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1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk on the complex plane C and T be the boundary of D. 
The Hardy space H2 consists of the holomorphic functions on D having square-summable Taylor coefficients 
at the origin. It is well known that H2 can be identified with the subspace of L2(T , dθ2π ) consisting of the 
functions whose Fourier coefficients with negative indices vanish (see [8]). A function u ∈ H2 is called an inner 
function if |u(ξ)| = 1 a.e. for ξ ∈ T . For a nonconstant inner function u, the model space K2

u = H2 �uH2 is 
invariant under the backward shift operator T ∗

z on H2. The truncated Toeplitz operator on K2
u with symbol 

ϕ ∈ L∞(T ) is defined by

Aϕf = Pu(ϕf), f ∈ K2
u,

where Pu is the orthogonal projection on L2(T , dθ2π ) with range K2
u.

A conjugation C on a Hilbert space H is an anti-linear, isometric and involutive map, that is C(αf) =
αCf , C2 = I and (Cf, Cg) = (g, f), ∀f, g ∈ H, α ∈ C. The model space K2

u carries a natural conjugation 
given by
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Cf(ξ) = u(ξ)ξf(ξ) a.e. for ξ ∈ T , where f ∈ K2
u. (1.1)

For a completely nonunitary (c.n.u.) contraction T on the Hilbert space H, the defect operators and 
defect spaces of T are defined by

DT = (I − T ∗T )1/2, DT∗ = (I − TT ∗)1/2,

DT = DTH, DT∗ = DT∗H.

The characteristic function of a c.n.u. contraction T is a purely contractive analytic operator-valued function 
ΘT (z) : DT → DT∗ on D defined as follows:

ΘT (z) = [−T + zDT∗(I − zT ∗)−1DT ]|DT
, z ∈ D. (1.2)

The characteristic function is a useful tool in the study of model theory for the c.n.u. contractions, for 
instance, if ΘT admits a nontrivial regular factorization, then T has a nontrivial invariant subspace generated 
by regular factorization. We call two characteristic functions Θ1(z) : E1 → E2 and Θ2(z) : F1 → F2, z ∈ D

coincide if there exist a unitary operator U from E1 to F1 and a unitary operator V from E2 to F2 such that

V Θ1(z) = Θ2(z)U

for all z ∈ D. It is known that two c.n.u. contractions T1 and T2 are unitarily equivalent if and only if ΘT1

and ΘT2 coincide. More information about the model theory on contractions can be found in [11].
For a positive integer N , a c.n.u. contraction T is called C0(N) operator if ‖T‖ ≤ 1, Tn → 0 and T ∗n → 0

(in strong operator topology) as n → ∞ and rank(I − T ∗T ) = N . Let u be an inner function such that 
dimK2

u > 1, then Az and Az2 on K2
u are C0(1) operator and C0(2) operator, respectively. In particular, 

every C0(1) operator is unitarily equivalent to Az on the model space K2
u for some inner function u (see 

[1,11]). A good reference for studying the C0 operators is the monograph [1]. A closed subspace M of H
satisfying TM ⊂ M is said to be an invariant subspace for T . If both M and M⊥ are invariant subspaces for 
T , then M is called the reducing subspace for T . If T has a nontrivial reducing subspace (M 
= {0} or H), 
we say that T is reducible. Otherwise, we say that T is irreducible. The reducibility of T means to decide 
either T is reducible or irreducible. It is well known that Az is irreducible and hence all C0(1) operators are 
irreducible. The reducibility of general C0(N) operators is complicated, for instance, in [2], it was shown 
that Az2 can be reducible for some inner functions u. The authors in [10] provided a function theoretical 
based proof and then described the reducing subspaces of Az2 explicitly. The classification of invariant 
subspaces and reducing subspaces of various operators on function spaces has proved to be very rewarding 
research problems in analysis. A lot of nice and deep work on the reducibility of multiplication operators 
induced by the finite Blaschke product on Bergman space can be seen in [3,9,12] and references therein. In 
general, C0(2) operator is not unitarily equivalent to Az2 , and some examples are provided in section 3. So 
in this paper we focus on the reducibility of C0(2) operators and a good understanding of these cases that 
will shed light on the general picture.

The paper is organized as follows. In section 2, we give a necessary and sufficient condition for the 
reducibility of C0(2) operators by using the characteristic function and we obtain the number of the reducing 
subspaces of a C0(2) operator. In section 3, as an application, we also restudy the reducibility of the truncated 
Toeplitz operator Az2 and we will provide examples of C0(2) operator which are not unitarily equivalent to 
Az2 for any inner function u.
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2. Reducibility of C0(2) operators

In this section, we will give a necessary and sufficient condition for the reducibility of a C0(2) operator 
by using the characteristic function.

A contractive analytic operator-valued function Θ is called inner if its boundary values Θ(eit) are isome-
tries a.e. on T . It is known that if T ∈ C0(N), then ΘT is inner ([11]). For a C0(2) operator T , it follows 
from (1.2) that the characteristic function ΘT of T is a 2 × 2 matrix-valued analytic function. Let

Θ(z) =
(
a(z) −b(z)
c(z) d(z)

)
(2.1)

be a 2 × 2 matrix-valued inner function, then a, b, c, d ∈ K2
zϕ, where ϕ = det(Θ) (see [5]). The following 

lemma gives a parametrization of 2 × 2 matrix-valued inner functions.

Lemma 2.1 (Theorem 1 in [5]). Let ϕ be a nonconstant inner function and Θ be defined in (2.1). Then Θ
is unitary a.e. on T and det(Θ) = ϕ if and only if

(1) a, b, c, d belong to K2
zϕ.

(2) d = ϕa and c = ϕb.
(3) |a|2 + |b|2 = 1 a.e. on T .

Lemma 2.2 (Theorem 8.16 in [4]). Suppose ϕ is an inner function. Then u ∈ K2
zϕ is an inner function if 

and only if u is the inner factor of ϕ.

For each conjugation C on a Hilbert space H, there are many fixed points of C, for example, there exists 
an orthonormal basis {en} such that Cen = en (see [7]). For an inner function ϕ, let ξ ∈ T such that both 
ϕ and ϕ′ have nontangential limit at ξ, then we have the kernel function

kξ(z) = 1 − ϕ(ξ)ϕ(z)
1 − ξz

∈ K2
ϕ.

It is shown in [6] that (ξϕ(ξ))1/2kξ is a fixed point of C. The following lemma is to characterize the fixed 
points of C.

Lemma 2.3. Let C be a conjugation on Hilbert space H. For two vectors a, b ∈ H, the following statements 
hold.

(1) If there exists α ∈ C with |α| = 1 such that C(a) = αa, then there exists β ∈ C with β 
= 0 such that 
βa is a fixed point of C.

(2) There exist α, β ∈ C with |α| = |β| 
= 0 such that a = αb + βC(b) if and only if there exist σ, δ, γ ∈
C with σδγ 
= 0 and σδ /∈ R such that σa and δa + γb are fixed points of C.

(3) There exist α, β ∈ C with β 
= 0 and |α| 
= |β| such that a = αb + βC(b) if and only if there exist at 
least two pairs (δi, γi) ∈ C2 with δiγi 
= 0 δ1δ2 /∈ R, δ2γ1 − δ1γ2 
= 0 and |δ2γ1 − δ1γ2| 
= |δ1γ2 − δ2γ1|, 
such that δia + γib are fixed points of C.

Proof. (1) Choosing β such that β/|β| = α1/2, it is not hard to see that βa is a fixed point of C.
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(2) If a = αb + βC(b), choosing σ such that σ/|σ| = (α−1β)1/2, then σα = σβ. We have

C(σa) = C(σαb + σβC(b))

= σαC(b) + σβb

= σa.

To obtain the second fixed point, for any η ∈ C, η 
= α, we calculate

C(a + ηb) = αC(b) + βb + ηC(b)

= βb + (α + η)C(b)

= βb + (α + η)β−1(a− αb)

= (α + η)β−1(a + ( |β|2
α + η

− α)b).

(2.2)

To get the desired result, we first solve the following equations

{
|(α + η)β−1| = 1,
|β|2
α+η − α = η.

(2.3)

It is not hard to see that the above equations have solutions as follows:

η = βeix − α, x ∈ R. (2.4)

It is clear that we can choose x0 ∈ R such that η0 = βeix0 − α 
= 0. Since |α| = |β|, we have βeix0α /∈ R.
Putting η0 into (2.2), we get

C(e
x0
2 ia + (βe−

x0
2 i − αe

x0
2 i)b) = e

x0
2 ia + (βe−

x0
2 i − αe

x0
2 i)b.

Let

δ = e
x0
2 i and γ = βe−

x0
2 i − αe

x0
2 i,

then δa + γb is a fixed point of C. In this case,

σδ = |σ|(α−1β)1/2e−
x0
2 i = |σ|(α−1βe−x0i)1/2 /∈ R.

On the other hand, if σa and δa + γb are both fixed points of C, then

δa + γb = C(δa + γb)

= δ

σ
σa + γC(b).

Since δσ /∈ R, then δσ − δσ 
= 0. Let

α = γσ

δσ − δσ
and β = − σγ

δσ − δσ
,

then αβ 
= 0, |α| = |β| and a = αb + βC(b). The proof of (2) is completed.
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(3) Suppose that there exist α, β ∈ C with β 
= 0 and |α| 
= |β| such that a = αb + βC(b), then 
C(a) = αC(b) + βb and C(b) = β−1(a − αb). For any δ, γ ∈ C with δγ 
= 0, we have

C(δa + γb) = δC(a) + γC(b)

= (δα + γ)β−1a + (δβ − (δα + γ)β−1α)b.

Let
{

δ = (δα + γ)β−1,

γ = δβ − (δα + γ)β−1α,

we get that

γ = δβ − δα.

Then

αγ = δαβ − δ|α|2 and βγ = δ|β|2 − δαβ.

Since |α| 
= |β|, the above equations are equivalent to

{
δ = αγ+βγ

|β|2−|α|2 ,

γ = δβ − δα.

The non-zero solutions of above equations can be written as

{
δ ∈ C with δ 
= 0
γ = δβ − δα

or
{

γ ∈ C with γ 
= 0,

δ = αγ+βγ
|β|2−|α|2 .

By the above solutions, there exist two pairs (δi, γi) with δiγi 
= 0, (i = 1, 2) such that δ1δ2 /∈ R, δ2γ1−δ1γ2 =
(δ1δ2 − δ1δ2)β 
= 0 and δ1γ2 − δ2γ1 = (δ1δ2 − δ1δ2)α. Then |δ2γ1 − δ1γ2| 
= |δ1γ2 − δ2γ1|.

On the other hand, if there are two pairs (δ1, γ1) 
= (δ2, γ2) with δiγi 
= 0 such that δia + γib(i = 1, 2) are 
fixed points of C, then

{
C(δ1a + γ1b) = δ1a + γ1b,

C(δ2a + γ2b) = δ2a + γ2b.

By the first equation we get that

C(a) = δ1
−1(δ1a + γ1b− C(γ1b)).

Replacing C(a) in second equation, we obtain

δ2a + γ2b = C(δ2a + γ2b)

= δ2 δ1
−1(δ1a + γ1b− C(γ1b)) + γ2C(b).

Since δ1δ2 /∈ R, we have
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a = δ1γ2 − δ2γ1

δ1δ2 − δ1δ2
b + δ2γ1 − δ1γ2

δ1δ2 − δ1δ2
C(b).

Since δ2γ1 − δ1γ2 
= 0, let

α = δ1γ2 − δ2γ1

δ1δ2 − δ1δ2
, β = δ2γ1 − δ1γ2

δ1δ2 − δ1δ2
,

then |α| 
= |β|, β 
= 0 and a = αb + βC(b). Therefore we complete the proof. �
The following lemma comes from [2], which is key to studying the reducibility of C0(2) operators.

Lemma 2.4 (Lemma 2 in [2]). Let u be a nonconstant inner function. Then Az2 is reducible on K2
u if and 

only if there exist orthogonal projections Q1 and Q2 in L(C2) so that

ΘAz2 (z)Q2 = Q1ΘAz2 (z), z ∈ D (2.5)

and 0 
= Qi 
= IC2 (i = 1, 2).

It is not hard to see that Lemma 2.4 also holds for C0(2) operators. From Lemma 2 in [2], we know that 
Qi has the form

Qi =
(

qi riξi
riξi 1 − qi

)
, (2.6)

where 0 ≤ qi ≤ 1, ξi ∈ C, |ξi| = 1, and ri = (qi(1 − qi))1/2, for i = 1, 2. By the proof of Lemma 2.4, a 
C0(2) operator T is reducible if and only if ΘT coincides with

Θ(z) =
(
θ1(z) 0

0 θ2(z)

)
, (2.7)

where θ1 and θ2 are inner functions.
Let Aut(D) denote the automorphism group of D. Note that if T is reducible, then detΘT /∈ Aut(D). In 

what follows, we assume that detΘT /∈ Aut(D).

Lemma 2.5. Let T be a C0(2) operator and ΘT be the characteristic function of T with det(ΘT ) = ϕ. Then 
T is reducible if and only if one of the following conditions holds:

(1) a = αu and b = βu, where u ∈ K2
zϕ is inner and α, β ∈ C with |α|2 + |β|2 = 1.

(2) a = αu and b = βC(u), where u ∈ K2
zϕ is inner and α, β ∈ C with |α|2 + |β|2 = 1.

(3) There exist α, β ∈ C with |α| = |β| = 1 such that C(a) = αa and C(b) = βb.
(4) There exist α, β ∈ C with |α| = |β| 
= 0 such that

b = αa + βC(a)

or

a = αb + βC(b).
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(5) There exist α, β ∈ C with |α| 
= |β| and αβ 
= 0 such that

a = αb + βC(b).

Proof. If T is reducible, by Lemma 2.4, there exist Q1 and Q2 with the form (2.6), such that

ΘT (z)Q2 = Q1ΘT (z), z ∈ D.

By some calculations we obtain that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(q2 − q1)a = r1ξ1ϕb + r2ξ2b,

(q2 − q1)ϕa = r1ξ1b + r2ξ2ϕb,

(1 − q1 − q2)b = −r1ξ1ϕa + r2ξ2a,

(1 − q1 − q2)ϕb = −r1ξ1a + r2ξ2ϕa,

which is equivalent to
{

(q2 − q1)a = r1ξ1ϕb + r2ξ2b,

(1 − q1 − q2)b = −r1ξ1ϕa + r2ξ2a.
(2.8)

The necessity of Lemma 2.5 will be proved in five cases.
Case I: q1 = 0 or q1 = 1, then r1 = (q1(1 − q1))1/2 = 0. We only need to discuss the case q1 = 0, since 

the argument of the case q1 = 1 is similar. The equations (2.8) give that
{

q2a = r2ξ2b,

(1 − q2)b = r2ξ2a.
(2.9)

(i) If q2 = 0 or 1, then r2 = 0. The equations (2.9) show that b ≡ 0 or a ≡ 0. Lemma 2.1 yields that

a ∈ K2
zϕ

or

b ∈ K2
zϕ,

which are inner functions.
(ii) If q2 ∈ (0, 1), it follows from equations (2.9) and r2 = (q2(1 − q2))1/2 that

a = q
−1/2
2 (1 − q2)1/2ξ2b. (2.10)

Since |a|2 + |b|2 = 1 a.e. on T , we have

q−1
2 (1 − q2)|b|2 + |b|2 = 1,

hence |b|2 = q2 a.e. on T . So there exists an inner function u ∈ K2
zϕ such that b = q

1/2
2 u. By equation (2.10), 

we know that

a = (1 − q2)1/2ξ2u,

which proves (1) in Lemma 2.5.
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Case II: q2 = 0 or q2 = 1 and 0 < q1 < 1. The similar argument as Case I, we will obtain that (2) in 
Lemma 2.5 holds.

Case III: qi 
= 0, 1 and q1 = q2 = 1
2 . Then r1 = r2 
= 0, and the equations (2.8) imply that

{
ξ1ϕb + ξ2b = 0,
−ξ1ϕa + ξ2a = 0.

Let

α = ξ1ξ2 and β = −ξ1ξ2,

then

C(a) = αa and C(b) = βb.

Case IV: qi 
= 0, 12 , 1 and q1 = q2 or q1 + q2 = 1. If q1 = q2, set

α = r2ξ2
1 − q2 − q1

and β = − r1ξ1
1 − q2 − q1

.

The second formula in equations (2.8) gives that

b = αa + βC(a).

If q1 + q2 = 1, set

α = r2ξ2
q2 − q1

and β = r1ξ1
q2 − q1

.

The first formula in equations (2.8) gives that

a = αb + βC(b).

Case V: qi 
= 0, 1, q1 
= q2 and q1 + q2 
= 1. Then the two formulas in (4) in Lemma 2.5 are indeed the 
same. By the similar argument as Case IV, we know that (5) in Lemma 2.5 will hold.

To prove the sufficiency, we first suppose that (1) in Lemma 2.5 holds.
(i) If β = 0, then b ≡ 0 and a is inner. Let

Q1 = Q2 =
(

0 0
0 1

)
,

we have ΘTQ2 = Q1ΘT and T is reducible. The argument for α = 0 is similar and T is also reducible.
(ii) If αβ 
= 0, let

ξ2 = |β|α
|α|β , q2 = |β|2,

then 1 − q2 = |α|2, r2 = |αβ|.
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ΘTQ2 = a −b

ϕb ϕa

|β|2 |β|2(αβ )
|β|2 α

β |α|2

=
(

0 0
ϕb ϕa

)

=
(

0 0
0 1

)(
a −b

ϕb ϕa

)

= Q1ΘT ,

so that T is reducible.
The argument for (2) in Lemma 2.5 is similar to (1), we also know that T is reducible.
If there exist α, β ∈ C with |α| = |β| = 1 such that C(a) = αa and C(b) = βb. Let q1 = q2 = 1

2 , 
ξ1 = (−αβ)1/2 and ξ2 = (−αβ)1/2. It is easy to check that

ΘT (z)Q2 = Q1ΘT (z), z ∈ D,

which means that T is reducible.
Suppose (4) or (5) in Lemma 2.5 holds. Without loss of generality, assume that there exist α and β

with αβ 
= 0 such that a = αb + βC(b). For finding two projections Q1, Q2 with the form (2.6) such that 
ΘTQ2 = Q1ΘT , one only needs to solve the following equations

{
r2ξ2 = α(q2 − q1),
r1ξ1 = β(q2 − q1).

(2.11)

It is easy to see that ξ1 = β/|β| and ξ2 = α/|α|. From (2.11), we get

{
r2
2 = |α|2(q2 − q1)2,
r2
1 = |β|2(q2 − q1)2.

(2.12)

Since r2
2 − r2

1 = (q2 − q1)(1 − q1 − q2), and we also assume that q1 
= q2, then we have that

(|α|2 − |β|2)(q2 − q1) = 1 − q1 − q2.

If |α| = |β|, then we have q1+q2 = 1, which shows that when the second condition in (4) of the Lemma 2.5
implies that T is reducible.

If |α|2 − |β|2 − 1 = 0, then |α| =
√

|β|2 + 1 > 1, so that

q2 = 1
2 and q1 = 1

2 ± 1
2|α| . (2.13)

If |α|2 − |β|2 + 1 = 0, then |β| =
√

|α|2 + 1 > 1, so that

q1 = 1
2 and q2 = 1

2 ± 1
2|β| . (2.14)

For other cases, we get

q1 = q2(|α|2 − |β|2 + 1) − 1
2 2 (2.15)
|α| − |β| − 1
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and

q2 = q1(|α|2 − |β|2 − 1) + 1
|α|2 − |β|2 + 1 . (2.16)

It is easy to see that

q2 − q1 = 1 − 2q2
|α|2 − |β|2 − 1 . (2.17)

Let

δ2 = |α|2
(|α|2 − |β|2 − 1)2 .

Replacing q2 − q1 in the first equation in (2.12) by (2.17), we obtain

(4δ2 + 1)q2
2 − (4δ2 + 1)q2 + δ2 = 0.

So

q2 = 1
2 ± 1

2
√

4δ2 + 1
.

Similarly, we can solve for q1 such that

q1 = 1
2 ± 1

2
√

4δ1 + 1
,

where δ1 = |β|2
(|α|2−|β|2+1)2 . We proved that (5) in Lemma 2.5 implies that T is reducible.

The case b = αa + βC(a) is similar to above argument, and will show that the first condition in (4) or 
(5) implies that T is reducible. �

Now we can prove the main theorem of this paper.

Theorem 2.1. Let T be a C0(2) operator and ΘT be the characteristic function of T with det(ΘT ) = ϕ /∈
Aut(D). Let C denote the natural conjugation on K2

zϕ defined in (1.1). Then T is reducible if and only if 
one of the following conditions holds:

(1) a = αu and b = βu or b = βϕu, where u is an inner factor of ϕ and α, β ∈ C with |α|2 + |β|2 = 1.

(2) There exist αi, βi, (i = 1, 2) ∈ C, with
2∏

i=1
αiβi 
= 0, αiβi /∈ R such that at least two of {α1a, α2b, β1a +

β2b} are fixed points of C.
(3) There exist at least two pairs (δi, γi) ∈ C2, with δiγi 
= 0, i = 1, 2, δ1δ2 /∈ R, δ2γ1 − δ1γ2 
= 0, δ1γ2 −

δ2γ1 
= 0 and |δ2γ1 − δ1γ2| 
= |δ1γ2 − δ2γ1|, such that δia + γib are fixed points of C.

Proof. Combining the Lemma 2.2, Lemma 2.3 and Lemma 2.5, we proved the theorem. �
Theorem 2.1 shows that characteristic function is important for the reducibility of T . By (1.2), ΘT (z) :

DT → DT∗ , by (2.7), T is reducible if and only if ΘT coincides with a diagonal matrix. Next, we will give 
a description of reducing subspaces by its defect spaces.
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Lemma 2.6. Suppose T is a C0(N) operator on the Hilbert space H. The following statements hold.

(1) span{TnDT∗ : n = 0, 1, 2, . . .} = H;
(2) span{T ∗nDT : n = 0, 1, 2, . . .} = H,

where span denotes the closed linear span.

Proof. It suffices to prove (1). Assume that x ⊥ span{TnDT∗ : n = 0, 1, 2, . . .}, then

0 = (x, TnDT∗) = (T ∗nx,DT∗), for n = 0, 1, 2, . . . ,

it follows that T ∗nx ∈ D⊥
T∗ for all n ≥ 0. Since D⊥

T∗ = kerDT∗ and

kerDT∗ = {x ∈ H : ‖T ∗x‖ = ‖x‖},

we have that ‖T ∗nx‖ = ‖x‖, for n = 0, 1, 2, . . .. Since T is a C0(N) operator, T ∗n → 0 (in strong operator 
topology) as n → ∞, hence x = 0 and this completes the proof. �
Theorem 2.2. Suppose that T is a C0(2) operator on the Hilbert space H with characteristic function

ΘT (z) =
(
θ1(z) 0

0 θ2(z)

)
, z ∈ D, (2.18)

where θ1 and θ2 are inner functions.

(1) If θ1 and θ2 coincide, then T has infinitely many reducing spaces.
(2) If θ1 and θ2 don’t coincide, then T has only two reducing spaces.

Proof. It follows from (2.18) that T is unitarily equivalent to

S = S1 ⊕ S2

on K = K1 ⊕K2, where the characteristic function of Si is θi, and Si = S |Ki
, i = 1, 2.

Since T is a C0(2) operator, then S1 and S2 are C0(1) operators. Choosing x ∈ DS1 , y ∈ DS2 and x, y
are unit vectors with x ⊥ y, by Lemma 2.6, we get

K1 = span{S∗nx : n = 0, 1, 2, . . .} = span{S∗n
1 x : n = 0, 1, 2, . . .}

and

K2 = span{S∗ny : n = 0, 1, 2, . . .} = span{S∗n
2 y : n = 0, 1, 2, . . .}.

It is clear that K1 and K2 are reducing subspaces of S, hence it suffices to show that θ1 and θ2 coincide if 
and only if S has infinitely many reducing spaces.

For any (αi, βi) 
= (0, 0), i = 1, 2 such that

α1α2 + β1β2 = 0, (2.19)

let
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Mi = span{S∗n(αix + βiy) : n = 0, 1, 2, . . .}, i = 1, 2.

It is clear that S∗Mi ⊂ Mi, i = 1, 2. It follows from

S∗nx = β2

α1β2 − α2β1
S∗n(α1x + β1y) + β1

α2β1 − α1β2
S∗n(α2x + β2y)

and

S∗ny = α2

α2β1 − α1β2
S∗n(α1x + β1y) + α1

α1β2 − α2β1
S∗n(α2x + β2y)

that span{M1, M2} = K. Mi(i = 1, 2) are reducing subspaces if and only if M1 ⊥ M2. It concludes that S
has infinitely many reducing spaces if and only if M1 ⊥ M2.

Claim: M1 ⊥ M2 if and only if S1 is unitarily equivalent to S2, and in this case, θ1 and θ2 coincide.
Proof of the claim. Firstly, suppose S1 is unitarily equivalent to S2, i.e., there exists a unitary map 

U : K1 → K2, such that US1 = S2U . It is not hard to see UD2
S1

= D2
S2
U and hence UD2n

S1
= D2n

S2
U . Let 

pn(x) be the polynomial and pn(x) → √
x uniformly on the interval 0 ≤ x ≤ 1, then pn(D2

Si
) → DSi

, i = 1, 2
in norm and Upn(D2

S1
) = pn(D2

S2
)U . Hence UDS1 = DS2U and UDS1 = DS2 . We can choose x ∈ DS1 , 

y ∈ DS2 such that Ux = y, then

(S∗ny, S∗my) = (S∗n
2 y, S∗m

2 y)

= (S∗n
2 Ux, S∗m

2 Ux)

= (S∗n
1 x, S∗m

1 x).

(2.20)

For n, m = 0, 1, 2, . . ., it follows from (2.19) and (2.20) that

(S∗n(α1x + β1y), S∗m(α2x + β2y)) = α1α2(S∗nx, S∗mx) + α1β2(S∗nx, S∗my)

+ β1α2(S∗ny, S∗mx) + β1β2(S∗ny, S∗my)

= α1α2(S∗nx, S∗mx) + β1β2(S∗ny, S∗my)

= 0,

therefore, M1 ⊥ M2.
Conversely, suppose that M1 ⊥ M2. By above equation, we have

α1α2(S∗nx, S∗mx) + β1β2(S∗ny, S∗my) = 0, (2.21)

for n, m = 0, 1, 2, . . .. Let n = m = 0 in (2.21), we get α1α2 + β1β2 = 0, this yields that

(S∗nx, S∗mx) = (S∗ny, S∗my) (2.22)

for n, m = 0, 1, 2, . . .. Let V S∗n
1 x = S∗n

2 y. By (2.22),

(V S∗n
1 x, V S∗m

1 x) = (S∗n
2 y, S∗m

2 y) = (S∗nx, S∗mx),

which shows that V is isometric on a dense linear manifold {S∗nx : n = 0, 1, 2, . . .} of K1, so V can be 
extended to be an isometry from K1 to K2. From K2 = span{S∗ny : n = 0, 1, 2, . . .}, we know that V is 
surjective, hence V is unitary. It is clear that
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V S∗
1S

∗n
1 x = S∗n+1

2 y = S∗
2V S∗n

1 x, ∀n = 0, 1, 2, . . . ,

this shows that V S∗
1 = S∗

2V and therefore V S1 = S2V . We obtain that S1 is unitarily equivalent to S2 and 
this completes the proof. �
3. Some examples

Note that Az2 is an C0(2) operator, in this section, we will apply the Theorem 2.1 and Theorem 2.2 to 
restudy the reducibility of Az2 . Let u be an inner function such that u /∈ Aut(D). In [2], it is shown that 
the characteristic function of Az2 coincides with

Θ(z) = 1
2

(
d(z) ze(z)
e(z) d(z)

)
z ∈ D, (3.1)

where d(z) = u(
√
z) + u(−√

z) and

e(z) =
{

u(
√
z)−u(−√

z)√
z

, if z 
= 0,

2u′(0), if z = 0.

Let ϕ(z) = detΘ(z) = u(
√
z)u(−√

z), a(z) = 1
2d(z) and b(z) = −1

2ze(z). It is clear that a is a fixed point 
of conjugation operator C on K2

zϕ and b is a fixed point if and only if e ≡ 0. Using Theorem 2.1, we will 
study the reducibility of Az2 .

Theorem 3.1 (Theorem 1 in [2]). Az2 is reducible on K2
u if and only if either

u(z) ≡ u(−z), z ∈ D (3.2)

or there exists μ ∈ D such that

u(z) ≡ p(z) z + μ

1 + μz
, z ∈ D, (3.3)

where p ∈ H∞ satisfies

p(z) ≡ p(−z), z ∈ D. (3.4)

Proof. If Az2 is reducible, then one of the cases in the Theorem 2.1 holds.
Case 1. a = αψ and b = βψ with |α|2 + |β|2 = 1, where ψ is an inner function, then

(1) if α = 0, then u is odd;
(2) if β = 0, then u is even.

For αβ 
= 0, then βa = αb. Replacing a and b, we have

(α
√
z + β)u(

√
z) = (α

√
z − β)u(−

√
z).

Therefore |αξ + β| = |αξ − β| for almost every ξ ∈ T and hence for all ξ ∈ T . Since

|αξ + β|2 = |α|2 + |β|2 + 2Re(ξαβ)
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and

|αξ − β|2 = |α|2 + |β|2 − 2Re(ξαβ),

we obtain that

Re(ξαβ) = 0 for all ξ ∈ T .

Let α = |α|eiθα , β = |β|eiθβ and ξ = eiθξ , then

Re(ξαβ) = |αβ| cos(θα + θξ − θβ) = 0 for all ξ ∈ T .

This is a contradiction and hence α = 0 or β = 0, which means that either u is odd or u is even.
Case 2. a = αψ and b = βϕψ, this case is similar to Case 1.
Case 3. By Theorem 2.1, one of the following cases holds.

(1) α1a and α2b are fixed points of C;
(2) α1a and β1a + β2b are fixed points of C;
(3) α2b and β1a + β2b are fixed points of C.

It is clear that C(b) = αb if and only if b ≡ 0, and C(a) = a, so if (1) or (3) holds, u is even.
Suppose (2) holds, that is β1a +β2b is a fixed point of C. Since a is also a fixed point, by some calculations, 

we have

(β2z − (β1 − β1)
√
z + β2)u(

√
z) = (β2z + (β1 − β1)

√
z + β2)u(−

√
z).

The following analysis is taken from [2], however, for the reader’s convince, we put it here.
If β1 ∈ R, then C(β1a + β2b) = β1a + C(β2b), this implies C(β2b) = β2b, by above argument we have 

b ≡ 0. Then u is even. If b 
≡ 0, then Imβ1 
= 0, let x = 2Imβ1 and β2 = |β2|ξ, where |ξ| = 1. Let

n(z) = (β2z
2 − (β1 − β1)z + β2)u(z),

then n(z) = n(−z). By some calculations, we obtain

β2z
2 − (β1 − β1)z + β2 = β2(z − iξδ−)(z − iξδ+),

where

δ± = 1 ±
√

1 + ρ2

ρ
, where ρ = 2|β2|

x
.

It is clear that δ+δ− = −1 and |δ−| < 1. Let μ = iξδ− ∈ D, then z − iξδ+ = −iξδ+(1 + μz), we have

n(z) = −i|β2|δ+(z − μ)(1 + μz)u(z).

Since n(z) = n(−z), we obtain u(−μ) = 0, then

u(z) = p(z) z + μ

1 + μz
.

Using n(z) = n(−z) again, we have p(z) = p(−z). See [2] for more details.
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To show that Az2 is reducible, we only need to show that one of the conditions in Theorem 3.1 implies 
that one of the conditions in Theorem 2.1 holds.

If u satisfies (3.2), then

u(z) =
∞∑

n=0
a2nz

2n.

Let ψ(z) =
∑∞

n=0 a2nz
n, then u(z) = ψ(z2) and ψ is inner. By (3.1), a(z) = ψ(z), b(z) ≡ 0 and detΘAz2 =

ψ2, (1) in Theorem 2.1 holds.
If u satisfies (3.3), then u(z) = ψ(z2) z+μ

1+μz . By (3.1), a(z) = ψ(z) μ−μz
1−μ2z , b(z) = −ψ(z) (1−|μ|2)z

1−μ2z and 

detΘAz2 = ψ2 μ2−z
1−u2z .

If μ = 0, then (1) in Theorem 2.1 holds.
If μ 
= 0. Let ϕ = detΘAz2 , C be the conjugation on K2

zϕ defined in (1.1). It is not hard to check that a
and αa + βb are fixed points of C, where α ∈ C, Imα 
= 0 and β = (α−α)μ

1−|μ|2 . Then (2) in Theorem 2.1 holds. 
Then we finish the proof. �

Now we can determine the number of reducing subspaces of Az2 by using the Theorem 2.2. If u satisfies
(3.2), the proof in Theorem 3.1 implies that the characteristic function ΘAz2 coincides with

Θ(z) =
(
a(z) 0
0 a(z)

)
, z ∈ D.

By the Theorem 2.2, Az2 has infinitely many reducing subspaces. The same result can also be found in [10], 
where the authors used different method to show it. If u satisfies (3.3), the characteristic function ΘAz2

coincides with

Θ(z) =
(

q
1−2qαb + 1−q

1−2qαϕb 0
0 1−q

1−2qαb + q
1−2qαϕb

)
z ∈ D,

where 0 < q < 1 and q 
= 1
2 , |α| = 1, b = −1

2ze and ϕ = det(Θ) in (3.1). In this case, q
1−2qαb +

1−q
1−2qαϕb

does not coincide with 1−q
1−2qαb +

q
1−2qαϕb, so Az2 has only two reducing subspaces.

In the following, we give examples of C0(2) operator which are not unitarily equivalent to Az2 . Let E be 
a Hilbert space, the E-valued Hardy space denotes by H2(E) defined by

H2(E) = {f(z) =
∞∑

n=0
anz

n : an ∈ E , z ∈ D, ‖f‖2 =
∞∑

n=0
‖an‖2

E < ∞}.

Suppose α, β ∈ C with |α|2 + |β|2 = 1. Let

Θ(z) =
(

αz −βz

βz3 αz3

)
. (3.5)

By Lemma 2.1, Θ defined in (3.5) is a characteristic function of a C0(2) operator.

Example 3.1. Suppose Θ is defined by (3.5). Let KΘ = H2(C2) � ΘH2(C2), the compressed shift operator 
Sz on KΘ is defined by

Szf = PΘTzf, f ∈ KΘ,
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where PΘ denotes the orthogonal projection onto KΘ. Then Sz is not unitarily equivalent to Az2 on K2
u for 

any inner function u.

Proof. Since Θ is a pure contraction, the characteristic function of Sz is ΘSz
= Θ (see [11]). It has been 

shown [2] that ΘAz2 coincides with characteristic function defined in (3.1). Assume Sz is unitarily equivalent 
to Az2 , then ΘSz

and ΘAz2 coincide. Therefore, ξ detΘAz2 = detΘSz
= z4, where |ξ| = 1. By calculation, 

we see that detΘAz2 = u(
√
z)u(−√

z) = ξz4, which implies that u(z) = ξ
1/2

z4. In this case, by (3.1), ΘAz2

coincides with

Θ1(z) =
(
z2 0
0 z2

)
. (3.6)

It is also not hard to see that Θ1 and Θ don’t coincide. This is a contradiction and we complete the proof. �
By Theorem 2.1, Sz in Example 3.1 is reducible, and it follows from Theorem 2.2 that Sz has only two 

reducing subspaces. The following example gives a C0(2) operator with infinitely many reducing subspaces.

Example 3.2. For a ∈ D and a 
= 0, let ϕa(z) = a−z
1−az and u = (ϕa)2, then by Theorem 3.1, Az2 is irreducible 

on K2
u and detΘAz2 = (ϕa2)2. Let

Θ(z) =
(
ϕa2(z) 0

0 ϕa2(z)

)
, z ∈ D. (3.7)

Using Θ in (3.7) to replace the characteristic function in Example 3.1, by Theorem 2.1, Sz is reducible, 
and we also see that Sz has infinitely many reducing subspaces by Theorem 2.2. Similar argument as in 
Example 3.1 shows that Sz is not unitarily equivalent to Az2 for any inner function u.

The following example gives an irreducible C0(2) operator.

Example 3.3. Let ϕ(z) = z2, a = 1
2 + 1

2z and b = −1
2 + 1

2z. It is easy to check that |a|2 + |b|2 = 1 a.e. on T . 
Let C denote the conjugation on K2

zϕ defined in (1.1), then we have C(a) = 1
2z

2+ 1
2z and C(b) = −1

2z
2+ 1

2z. 
Let

Θ(z) =
(

a −b

ϕb ϕa

)
. (3.8)

Using Θ in (3.8) replace the characteristic function in Example 3.1. It is easy to check that none of conditions 
in Theorem 2.1 holds, then Sz is irreducible. Since detΘ = ϕ = z2, similar argument in Example 3.1 shows 
that u = z2. By Theorem 3.1, Az2 is reducible on K2

u, thus Sz is not unitarily equivalent to Az2 for any 
inner function u.
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