ≥ −g

∫
Γ3

|γ(tw + u)(x)| − |γu(x)|
t

dΓ. (54)

We observe that, a.e. on Γ3,

lim
t↓0

|γ(tw + u)(x)| − |γu(x)|
t

=
{

γw(x) if u(x) = 0;
γw(x) sgn(u(x)) if u(x) �= 0.

Let us introduce F+ : R → R,

F+(r) =
{

1 if r = 0;
sgn(r) if r �= 0.

Due to the Lebesgue’s dominated convergence, after we pass to the limit in (54), as t → 0, we obtain
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∫
Γ3

(
ξ
∂u

∂ν
(x) + g F+(u(x))

)
γw(x) dΓ ≥ 0.

And then, by classical arguments of mathematical analysis, we deduce that, a.e. on Γ3,

ξ
∂u

∂ν
(x) + g F+(u(x)) ≥ 0

which yields

ξ
∂u

∂ν
(x) + g

u(x)
|u(x)| ≥ 0 if u(x) �= 0; (55)

ξ
∂u

∂ν
(x) + g ≥ 0 if u(x) = 0. (56)

If v = −tw + u, then ∫
Γ3

ξ
∂u

∂ν
(x)γw(x) dΓ ≤ g

∫
Γ3

|γ(−tw + u)(x)| − |γu(x)|
t

dΓ

and, a.e. on Γ3,

lim
t↓0

|γ(−tw + u)(x)| − |u(x)|
t

=
{

γw(x) if u(x) = 0;
−γw(x) sgn(u(x)) if u(x) �= 0.

Let us introduce F− : R → R,

F−(r) =
{

1 if r = 0;
− sgn(r) if r �= 0.

Therefore, ∫
Γ3

(
ξ
∂u

∂ν
(x) − g F−(u(x))

)
γw(x) dΓ ≤ 0.

Thus, a.e. on Γ3,

ξ
∂u

∂ν
(x) + g

u(x)
|u(x)| ≤ 0 if u(x) �= 0; (57)

ξ
∂u

∂ν
(x) − g ≤ 0 if u(x) = 0. (58)

The frictional interaction condition (4) is now a consequence of (55)-(58).
The regularity results remain open.
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