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1. Introduction

This paper concerns Navier-Stokes equations, which describes the time evolution of an incompressible
fluid. Mathematically or statistically, such physical laws should incorporate with noise influences, due to
the lack of knowledge of certain physical parameters as well as bias or incomplete measurements arising in
experiments or modeling. Fix any T' > 0 and let (22, F, P, {F; }+c[0,7]) be a stochastic basis. Without loss of
generality, here the filtration {F;}/c[o,7) is assumed to be complete and W (t) is {F; }+jo,7)-Wiener process.
We use E to denote the expectation with respect to P. Let T3 C R3 be the three dimensional torus with the
periodic length to be 1. The Cauchy problem of the three dimensional stochastic Navier-Stokes equations
driven by Gaussian random noise can be written as

du — vAudt + (u - V)udt + Vpdt = o(t,u(t))dW (t), in T3 x (0,T]
div u(t,z) = 0, in T3 x (0, 7]
u(0) = up,
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where u(t,z) = (ul(t,x),u?(t,x),u3(t,x)) represents the velocity field, v is the viscosity constant, p(t,x)
denotes the pressure. ¢ is a measurable function, which will be specified in subsection 2.2.

As we all know, the stochastic 2D Navier-Stokes equation has been studied extensively in the literature,
however, there exist serious obstacles in dealing with the stochastic 3D Navier-Stokes equations. Up to now,
the existence of martingale solutions and stationary solutions of the stochastic 3D Navier-Stokes equation
was proved by Flandoli and Gatarek [7] and Mikulevicius and Rozovskii [13] under more general conditions.
However, the uniqueness still remains open. Later, a new model called stochastic 3D tamed Navier-Stokes
equations was proposed by Rockner and Zhang in [18], which is given by

du — vAudt + (u - V)udt + Vpdt + gy (Ju(t)|?)u(t)dt = o(t, u(t))dW (t),
div u(t,z) =0, >0, (1.1)
u(0) = o,

where g is a smooth function from R™ to R, whose precise definition is given by (2.3). As stated in [18], the
motivation to study (1.1) comes from the deterministic case. The important observation is that the strong
solution of 3D Navier-Stokes equation coincides with the strong solution of (1.1) for large enough N. There
are several results on the stochastic 3D tamed Navier-Stokes equations driven by Gaussian random noise.
We mention two of them. In [18], the authors established the existence of a unique strong solution (strong in
the probabilistic sense and weak in the PDE sense) to equation (1.1) indirectly by employing the Yamada-
Watanabe Theorem, i.e., proving the existence of martingale solutions and pathwise uniqueness. Then, they
also studied the Feller property and invariant measures for the corresponding semigroup generated by the
strong solution. Using a direct approach, Réckner and Zhang [15] established the existence and uniqueness
of strong solutions to (1.1). Moreover, they proved small time large deviation principles for the stochastic
3D tamed Navier-Stokes equations. For more information on this model, we refer the reader to [16,17] and
the references therein.

In recent years, introducing a jump-type noises such as Lévy-type or Poisson-type perturbations has
become extremely popular for modeling natural phenomena, because these noises are good choice to re-
produce the performance of some natural phenomena in real world models, such as some large moves and
unpredictable events. There is a large amount of literature on the existence and uniqueness of solutions to
stochastic partial differential equations (SPDEs) driven by jump-type noises. For example, Brzezniak et al.
[3] studied the existence and uniqueness of the solution to an abstract nonlinear equation driven by multi-
plicative Lévy noise. Their results can cover some types of SPDEs,; such as the stochastic 2D Navier-Stokes
Equations, the 2D stochastic Magneto-Hydrodynamic Equations, the 2D stochastic Boussinesq Model for
the Bénard Convection, the 2D stochastic Magnetic Bénard Problem and several stochastic Shell Models
of turbulence (the readers can refer to [4]). However, there are still a plenty of important models that do
not satisfy the conditions required by [3]. Recently, S. Shang et al. [21] considered a stochastic model of
incompressible non-Newtonian fluids of second grade on a bounded domain of R? driven by Lévy noise.
Applying the variational approach, the authors established the global existence and uniqueness of strong
probabilistic solution. As far as we know, there are no results on the stochastic 3D tamed Navier-Stokes
equations driven by multiplicative Lévy noise, which can be written as

du — vAudt + (u - V)udt + Vpdt + gn (Jul?(¢ = [, o(t—, u(t—), z)7(dt, dz),
div u(t,x) =0, >0, (1.2)
u(0) = ug € H',

where 7 is the compensated time homogeneous Poisson random measure on a certain locally compact Polish
space (Z,B(Z)). On the other hand, the large deviation principle for stochastic partial differential equations
(SPDE) driven by Lévy noise attracts a lot of interests from mathematical community. Rockner and Zhang
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[14] established large deviations for SPDEs driven by an additive jump noise. The case of multiplicative
Lévy noise was studied by Swiech and Zabczyk [20] and Budhiraja, Chen and Dupuis [5] where the large
deviation was obtained on a larger space (hence, with a weaker topology) than the actual state space of
the solution. Yang, Zhai and Zhang [23] obtained the large deviation principles on the actual state space of
stochastic evolution equations with regular coefficients driven by multiplicative Lévy noise. Later, Zhai and
Zhang [24] proved the large deviations for 2D stochastic Navier-Stokes equations driven by multiplicative
Lévy noises on the space D([0,T]; H), the space of H-valued right continuous functions with left limits on
[0,T].

The purpose of this paper is two-fold. The first part is to show the existence and uniqueness of strong
solution to (1.2) based on Galerkin’s approximation and a kind of local monotonicity of the coefficients.
Concretely, we prove the result via three steps: we firstly make some non-trivial a priori estimates of the
Galerkin’s approximation, then we show that the limit of those approximate solutions solves the original
equation by applying the monotonicity arguments, finally we prove the uniqueness of solutions. The sec-
ond part is to prove the small perturbation large deviation principle (LDP) for the stochastic 3D tamed
Navier-Stokes equations driven by multiplicative Lévy noise on the space D([0,T]; H'), which provides the
exponential decay of small probabilities associated with the corresponding stochastic dynamical systems
with small noise. The proof of the large deviations will be based on the weak convergence approach initiated
by Budhiraja, Chen and Dupuis [5] and Budhiraja, Dupuis and Maroulas [6]. As an important part of the
proof, we need to obtain global well-posedness of the so-called skeleton equation by using similar method
as the first part. To complete the proof of the large deviation principle, we also need to show the weak
convergence of the perturbations of the system (1.2) to the skeleton equation. During the proof process, we
firstly need to establish the tightness of the solutions of the perturbations of the system (1.2) in a larger
space, then with the aid of the Skorokhod representation theorem we obtain the weak convergence actually
takes place in the space D([0, T]; H1).

Our paper is organized as follows. The mathematical formulation of stochastic 3D tamed Navier-Stokes
equations and some useful nonlinear term estimates are presented in Section 2. In Section 3, we prove the
existence and uniqueness of strong solution to the stochastic 3D tamed Navier-Stokes equations. The weak
convergence method and the statement of the main result are introduced in Section 4. Then the skeleton
equation is studied in Section 5. At last, the large deviation principle is proved in Section 6.

Throughout this paper, C' is a positive constant whose value may be different from line to line.

2. Formulations

Let u(t,x) = (u'(t,2),u?(t,z),u(t,z)) be a vector function on T?3. The following notations will be used:
lul> = 25’:1 |ut|?, div u = Z?Zl Ou® and (u-V)u = Z§=1 u';u. Throughout the paper, gy(-) will denote
a fixed smooth function from R* to R™ such that for some N > 0,

gn(r) =0, if r <N,
gn(r) ==K ifr>N+1, (2.3)
0<gh(r)y<cC, ifr>a0.

Without loss of generality, we assume the viscosity coefficient v = 1.
2.1. Functional spaces
Let L(K7; K3) (resp. Lo(K7; K2)) be the space of bounded (resp. Hilbert-Schmidt) linear operators from

the Hilbert space K to Ka, whose norm is denoted by || - || z(x,;x.) (|| - |2, (x1;k5))- For a topological space
&, denote the corresponding Borel o-field by B(E). For a metric space X, C([0, T]; X) stands for the space of
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continuous functions from [0, 7] into X and D([0, T]; X) represents the space of right continuous functions
with left limits from [0,7] into X. For a metric space Y, denote by M(Y), Cp(Y) the space of real valued
bounded Y /R-measurable maps and real valued bounded continuous functions, respectively.

Let C°(T3) = C*°(T?;R3) denote the set of all smooth periodic functions from R3 to R3. For p > 1,
LP(T3) = LP(T3;R3) stands for the vector-valued LP space in which the norm is denoted by || - ||z». For a
non-negative integer m > 0, let H™ be the usual Sobolev space on T? with values in R3, i.e., the closure of
C*>°(T?) with respect to the norm:

3 = / (I — A) R ulde,
TS
where

m m
2 2

(I—A)%u:= ((I S AL (T - A) Bl (1 — A)%ui”),

is defined by Fourier transformation.
For m € Ny, set

H™ :={ue H™ : div u = 0}.

Then the norm of H™ restricted to H™ will be denoted by || - ||g=. In particular, H is a closed linear
subspace of the Hilbert space L?(T3) = H. Let P be the orthogonal projection from L2(T3) to HC. It
is well-known that P commutes with the derivative operators and that P can be restricted to a bounded
linear operator from H™ to H™ (see [11]). For any u € H" and v € L*(T?), we have

(u, v)go := (u, Pv)go = (u,v) 2.
Moreover, for u € H® and v € H?, the inner product (u,v)g: is taken in the generalized sense, i.e.,
(u,v)m = {u, (I — A)v)go.
For any u € H2 N H!, define
Au := —PAu. (2.4)
It is well-known that the Stokes operator A is a positive self-adjoint operator in H® with a compact resolvent.
Let {e;}3°; C H? be an orthonormal basis of H® composed of eigenfunctions of A with corresponding

eigenvalues 0 < A\; < Ay < - -+ — oo satisfies Ae; = A\;e;. We will use fractional powers of the operator A,
denoted by A%, as well as their domains D(A?%) for o € R. Note that

o (o)
D(A%) = {u = Zul ey Z}\?auf < oo}.
i=1 i=1
We may endow D(A®) with the inner product
(u,v) p(aey = (A%u, A%v)go  for u,v € D(A%).

Hence, (D(A®), (+,-)p(a~)) is a Hilbert space and {\; “e;};en is a complete orthonormal system of D(A®).
By Riesz representative theorem, D(A~?%) is the dual space of D(A%).
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For any u,v € H!, set
B(u,v) := P((u- V)v).
If u = v, we write B(u) = B(u,u). By the incompressible condition, it gives that (B(u,v),v)go = 0.

Assuming that, as a spatial function, o is itself divergence free and letting the operator P act on both
sides of (1.2), we get

du + Audt + B(u)dt + Pgn (Jul?(t = [, o(t—, u(t—), 2)7(dt, dz),
div u(t,z) =0, t>0, (2.5)
u(0) = uy € H.

2.2. Poisson random measure and Hypotheses

Let (Z,B(Z)) be a locally compact Polish space and let ¢ be a o-finite positive measure on it. Suppose
(Q, F, F,P) is a filtered probability space with expectation E. Let C.(Z) be the space of continuous
functions with compact supports. Denote

Mpc(Z) = {measure Y on (Z,B(Z)) such that 9(K) < oo for every compact K in Z}.

Endow M Fc( ) with the weakest topology such that for every f € C.(Z), the function ¢ — (f,d) =
Iz f( ), € Mpc(Z) is continuous. This topology can be metrized such that Mpc(Z) is a Polish
space (see [()]) Let T > 0, set Zr = [0,T] x Z. Fix a measure ¥ € Mpc(Z) and let Y1 = Apr @ ¥, where Ap
is Lebesgue measure on [0, T]. We recall the definition of Poisson random measure from [9] that

Definition 2.1. We call measure 7 a Poisson random measure on Zr with intensity measure 97 is a M pc(Z)-
valued random variable such that

(1) for each B € B(Zr) with 97(B) < oo, n(B) is a Poisson distribution with mean dr(B),
(2) for disjoint By, - -, By € B(Zr), n(B1), - - -,n(By) are mutually independent random variables.

We will denote by 77 = n — 97 the compensated time homogeneous Poisson random measure associated

to n. Assume (H, |-|g) is a Hilbert space. Let L?(2x [0, T); L?(Z,9; H)) be the space of predictable process
X :RT x Z x Q — H satisfying

T
E//\X(r,z)\QHﬂ(dz)dr<oo, T > 0.
0z

Then, it follows from [3] that for every X € L*(Q x [0,T]; L*(Z,9; H)),

E’//X r, 2)ii(dr, dz)’H :E/t/|X(r,z)|§,z9(dz)dr, t>0. (2.6)

0z

To obtain the global well-posedness of (2.5), we need the following hypotheses.

Hypothesis HO Let o be a predictable mapping from [0,7] x H* x Z — H?! (resp. [0,T] x H® x Z — H").
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(A) There exists a positive constant K; such that

/\|a(t,u,z)||%ﬂoﬂ(dz) < Ki(1+ |lulfe), ueHO, te0,T]. (2.7)
Z

And there exists a positive constant K5 such that

/||a(t,u1,z) — ot up, 2) |2 9(d2) < Kollus — uslfZo,  w1,us € HO, ¢ € [0,T]. (2.8)
Z

(B) There exists a positive constant L; such that

/||a(t,u,z)||]2HIu9(dz) < Li(1+ [ullp), weH!, telo,T] (2.9)
Z

There exists a positive constant Lo such that

/Ila(t,uvz)llﬁuﬂ‘/’(dZ) < Lo(1+ |lullfp), weH', tel0,T]. (2.10)
Z

And there exists a positive constant L3 such that

/||a(t,u1,z) — o (t,ug, 2) || 9(d2) < La|luy — usllfp, wi,us € HY, ¢ €[0,T7]. (2.11)
VA

Now, we introduce the definition of a strong solution to (2.5).

Definition 2.2. The system (2.5) has a strong solution if for every stochastic basis (2, F, P, {F;}+>0) and a
time homogeneous Poisson random measure 7 on (Z, B(Z)) over the stochastic basis with intensity measure
J, there exists a progressively measurable process u : [0, 7] x Q — H! with P-a.s.

u(-,w) € D([0,T]; HY) N L*([0, T]; H?) (2.12)
such that
u(t) = ug */AU(S)dS*/B(u(S))dS*/'PgN(|U|2)udS+//O’(S*,U(S*),Z)ﬁ(ds,d}z), (2.13)
0 0 0 0 7

holds in HO for all ¢t > 0, P-a.s.
2.8. Some inequalities and Ité formula
Let
F(u) := —Au — B(u) — P(gn (|ul*)u).

In order to prove the global well-posedness of (2.5), we need the following a priori estimates of nonlinear
terms. Referring to Lemma 2.3 in [18] and the proof of Theorem 3.1 and Lemma 5.3 in [15], it gives that
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Lemma 2.1.

(1) For u € H?,

1 1
(F(u), vy < —§HU||%12 - §|||U| AVulllZz + OnlIVullipe + [|ullfo- (2.14)
(2) For uy,uy € H2, it follows that
—(A(ur — u2),uy — ug)go = —|lur — uz|lf + llur — uz|lfpo,
1
—(B(u1,u1) — B(ug,uz),us — uz)mo < §||U1 — u|lfp + Clluz|[m [|uellm2 (|ur — uallfo,
—(gn (luaP)ur — g (Jual*)uz, ur — u2)mo < Cllug||ms [Juz|[m2 lur — uz||fpo-
Hence, we have
1

(F(u) = F(ug),w = ug)mo < =5 flur = uallfg + Co(lluallim luzllmz + Dllwr = ualfgo. (2.15)

We emphasize that the constant Cy > 1, as it plays a key role in the proof of Theorem 3.1.
3) For uy,uy € H?, it gives that

(F(u1) = F(ug),ur — uz)m

1
< = lun = wsllfre + COU+ [luallfn + fluzllie: + lusllf) lur = wallfy- (2.16)
The main tool in the present paper is the It formula, whose proof can be found in [3].

Lemma 2.2. Assume that E is a Hilbert space with norm || - |g. Let X be a process given by

Xy = Xo+ a(s)ds + f(S’ Z)ﬁ(dsvdz)a t>0,
[rom]]

where a is an E-valued progressively measurable process on the space (RT x Q, B(R') x F) such that for all
t>0, fg la(s,w)||gds < 0o, P-a.s. and f is a predictable process on E with E fg J7 11 (s, 2)[|59(dz)ds < oo,
for each t > 0. Denote by G a separable Hilbert space. Let ¢ : E — G be a function of class C' such that
the first derivative ¢' : E — L(E;G) is (p — 1)-Holder continuous for some p > 1. Then for every t > 0, we
have P-a.s.

B(X,) = B(Xo) + / ¢/ (Xa)(a(s))ds + / / (6 (X ) f (5. 2)il(ds. dz)
0 0 Z

+ / Z/ (B(Xue + F(5,2)) — D(Xas) — &/ (Xus) (s, 2)ln(ds, d2).

3. Existence and uniqueness

In this part, we aim to prove the following result.
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Theorem 3.1. Assume Hypothesis HO holds and the initial value ug € L*(, Fo; H'). Then there exists a
unique strong solution of (2.5) in the sense of Definition 2.2. Moreover, there exists a positive constant C
such that

T
B( sup Ju(t)l + [ lult)lfmdt) < O+ Eluol). (317)
0<t<T
0
Motivated by [15], the proof process of Theorem 3.1 is based on Galerkin’s approximation and a kind of
local monotonicity of the 3D tamed Navier-Stokes equation.

Proof. Step 1: Assume ug € L5(€2, Fo; H').

Recall {e;}5°; C H? be an orthonormal basis in H® composed of eigenvectors of A such that span{e;,i > 1}
is dense in H'. Moreover, it is easy to see that {e;}$°; is also orthogonal in H'. Denote by II,, the orthogonal
projection from H onto the finite dimensional space H,, := span{e1,ea, - - -, € }:

n

II,v:= Z(v, €;)HOE;-

i=1

Then II, is also the orthogonal projection from H® onto H,. Now, consider the following finite dimensional
stochastic differential equation in H,,

{ dun (t) = [TL, F (un (0)]dt + [7 on(t—, un(t=), 2)i(dt, dz), (3.18)

Up, (0) - Hnan

where o, := II,,0. Taking into account (2.7) and (2.8), we know that o,, is globally Lipschitz. Moreover, for
u € H,,, we deduce that

(T, F (), uygo < Cn||ullfo,
and
T, F(u) — T, F(v) o < Onllu — o[,

which implies that F,,(u) := I, F(u) is of linear growth and locally Lipschitz in H°. Based on the above
and (2.8), it follows from [1] that (3.18) admits a unique cadlag local strong solution u,, in H,,. Then, by
the skew symmetry of the nonlinear term B, the local solution can be extended to any time interval [0, 77,
T>0.

In the following, we aim to prove

T
swE(mmH%@ﬁw+/WMﬂ%MQSCO+EMﬂ%% (3.19)
n te[0,T] 0
T
supE( sup Jun(t)llgn + | llun(®)lgn lun(®)llf=dt ) < C(1L+ Elluollfp). (3.20)
n t€[0,T]
’ 0

Applying Ité formula (Lemma 2.2) to the function p(z) = |z]? and by p(z + y) — ¢(z) — (y, Vo(z)) =
©(y) = |y|?, we deduce that for 0 <t < T,
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t

an (1) 3 = [Ty 2+ 2 /<u<> (1 (5)) e s + 2 / / (5=, On(5— tn (5-), 2)) (ds, d)

0

—, U S— ), Z 21 S Z).
+O/Z/||an<s un(5-), %) [Bun(ds, dz)

Define a stopping time
T = inf{t € [0,T) : ||un(t)||}: > R}.

With the aid of (2.14), we deduce that

t/\Tg t/\Tg
sup  [lun(s) 2 + / () 2ol + / etn] - [Vean |2
0<s<tATRH
0 0
t/\‘r;%
< | MyuolE: + 20y / ln()[Znds +2  sup / / (=), 07—t (), 2)) i, dz)
0<s<tATRH

sup / / 0 (7=t (), 2) 2 dr, d).

0<s<t/\7’R

Applying the Burkholder-Davis-Gundy inequality (see [8]), (2.9), the Holder inequality and the Young
inequality, we get

sup // Up (r=), on(r—, u,(r—), 2))m 7(dr, dz)’
0<s<t/\r§

t/\TR

<CE[ [ [ lun)lfllon(ssun(s),2) o 0(dz)ds]
0 Z

1
2

tATER
1 1
<CE _sw Jun@l] [LE [ 0+ fun)l)ds])
0<s<tATRH
0
t/\TR
1
<-E sup ||un(8)|\]2Hp+CL1]E/ (1 + [Jun(s)||Fp )ds
2 o<s<trrn
0
t
1
< B sup Jun()|2 + CIiT + CLiE / sup [lun () [ 3sds.

2 0<s<tATRH 0<r<sATpH

Taking into account that the process

- / / (5= 4 (5-), 2) B (ds, d2)
0 Z

has only positive jumps and by (2.9), we deduce that
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0<s<tATRH

E sup / / o (7=t (=), 2) B m(dr d2)
0 Z
0 Z

tATR

< LiE / (1 + [fun(5) |20 s
0
t

< LT+ L / E sup fun(r)|ds.
) 0<r<sATpH

Collecting the above estimates, we arrive at

t/\r;
E sup [un(s)|dn +E / it (5) 2ol
0<s<tATH A

t
0

0<r<sATpR

By Gronwall inequality, it gives that

tATg
E sup Jun(s) +E / () |22l
0<s<tATRH A

< (JE||HnuO||H2{1 L OLIT + L1T) exp {(2CN L COL + Ll)T}

< C+Elluolfp),

where the positive constant C' = C'(Cn, L1,T) independent of n.

Since the process u,(t), t € [0,T] is adapted and cadlag, we see that limg_,o P{75 < T} = 0. Based on
the Fatou’s lemma, we conclude that (3.19) holds.

Applying the finite dimensional It6 formula to the function |lu, (¢)||%., it yields

[t ()| 321
= |[Tuo| +6/||un(8)Hﬁ4ﬂ1<un(8),Fn(un(8))>HldS
0

+6 / / et () s {2t (), (5t (5 ), 2) (s, d2)
Z

0
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/ / i (5) + a5t (5).2) s = un(5-)

—6]lun (5=) [z (un (), on (5=, un(s=), 2))m: )n(ds, dz)

= [Mnuollfg: + In(t) + I3 (t) + I3 (t). (3.21)
By (2.14), we deduce that
EATR tATR
B oswp 1) <=3 [ [un(llun(s)lds =3 [ fun(s) o lun(9)] - [Vua (5]
0<s<tATR

0 0

tATR
+Cn / |2 (3) |8 ds.

0

Applying the Burkholder-Davis-Gundy inequality, (2.9), the Holder inequality and the Young inequality, it
follows that

tATR L
Bl sup 2] <6CE[ [ [ lun(s) ol )l (s, ua(s), 2 )]
0<s<tATp L
0 Z
tATE )
< 6CE /||u,, 0 La(1+ flun () [ s
0
i tATE N
<6CE[ sup [fun(s)lli: Ll/ (1 + i (3) [ )ds) |
F0<Ss<EATR 0

t/\TR

<lE s Jun(s)|& + CL+ CLiE /"HuAsm%uk.
2 o<s<tarn J

—_

By the Taylor formula, we have
o B[22 — 2?7 — 2p[a P, )| < G (P DA+ ), (3.22)

where C,, is a finite positive constant.
With the help of (3.22), (2.9) and (2.10), we deduce that

E [ sup I,?;(s)]

0<s<tATRH

tATR

<E / / (5= + (5= tn (5=, 21 = (=)

~6[un (s (un (), o (5= un (5=), 2)) e 0 (ds, dz)

<CiE [ [ (lun e 5 n(5). 2o+ (5. (5),2) o ) () ds
0 z
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tATR

< Cy(Ly + Lo)E / (1 -+ [lun ()15 )ds
0
t

< C3(Ly + L)T + C3(Ly + Lg)E/ sup ||un(7")||]%pds.

0<r<sATpR

By (3.21), it follows that

tATE tATR
E sup [un(s)|fn + 6E / [ (5) 12 |4 (5) || y= ds + 6 / [ () lgg2 [[[en ()] - [Ven (s)][|72ds
0<s<tATE 0 0

S E”HnuOH%Il + OL1 + C3(L1 + LQ)T + (CN + CL1 + Cng + 03[/2 / sup |Un(7")||]16.]11d8

J  0sr<sArh
Using the Gronwall inequality, we get
tATR
E sup lun(s)|fn +E / [ (5) [ 112 () g2 ds
0<s<tATR: J

< C(1 + E|Mauolifp),

where C' = C(Cw, L1, Lo, T) independent of n. Recall 7t 1 T as R — oo, P-a.s. and P{7} < T} = 0. By
Fatou’s lemma, it implies (3.20).
Based on (3.19)-(3.20) and referring to (3.14) in [15], we have

T

sup | E[|F (un (1) el
0

< Cop / E(un(®)lfe + s (1) et

0

< CTsupE sup |Ju,(t)||$: + C’supIE/ |t (1) |32 dt < 0. (3.23)
n te[0,T] n

Moreover, utilizing (2.9), it follows that

T
supE/
0

o (¢, un (£), 2) | fr 9 (dz)dt

o\“\] N\

< LisupE [ (14 [Jun (t) ][ )dt
n
< LT+ LiTsupE sup |, (t)||f < oo. (3.24)
n t€[0,T]

With the aid of (3.19)-(3.20) and (3.23)-(3.24), we deduce that there exist a sequence of processes still
denoted by {u,;n > 1} and elements
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u € L%
Ge L

Q x [0,T]; H?) N L (Q; L ([0, T]; HY)),
Qx[0,T;H"), SeL*(Qx[0,T);L*(Z,9;H")),
such that

(1) up — U weakly in L?(Q x [0, T]; H?), hence weakly in L?(Q x [0,T]; H') and L2(2 x [0, 7T]; H?),
(ii) up — 4 in L2(2; L>°([0,T); H')) with respect to the weak star topology,

(iii) F,(un) = G weakly in L*(Q x [0,7]; H?),

(iv) on(t,un(t),2) — S weakly in L?(Q x [0,T); L?(Z,9; H')),

(v) up — 4 weakly in L(Q x [0,7]; H').

In the following, we devote to proving that there exists a solution to (2.5). Define a process
t
u0+/G d8+//58 2)ii(ds,dz), t€[0,T] in HO.
0

We can show that u = u dt ® P-a.s. Indeed, let us fix a function ¢ € L?(Q x [0, T];R), by (i)-(iv), it yields
that

T T
]E/ t)e;)modt = nh_)n;(}E/(un(t),w(t)eQHodt
0 0
T T
= i B [ 0) eledmodt + tim E [ [ (5 (0a(5). o0 sodsi
0 00
T ¢
+ lim ]E/(//Jn(sf,un(sf),z)ﬁ(ds,dz),cp(t)eQHodt
R
T T T
= nll)n;OE un (0 /(p dt+nh_}n;o]E/(Fn(un(s)),/gp(t)dtei>Hods
0 0 s

+ lim E / < / / O (5= tn(5-), 2)7i(ds, dz), (E)eq)odt

T

T
= E(uo, €;)m /go dt—l—IE/ /go (t)dte;)pods
0

S

+EZ(ZZ/SSZ (ds,dz), (t)e;ymodt

T
E/ t)e;ygodt.
0

Hence, we have u = @ dt ® P-a.s. and u € L*(Q x [0,7T]; H?). Moreover, referring to Theorem A.1 in [3], it
gives that u is an H%valued cadlag and F;-adapted process, and for any ¢ € [0, 7], the following formula
holds P-a.s.
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lu(®)lfZzo = Iluo 3o +2 / (G(s), u(s))gods + 2 / / S(s, 2))poi(ds, d)
+ [ [ 18t 2lfontas, a2, (3.25)
0 Z

Referring to [3], in order to prove that u is a solution of (2.5), it suffices to show

G(s,w) = F(u(s,w)), for dP @ dt — a.a.(s,w) € [0,T] x Q, (3.26)

S(s,w, z) =o(s,w,u(s,w),z), fordP @dtxd—aa(s,w,z)e€[0,T]xQxZ. (3.27)

In the following part, we devote to proving (3.26)-(3.27) one by one. The proof is mainly based on the
Minty-Browder monotonicity argument observed by Menaldi, Sritharan and Sundar ([12,19]).

Let v be a progressively measurable process belonging to L2(2 x [0,T]; H?) N L5(; L*°([0, T]; H')).
Applying the It6 formula, we have

t
e P (1) = Ml — [ = A9 (5), ) () s
0
t
+2 / e~ J5 PRI (4 (6 B (un(5)) gz ds
0
t

+2//e_fosp(”(r)’r)””’(un(s),Un(s—,un(s—),z)}Hoﬁ(ds,dz)

0 Z

n / / e~ 5 PN 5 (5 (s5—), 2) o (ds, dz).

0

Taking expectation on both sides of the above equation and using identity |z|? = 2(z,y) — |y|* + |z — y/|?,
we get

E[e~Jo P48 |y, (£) | 200] — E | Tno]|30

=K [ — /e—.ﬁf P (r).r)dr (), 5) (2<’un(8),’l}(8)>H0 — ”'U(S)H]%Io)ds}
0

+2E | / e I 2D (B (u () = Fa(0(5)), v(s)hmo + (Fo(0(5)), un(5))s0 ) ds]

0

E[O//e_ Jo p(v(r)r)dr <2<0n(s,un(s),z),an(v(s),z»Ho — Hon(s,v(s),z)H?HIO)ﬁ(dz)ds}

t
AE[ = [ B0 p(u(5), ) un(5) = () frods
0
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t
+9E [ / e~ Js PO 04 () — Fr(0(s)), un(s) — v(s>>Hods]

0
t
—HE[//e_fOS p(”(r)’r)drﬂan(s,un(s),z) —an(s,v(s),z)||ﬂ2{ol9(dz)ds}.
0 Z

Set p(v(s), s) = 2Co(||v(s)|lm: [|v(s)|lmz + 1) + K2, where Cj is in (2.15) and K> is appeared in (2.8). Then,
we deduce from (2.8) and (2.15) that

t

B[ [ e IO o o), 5)un(s) — o) aods]
0
t

IR [ / e~ Jo PN B (4 (8)) — F(0(s)), un(s) — U(5)>Hods}

0
t
JrIE[//e* Is p(”(r)’r)drnan(s,un(s), z) — on(s,v(s), z)||%1019(dz)ds} <0.
0 Z
Thus,
Ele™Jo P09y, (1) | F0] — BT o

< E{_ e~ J5 P ))dr 5 () ) (2<un(8),v(8)>H0 - IIv(S)Ilﬁo)dS]

o— .

By the weak convergence (i), we have

t

A0 2 E[ - / e I I (0 (), 5) (2(u(s), v(s) o — [[0(s) o) ds ). (3.28)
0

Using the weak convergence (iii), we deduce that
¢ ¢
2E/e‘f0§ PO (B (1, (s)), v(s))gods — QIEl/e_fff POMIAT(GQ(s), v(s) ) ods. (3.29)
0 0

The Lebesgue dominated convergence theorem also yields

t t
oR / =I5 PV 2 (45(8)). 0(s))mods — 2 / =I5 PV py(e)) v(s))mods. (3.30)
0 0
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Using the Cauchy-Schwarz inequality, it follows that
2E [ e Jo PO (F, (u(s)), un(s))mo — (F(u(s)), u(s))mo)ds

=2E [ ¢ lo PN ((F, (u(s) = F(u(s)), un(s))mo + (F(0(s)), un(s) — a(s))mo)ds

/
/

t t
<2(E / e Ji PN (0(s)) = F(0(5)) [fyods) ” (E / e I8 PO (5) o)
0 0

+2E/e‘f§ PN (B (0(s)), un(s) — (s)) o) ds
0

-

t t

1 1

< Q[SUP (E/e_f; p(”(’")”)drHun(s)||]%Iod8> 2} (E/e_ I P(v(r),r)drHFn(U(S)) _ F(U(S))anqods) :
" 0 0

t
+2E/6_-[5 PO (B (1(s)), tn (s) — a(s))gods.
0

By using (3.19), the Lebesgue dominated convergence theorem and the weak convergence (i), it gives that

QIE/e_-fOS p(”(r)”')dr<<Fn(v(s)),un(s)>Ho - <F(v(s)),ﬂ(s)>Ho)d8 —0, as n— oo. (3.31)
0

Combining (3.29)-(3.31), we have

Jo(t) = 2E / e S5 P 0D ((G(s) — F(u(s)), v(s))mo + (F(0(s)),@ls))eo )ds, as n — oo, (3.32)
0

For the estimates of J3(t), we adopt the method from [3]. By using the Holder inequality, we get

t

E[O/Z/e—fos p(v(r),r)dr (2<0n(s,un(s),z),on(s,v(s),z))Ho — HJn(S,U(S),Z)|\]2mo>19(dz)ds}

=28 [ [ D o (5 0n(5).2), 05 0(5). )0 ()
Z

0

+2E //67 Js p(”(r)’r)dr(an(s,un(s)7 2), (on(s,v(s),2) — o(s,v(s), 2)))mov(dz)ds
0 7

t

‘E/ / e~ 5 PN (5, 0(s), 2) 3o (d2)ds
Z

0



Z. Dong, R. Zhang / J. Math. Anal. Appl. 492 (2020) 124404 17

< 9E / / e I PO (G (5, (s), 2), 0 (s, 0(s), 2)) w0 D(d2)ds

W=

+20(E//||an s,/ J(s,v(s),z)||Hm9(dz)ds)

0

t
‘E/ / e~ I3 P o (5 (s, 2) || B 9(d2)ds,
0 Z
where

t
Cimsup(E [ [ €2 rI g, (5,0, (5), ) o0 (d2)ds)

IN

¢
vV K supIE(/ ||un(s)||%10ds) :

< VETsupE sup |jun(t )0 < oo
n t€[0,T]

Then applying the weak convergence (iv) and the Lebesgue dominated convergence theorem, we deduce

that as n — oo,
t
L 9E / / e I 2D ((5(5,2), 0(s,0(s), 2) o — llo(s, v(s), 2) o ) V(dz)ds.  (3.33)
0 Z

Combining (3.28), (3.32) and (3.33), we conclude that

lim inf [Efe™ 5 70009 i, () 0] — E|Thyuo o |

n—oo

B[~ [ e pu(s), 5)(2(a(s), v(s) o — [0(s) o]

I D0 ((G(s) = P(u(s)), v(s)mo + (F(o(s)), a(5)mo ) ds

O —

12 / / e 15 P04 (55, 2), 0 (s, 0(s), 2o — ll7(s, 0(s), 2) [ ) (d2)ds.

0

Recall that u, (t) = u(t) weakly in L?(Q; HY) and by E|/IL,uo|/Z0 < Elluo||30, we have
Ele™ 0 £  u(8) o] — E uo [0 < Timinf [Ee™ 5 o029, (1) [0 — El|Tyuollfo |-
n—oo

Hence, it follows that
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Ele™ Jo P985y (1) 210] — Eluo|| o

SE| = [ B0 p(s), 5)(2((s), v(s) e — [lo(s) o) ds]

+2E

0
[ A ((G(s) = F(u(s), oo + (F(0(). 5o )ds

0
t
42k [ [ renn((S(s,2),0(5,0(6), 2o — o(s,o(s), f)0ldds. (33)
0z
Recall ||Ju(t)||?o defined by (3.25), by applying It6 formula to the process ||u(t)|| De_fot P(v(s)9)ds e get
H H

t
e~ o P54y (1|20 = [lug |30 — / e~ o P p (0 (s), 5) [[u(s)|[Frods
0
i
+2 / e~ Jo Pv AT (4 (5), G(s))modss
0
t
+2//6if;p<v<T>f>dr<u(s—)’S(S’Z»H‘“ﬁ(ds’dz)
0 z

t
+/ / e~ I3 PO § (s, 2) o (ds, d). (3.35)
Z

0

Taking expectation of both sides of the above equation (3.35), we obtain

Ee™Jo P985y (1] 20 — B Juo| 3o

t
_ E / =I5 PO (45 8) uls) | B ds
0

t
+2E / e I PN (), G(s))pods
0

t
+E / / e~ Jo PN G5 )| 2on(ds, dz). (3.36)
0 Z

Plugging (3.36) into (3.34), we get for any v € L*(Q x [0,T]; H?) N L%(Q; L ([0, T]; H')),

t

E / e I PN p4(5), ) a(s) — v(s)[ods
0

+9E / e~ Io p(v(r)m)dr<,ﬁ(8) _ U(S), G(S) — F('U(S))>H0d8
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t
+E / / e~ Ji P () — (s, 0(s), 2) ||t (dz)ds < 0. (3.37)
0 Z

Choosing v = u, we obtain

t
E //67 Jo P@)dr| 1S5, 2) — o(s, u(s), 2) |30 (dz)ds < 0,
0 z

which implies S(-,-) = o (-, u(-),-) in L*(Q x [0, T); L*(Z,¥; H®)). Hence, (3.27) holds.
Now, replacing v in (3.37) with v. := @ — e, ¥ € L>®(Q x [0,T]; H') and ¢ € [-1,1], then

t
R / e Ji P==n)dr oy (5, 8) ][ (s) | Bpods
0

12K / o= 5 =20 6 Gi(s) — F(u(s) — edb(s)))mods < 0.
0

Dividing the above inequality by €, we get
t
B [ e B o (), ) (9 o
0

+2E / e~ Jo Pla=evm)dr () G(s) — F(u(s) — ey(s)))pods < 0 (3.38)
0

for e > 0, and

t
_E / e Ji Pa==n)dr 0y (5, 8) || (s) | Bpods
0

+2E / e~ Jo Pla=evm)dr (4, () G(s) — F(u(s) — ey(s)))pgods > 0 (3.39)
0

for e < 0.
Due to (2.15), we get

(e (s), F(u(s) — e(s)) — F(u(s)))mo| < %IIl/}(S)II%l +%Collv () o (lus) | u(s) = + 1),

by using the Lebesgue dominated convergence theorem, it follows that

oF [ e Jo p@()=eb()m)dr (), () G(s) — F(u(s) — et(s)))pods

— 2K [ e Jo PEMIAT (4 (6) G(s) — F(u(s)))pods, as e — 0.

o O~
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Letting ¢ — 07 in (3.38) and £ — 0~ in (3.39) to obtain

B [ 5 2000 (4(5),G(s) — Flu(s)))iaods =0,

Since ¢ is arbitrary, we conclude (3.26).

Based on all the above results, we establish that there exists a solution to (2.5) if the initial value
Uug € LG(Q7.7:();H1).

Step 2: General case ug € L?(Q, Fo; H').

Taking any sequence Y, o € L5(Q, Fo; H') satisfying E[||Y,, 0 — uol/f] — 0. Let Y,,(¢),t > 0 be the
solution of the following equation

dY,(t) = F(Y,(t))dt + / o(t—, Y, (t—), 2)7(dt, dz),
Z
Y, (0) =Y, 0 € H.

The existence of Y;, is guaranteed by Step 1. Moreover, as in the proof of (3.19)-(3.20), we can prove

T
supE( sup ¥ (t)ll +/||Yn(t)|\]2}ﬂzdt) < C(1+supE|Yolfn) <oo,  (3.40)
n te[0,T] 5 n
T
supE( sup V(0 + IO e Y5 6) ) < €1+ upEYalfee) < o0, (341
n te[o,T n
0

which yields F(Y,,) is bounded in L2?(2 x [0,7]; H°). Then there exists a subsequence still denoted by
{Y,,n > 1} and a process Y € L%(Q x [0, T]; H?) N L%(Q; L*°([0, T]; H')) such that

(1) Y, — Y weakly in L?(Q x [0, T]; H2),
(I) Y, — Y in L?(Q; L>°([0,T]; H')) with respect to the weak star topology,
(Ir)  F(Y,) — F(Y) weakly in L?(Q x [0, T]; H®).

In the following, we adopt the same method as the proof of (3.42) in [15] to obtain Y;, converges to Y in

probability in L°°([0, T]; H?).
For R > 0, define the stopping time

1= inf{t € [0,00) : | Yu(t)|lm > R}

T is really a stopping time since Y, is continuous in H'. Then it follows from (3.40) that there exists a
constant M independent of n, R, so that

M
P(r2 <T) < P(OiltlgT 1Ya®)ll: > R) < = (3.42)

When R is fixed, as in the proof of Theorem 3.7 in [17], we find that

E| sup [[Va(t ATRATE) = Yau(t ATH AT IR0 | < CraElYao = Yinollf): (3.43)
t€[0,T)
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For n > 0 and any R > 0, we have

P( s [¥alt) = YO0 > )

<Prpg<T)+P@rg <T)

—HP’( sup |Ya(tATEATE) = Yo (6 ATEATE) |0 > 77). (3.44)
te[0,T]
Given an arbitrarily small constant § > 0, in view of (3.42), one can choose R such that P(r < T) < 2
and P(7j < T) < 2. For such R, by (3.43), there exists Ny such that for m,n > No,
n m n m 6
P( sup [Ya(tAThATE) = Yt AT ATE) o > 1) < 7.
te[0,T] 4
Hence, by (3.44), we get
P( sup [[Ya(t) = Vi (®)llmo > n) <6
0<t<T
That is
lim JP( sup |[Ya(t) — Yo (8) |10 > n) =0, (3.45)
7,M— 00 0<t<T
which implies that Y,, converges to Y in probability in L°°([0,T]; H?).
Finally, we need to show that Y solves (2.5). It suffices to prove that for v € H°,
(Y(t),v)mo = {ug, v)mo —|—/( (Y( H0d8+// ,2)1(ds, dz), v)gods. (3.46)
We know that for every n > 1,
¢ t
(Yo (t), v)mo = (Y 0, v)Ho0 +/ v)gods —l—// ,2)7(ds, dz), vygods.  (3.47)
0 0

Letting n — oo, using the convergence in probability, (I)-(III) and the Lebesgue dominated convergence
theorem, we see that each term in (3.46) tends to the corresponding term in (3.47). Hence, there exists a
strong solution to (2.5) when the initial value ug € L?(Q, Fo; H).

Step 3: Uniqueness. Suppose that v and v are two solutions of (2.5) with initial values ug and wvo,
respectively. For some constant R > 0, define the stopping time

=inf{t € [0,T) : ||u(t)|[} > R} Ainf{t € [0,T] : |[v(t)||3 > R} AT.

Applying It6 formula, we get

jt/\ R

o p(v(s), S)dsHu(t/\TR) —v(t A TR)||F0

tATR

= |luo — vollfpo — / e o P p0(s), 5) |u(s) = v(s)|fods
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+2 / e~ I3 PO () — (s), F(u(s)) — F(u(s)))ds
0

+2 / /e_ Jo p)mdr () — p(s), o (s—, u(s—), 2) — o(s—, v(s—), ) goii(ds, dz)
0 Z

e~ Jo PO 5 (s u(s—), 2) — o(s—,v on(ds,dz .
+0/z/ lo(s—, u(s=), 2) = a(s—,v(s=), 2)l[Fon(ds, dz). (3.48)

We also choose p(v(s),s) = 2Co(||v(s)|lm: |v(s)||lm2 + 1) + K2, where Cp is in (2.15) and K5 is appeared in
(2.8). Then, we deduce from (2.8) and (2.15)that

tAT
[e Jo 2048 (e A 7R) = v(t A TR) 0| — Elluo — vollFyo

tATR
=_E / e~ Jo P (0 (s), ) ||u(s) — v(s)|[Fods

0
tATR

428 [ A0 () (o), Flulo)) ~ Flolo))aods
0
tATR

+E / /effﬂgp(”(r)”)drﬂa(s—,u(s—),z)—a(s— v(s—), 2)||}on(ds,dz) < 0. (3.49)
0z

Hence, if ug = vg, P-a.s., then
B[ 8O ot A ) — (e Ar)lfi] =0, t € 0,7

Clearly,

T
/p s)ds < 0.
0

Therefore, by setting R — oo (hence 7 T T'), we obtain u(t) = v(t), P-a.s. t € [0,T]. Then the pathwise
uniqueness follows from the cadlag property of u and v in H°. We complete the proof. O

4. The weak convergence approach
In this part, we aim to prove the large deviations for (2.5).
4.1. Controlled Poisson random measure

Recall that a Poisson random measure n on Zp with intensity measure ¥7 and the definition
of Mpc(Z) have been introduced in subsection 2.2. Denote by P the measure induced by n on
(Mpc(Zr), BIMpc(Zr))). Let M = Mpc(Zr), then P is the unique probability measure on (M, B(M)),
under which the canonical map 7 : M — M, n(m) := m is a Poisson random measure with intensity measure
Y. In this paper, we also consider probability Py, for § > 0, under which 7 is a Poisson random measure
with intensity 897. The corresponding expectation operators will be denoted by E and Ey, respectively.
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Set
Y=Zx[0,00), Yr=10,7T]xY.

Similarly, let M = Mpc(Yr) and let P be the unique probability measure on (M, B(M)) under which
the canonical mapping 7 : M — M,ﬁ(m) := m is a Poisson random measure with intensity measure
U7 = A @9 @ Moo, With Ao being Lebesgue measure on [0,00). The expectation operator will be denoted
by E. Let F; := o{((0,s] x 0): 0 < s <t,0 € B(Y)}, and denote by F; the completion under P. Let

P be the predictable o — field on [0, 7] x M with the filtration {F; : 0 <t < T} on (M, B(M)
and
A be the class of all (B(Z) ® P)/(B[0,c0)) — measurable maps ¢ : Zz x M — [0, 00).

For ¢ € A, define a counting process n¥ on Zr by
n?((0,4] x U) = / / Lo,y (Fi(dsdzdr), t€[0.T], U e B(Z). (4.50)
(0,¢]xU (0,00)

n¥ is the controlled random measure with ¢ selecting the intensity for the points at location x and time
s, in a possibly random but non-anticipating way. If ¢(s,z,m) = 6 € (0,00) for some m € M, we write
n? = n’. Note that n° has the same distribution with respect to P as 7 has with respect to Py. Define
1:[0,00) = [0,00) by

iry=rlogr—r+1, rel0,00).
For any ¢ € A, the quantity
Lr(p) = /l(g@(t, z,w))dr(dtdz) (4.51)
Zr

is well-defined as a [0, oc]-valued random variable.
4.2. A general large deviation principle

In order to state a general criterion for large deviation principle (LDP) introduced by Budhiraja et al.
in [6], we need the following notations. Define

,S'M:{g:ZT—>[O,oo):LT(g)gM}7 S = U SM,
M>1

A function g € SM can be identified with a measure 99, € M given by
99.(0) = / g(s, 2)0r(dsdz), O € B(Zr).
1e)

This identification induces a topology on S™, under which S™ is a compact space (see the Appendix of
[5]). Throughout this paper, we always use this topology on SM. Let
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UM = {ga cA:pw)esSM P —a.e.},

where A is defined in subsection 4.1.

Let {G}.~0 be a family of measurable maps from M to U, where M is introduced in subsection 4.1 and
U is a Polish space. Let u® = gs(sng_l). Now, we list the following sufficient conditions for establishing
LDP for the family {u®}.50.

Condition A There exists a measurable map G° : M — U such that the following hold.

(i) For every M < oo, let g,,g € SM be such that g, — g as n — oo. Then, G°(95") — G°(¥%.) in U.
(i) For every M < oo, let {¢. : ¢ > 0} C UM be such that ¢. converges in distribution to ¢ as ¢ — 0.
Then, G¢(en®  #<) converges to GO(9%) in distribution.

The following result is due to Budhiraja et al. in [6].

Theorem 4.1. Suppose the above Condition A holds. Then u® satisfies a large deviation principle on U with
the good rate function I given by

)= o, @} veu. (4.52)

By convention, I(() = oo.
4.3. Hypotheses and the statement of main results

In order to obtain LDP for stochastic 3D tamed equations (2.5), we need additional conditions on the
coefficients. Here, we adopt similar conditions as [23] and state some preliminary results from Budhiraja et
al. [5].

Let 0 :[0,T] x H® x Z — HO ([0,7] x H! x Z — H*') be a measurable mapping. Set

llo(t, w, 2)||mo
o(t,2)||omo := sup ————, (t,2) € [0,T] x Z,
|| ( )”07 weHO 1+||U||HO ( ) [ ]

t —o(t
lott, ) mo = sup  Noltun) Z ol us, 2l

t cl0, T x Z
- I e G e R

lo(t, u, 2)|[m

. (L2)€0,T] % Z,
i A o RS

lo (¢ 2)llomr ==

lott )l = sup  olbun2) = olhuz, 2l
’ ’ uy,ue €HY ug #Aus ||u1 — u2||H1

. (t,2) €[0,T] x Z.

Hypothesis H1 For i = 0,1, j = 0, 1, there exists §%/ > 0 such that for all E € B([0,T] x Z) satisfying
Y7 (E) < 0o, the following holds

/eé”\lo(s,z)uf,w‘ﬂ(dZ)dS <o
E

Now, we state the following lemmas established by [5] and [23].

Lemma 4.1. Under Hypothesis HO and Hypothesis H1,
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(1) Fori=0,1, j=0,1 and every M € N,

M1,
P

sup / (s, 2) 115195, ) — 11(dz)ds < oo,
gesl\/IZ
T

C%’Q ‘= sup / ||0(s,z)||?7H_,»|g(s,z) + 1|9(dz)ds < .
!]ESAI
Zr

25

(4.53)

(4.54)

(ii) Fori=0,1, j = 0,1 and every n > 0, there exists § > 0 such that for any A C [0,T] satisfying

)\T(A) <9

sup //Ilo(s,z)l\i,wlg(s,z)—1|19(dz)d5gn_
geSZWA Z

Lemma 4.2.

(1) For any g € S, if sup,ejo 7y [|Y (t)[lm: < oo, then

/0(',Y('),Z)(g(',2) — 1)9(dz) € L}([0, T}; HY).

Z

(4.55)

(2) If the family of mappings {Y, : [0, T] — H',n > 1} satisfying sup,, sup;e(o 71 |Yn ()|l < 00, then

T
Car = sup sup / || / o(t, Ya(t), 2) (g(t, 2) — 1)9(d2)||gpr ds < .

gesSM n 7
Lemma 4.3. Let h: [0,T] x Z — R be a measurable function such that
/ (s, 2)P9(dz)ds < oo,
Zr

and for all § € (0,00) and E € B([0,T] x Z) satisfying 97(E) < oo,

/exp(é\h(s,z)|)19(dz)ds < 0.

Then, we have

(1) Fiz M € N. Let g,,g € SM be such that g, — g as n — co. Then

lim [ h(s,2)(gn(s,2) — 1)9(dz)ds = /h(s, 2)(g(s,2) — 1)9(dz)ds.

n—oo
ZT ZT

(2) Fiz M € N. Given € > 0, there exists a compact set K. C Z, such that

T

sup // |h(s, 2)||g(s, z) — 1]9(dz)ds < e.
9ESM Y e
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(3) For every compact set K C Z,

lim sup //|h(s,z)|I{hZM}g(s,z)19(dz)ds:0.

M—o0 gesSM

In this paper, we consider the following stochastic 3D tamed equations driven by small multiplicative
Lévy noise:

du®(t) = —[Au®(t) + B(uf(t)) + Pgn(|us (t)[*)us (t)]dt + s/a(t—,ua(t—), z)ﬁgil(dt,dz). (4.56)
Z

By Theorem 3.1, under Hypothesis HO, there exists a unique strong solution of (4.56) in D([0, T]; H') N
L2([0,T); H?). Therefore, there exists a Borel-measurable mapping:

G°: M — D([0, T); H') N L2([0, T]; H?)

such that u(-) = G=(en® ).
For g € S, consider the following skeleton equation

du? (t) = —[Au?(t) + B(u?(t)) + Pgn (|Ju? (t)[*)u? (t))dt + /o(t,ug(t), 2)(g(t, 2) — D)I(dz)dt. (4.57)
Z

We mention that the term g — 1 appeared in the skeleton equation comes from some appropriate martingale
terms and averaging effect, for details, see (6.77). Moreover, the solution u9 defines a mapping G° : Ml —
D([0,T]; H*) N L2([0, T); H?) such that u9(-) = G°(9%).

Our main result reads as

Theorem 4.2. Let ug € H'. Under Hypothesis HO and Hypothesis H1, u® satisfies a large deviation principle
on D([0,T]; H') with the good rate function I defined by (/.52) with respect to the uniform convergence.

Proof. According to Theorem 3.1, we need to prove (i) and (ii) in Condition A. The verification of (i) will
be established by Proposition 6.1, (ii) will be proved by Theorem 6.2. O

5. The skeleton equation
In this section, we will show that the skeleton equation (4.57) admits a unique solution for every g € S.

Let K be a Banach space with norm | - || x. Given p > 1, € (0,1), as in [7], let W*P([0,T]; K) be the
Sobolev space of all w € LP([0,T]; K) such that

TTH

u(t K
// t—s|1+‘¥1’ dtds < 00,
0 0

endowed with the norm

u?)
[l .o (o, 71256 —/Ilu ik dt+// |1+apKdtds.

The following results can be found in [7].
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Lemma 5.1. Let By C B C B; be Banach spaces, By and By reflexive, with compact embedding By C B. Let
€ (1,00) and o € (0,1) be given. Let X be the space

X = LP([0,T]; Bo) "N W*P(]0,T]; By),
endowed with the natural norm. Then the embedding of X in LP([0,T]; B) is compact.

Lemma 5.2. For V and H are two Hilbert spaces (V' is the dual space of V) with V. CcC H = H C V',
where V. CC H denotes V is compactly embedded in H. If u € L*([0,T];V), % € L2([0,T}; V'), then
ue C([0,T]; H).

For the skeleton equation (4.57), we have

Theorem 5.1. Given ug € H! and g € S. Assume Hypothesis HO and Hypothesis H1 hold, then there exists
a unique solution u9 such that

w9 € C([0,T];HY) N L2([0, T); H?),

and
w9 (t) = up — /Aug(s)dsf/B(ug(s))dsf/PgN(|u9(5)\2)ug(s)d5
0 0
+ s,u9(s),2)(g(s,2) — 1)9(dz)ds holds in L*([0,T]; HO). (5.58)
J

Moreover, for any M € N, there exists C(p, M) > 0 such that

sup | sup IIUg(S)IIHQaer/IIUg(S)H%pdS < C(p,M). (5.59)
gesM \ sefo,1]

Proof. (Existence) Let ®,, : R — [0, 1] be a smooth function such that ®,(t) = 1, if |¢{| < n, ®,(f) = 0 if
[t| > n+1. Set xn(u) = @, (||ul/m), u € H. Recall TI,, is the orthogonal projection from H° onto the finite
dimensional space H,, := span{ej,ea,- - -, e, } defined as

My = Z(u, €i) o€,

i=1

where {e;}%2; C H? is an orthonormal basis in H° composed of eigenvectors of A such that span{e;,i > 1}
is dense in Hl. Moreover, it is easy to see that {e;}°; is also orthogonal in H'. Define

By (u,u) = xn(u)B(u,u), wueIl,H.
Consider the following Faedo-Galerkin’s approximations: u, (t) € I, H* satisfying that
dy (t) = — Ay, (t)dt — T, By (tn, up )dt — T, Py ([tn (8) ), (t)dt

—l—/an(t,un(t),z)(g(t,z) — 1)Y¥(dz)dt, (5.60)

Z
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with initial value u,,(0) = II,,ug, where o,, = II,,0.

Since B, is a Lipschitz operator from II,H* onto IT,,H!, the solution of equation (5.60) can be obtained
through an iteration argument as follows. Let Yy(t) = IT,ug, t € [0, T]. Suppose that Y;,,_; has been defined.
Define Y, € C([0,T]; 11, H*) N L2([0, T); 11, H?) as the unique solution of the equation

de(t) = _AYm(t)dt - Han(Yma Ym)dt - HnPgN(|Ym(t)|2>Ym(t)dt

+/Jn(t,Ym,1(t),z)(g(t,z) — 1)¥(dz)dt,

Z

and Y,,(0) = IT,up. Using similar methods as the proof of Theorem 3.1 in [23], we can show that the limit
up, of Y, is the unique strong solution to (5.60) and w,, € C([0,T]; IL,H*) N L2([0, T); I, H?).
Now, for the solution u,(t) of (5.60), we aim to prove the following estimates:

T
sup( sup |lun () |3 —|—/||un(t)\|]2HIzdt) < (4, (5.61)
n>1 “te[0,T]
0
T
sup (supun(0lfes + [ 1o @) Jun 0 e < Ca. (562
n>1 \te(0,T) J

and for o € (0, &), there exists a constant Cy, > 0 such that
sup [[tnl 3o 2o, 77:10) < Ca (5.63)

Firstly, we make estimates of ||u,(¢)||Z.. By the chain rule, we obtain

t t

an (1) 20 = 1 (O[22 / (tn(5), A (5)) g s — 2 / (tn(5), T B 11, 1) s
0 0

—2/t<un(5)’HnPgN(Wn(S)|2)Un(8)>HldS
0
+2/t<un(s),/Un(s,un(s),z)(g(s,z) — 1)Y(dz))m ds.
0 Z
Using (2.14), it follows that
[ (8) |1 +/t||un(5)||ﬁzd5+/t||Un(5)|'Vun(8)|||%2d8
0 0

< Jlun(0)lffr: + CN/(l + [l () 1) ds
0

+2/<un(s),/an(s,un(s),z)(g(s,z) — 1)¥(dz))mds.
0 Z
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According to Hypothesis H1, we obtain

t

2 / (tn(5), / (5, tn(5), 2) (g5, 2) — 1)9(dz)) g ds

/ / 0 (5, n(5), 2) 11 (5, 2) — 1] i) [ 12 9(d2)ds

A

< 20/Z/ o (s, 2) o [g(s, 2) — 1|(1 + 2|Jun ()3 )9(d2)ds

< 2//||U(s,z)||07H1|g(s,z) 1|9(dz)ds

0 Z
t
1 / () 20 / o (s, 2)llo.gx: lg(s, 2) — 1[9(dz)ds
0 A

Hence,

s @)l + / et () s + / et (8)] - [Vtn(s)]|22ds

t
< un [ + C / 1+ s +2 [ [ (s, 2o lo(s.2) ~ 119(az)ds
0 0 Z

[ (@) [ o 2loamlos,2) ~ 10(d)ds
0 Z

Applying Gronwall inequality, we get

sup [un () + [ lluns) s
s€[0,t]

< ()l + Ot +2 [ [ (s, 2oz los,2) - 19(d=)ds)
0 Z

t

<exp{ [ (O + [ ots,2llamlas,2) ~ 119(d2)) ds}.
Z

0

With the help of Lemma 4.1, we conclude the result (5.61).
Similarly to the above, by the chain rule, we obtain

e ()12 = [l (0) [ — 6/ et () 11 (2t (), At (5)) 0
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i
—6/||un(8)\|%11<un(8)>Han(un(S)aun(S)DHldS
0
*6/||Un(5)\|%11<Un(5)7HnPQN(\Un(S)\Q)Un(s»HldS

46 [ un (o)l (ans) [ (s, ua5),2)0(5.2) = DI

z

We deduce from (2.14) that

[ () [0 +3/Hun(S)IIﬁnlllun(S)lliﬂzds+3/IIUn(S)H%ullllun(S)l |V (s)][[72ds
0 0
< [ (0) I +60N/Hun(5)||%11(1 + [lun(s) [ )ds

+6/Hun(s)Hﬁﬁl(un(s),/an(s,un(s),z)(g(s,z) — 1)¥(dz))mds.
0 Z

Using Hypothesis H1, we get

/”un H]HIl un /Un S un (9(572’) - 1)19(d2)>H1ds
<o / (5 / (s, (5),2) ol s:2) = Ll (9) 1 9(d2)ds

<6 / an () Z/ (5, 2)llougs [9(5: 2) — 1[(1 + 2lfun(5) |20 ) (dlz) ds

t

<6 / / (s 2o 1905, 2) — L0(dz) (L + [lun(s) & )ds
0 Z

112 / / 105, 2)llo.mm [9(. 2) — 118(d2) un (5) [Gg: s

0

N

—6 / / o (5. 2)llo.am [9(s, 2) — 1[8(dz)ds + 18 / lin (5) 50 / o (5. 2)llo.am 9(s. 2) — 1[8(dz)ds
0 Z 0 Z

Hence, we conclude that

s€[0,t

t t
SUP]Ilun(S)II%p +3/IIUn(S)II%mIIun(S)II%MS+3/||un(8)||%n1\||un(8)|~\Wn(S)IH%zds
0 0
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t

t
< en [ +6Cx [ un )l (14 (9 )ds +6 [ [ llo(5.2) o lg(s. ) — 119(d2)ds
0 0 Z

t
118 / () / lo(s 2o |g(s, 2) — L|(dz)ds.
0 Z

Applying Gronwall inequality, we deduce the result (5.62).
For wu,(t), it can be written as

un(t) = Myug —/Aun(s)ds—/Han(un(s))dS—/HnPgN(|un(s)|2)un(s)ds
0 0 0
—l—//an(s,un(s),z)(g(s,z) — 1)¥(dz)ds
0 7z

t t
= I, ug —i—/ﬁ’n(un(s))ds—i-//on(s,un(s),z)(g(s,z) — 1)¥(dz)ds
0 0 Z
= JHt) 4+ J2(t) + J3(t). (5.64)
Clearly, sup,,>; |5 ()|l = sup,>; [Iyuollm < Ci. Using (3.14) in [15], we have
1En(un(@®))ll22 < Olun @)l + lun () m2)- (5.65)

For s < t, it follows from (5.65) that

1266) = T2 = | [ B )

< ([ 1Futun@)le)

t

<c| / ([t (1) I3s + Hun<l>HH2>dl]2

S

t
<Ct—9)? sup [un(l)|Se +C’(t—s)/|\un(l)|\]2mgdl7 (5.66)

1€[0,T] /]

which implies that
T T
/ 1720t < CT* s ua D) +CT* / Jtn (1) ol (5.67)
|0,
0 0

=

Hence, using (5.61)-(5.62) and (5.66)-(5.67), for a € (0, 3), we have

sup 1212 (o, 710y < Cal@).
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Using the same method as the proof of (4.20) in [24], we get
312
Sup 1Tl We2 o,77;10) < C3().

Collecting all the above estimates, we deduce the result (5.63).

Based on (5.63) and by u, € L*([0,7];H?), it follows from Lemma 5.1 that u,(t) is compact in
L2([0,T]; HY). Thus, there exists an element u € L2([0,T]; H2) N L°°([0,T]; H') and a subsequence ,,,
m’ — oo, such that

1. Ums — u weakly in L2([0, T]; H?),
2. Ums — u in the weak-star topology of L ([0, T]; H'),
3. U — u strongly in L2([0,T]; HY).

Finally, we show that w is the unique solution of (5.58). We will use the similar arguments as in the proof
of Theorem 4.1 in [24].

Let 9 be a continuously differential function defined on [0,7] with ¢(T) = 0. Recall {e;};>1 is an
orthonormal eigenfunction of HY. Multiplying (5.60) by v (t)e; and using integration by parts, we obtain

T
eJ Hodt—‘r/ Aun 6J>H0dt
0

O\ﬂ

T

= (10 (0),(0)es)sto — | IL. B (un (1), (1), wlE)es ot
0

(1L, P (fn (1) )i (1), ¥ (E)e ot

+

T = o\’ﬂ

/ o (b tin (1), 2) (9t 2) — 1)O(d=), (t)e; Vpaoddt.
Z

Recall the definition of B, and (5.61), for every n > sup,,en+ SuP;eqo, 17 [[um (t)||3: V 4, we arrive at

T

(t)e; ) wodt + /(Aun(t),z/)(t)ej>Hodt

0

O\H

T

= {1 (0): (000 — [ ILu B0, (1)), (0 )es o
0

<H PgN(|un( )‘ )un(t)7w(t)ej>]l—]l0dt

_|_

T = O\ﬂ

/an(t,un(t), 2)(g(t, z) — 1)V(dz), ¥(t)e;)modt.
Z

In the following, we devote to proving that as n — oo, it holds that
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T

De;)uodt + / (Au(t), (t)e;)modt

O\H

T
= <u(0 w(t)€j>Hodt
!
(Pan (Ju(®)*)u(t), v (t)e;)modt

+

< / o(tu(t), 2)(g(t, 2) — 1)9(dz), b(t)e;)godt.

Z

St~ O\’i

Since wu,, — u strongly in L2([0, T]; H') as m’ — oo, we deduce that

T

T
| [t ®) = utt). v O] < € / i (£) = (8 o

0

T
/ |’LLm/ —’LL ||H1dt—>0
0

and

(tm (0) = u(0),%(0)e;j)mo < Cllum (0) = u(0)[|fo — 0,

as m — oo.

Moreover, by u,,, — u strongly in L?([0, T]; H'), we have

T
/ U ( t),¥(t)e;)modt < C’/ [t (t) — w(t)||mdt — 0, as m' — oo.
0 0

Since u,, — u strongly in L2([0,T]; H') and by using (5.61), it follows that

T
| [ B (0,100 (0)) = B0 ), 000 ot
0

T

‘/ (B, Uy — ) + Bty — u,u),’z/;(t)q}Hodt‘

0

T

1 1
/ lo(@)ejllpellum — wllm lum 2o + (10 (#)e;ll 2]l g 1wl fpe um — ulle]de
0
T

1 1 1 1
/[Ilumfl\ﬁl [t || gz [ — i =+ [l g |l g [lum: — wllp]dt
0

1 1
< C sup Num(®)lh / et gt — s
t€[0,T]
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1
O sup [Ju(®)]Es / (IR

t€[0,T]
T T
1 % 3
< C sup |fum (t)]Z /||um )=t /Hum ()3t
t€[0,T] 5 5

+C sup ulb)l / Ju(t) fgedt) / €)= u(t) pac)

te[0,T]

—0, as m — oo.

Clearly, we have

(Pan ([um [*)um — Pgn (Jul*)u, ¥ ()e;)modt

St~

~

<C [ llgw(lme Y = g (1l ullzods
0
T

(=)

By using sup,, |u(z)[* < Cllullm [|ullm2, we get

g (fetm [*) (i — ) 10

1
< (/\ufn,(x) + N2 [t —u|2dx)2

< (s o 02 = ) [ = r)’

zeT3
T3

< C(llum e lum a2 + N)llum: — ullpo-
Moreover, we deduce that

1(gn (lum *) = gn (uf?))ul o

1

< O ([ (unsl + e~ uPlufdz)

T3
1

< Csup(fune (@] + lu(e)) ([ i — uPfuPds)
T3

By the Hoélder inequality and the Sobolev embedding inequality, we get

1
(/ [thmr — u|2|u|2da:) :
T3

ok 1 1
< Ml*ll 2 llwm: = ull Ealltm — ull 2

<C [ llgw(lume ) = w)lzods + € [ g (uml?) = g () ulwods:

(5.68)

(5.69)

(5.70)
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1 1
< lullpallum: — ullZsllum: — ullf6
1 3
— || o 1 tm: — || g - (5.71)

1 3
< Cllullggollwll g [lum:

Hence, combining (5.70) and (5.71), it follows that

(g (Jume [*) = g (uf?))ulleo
1 3 1 3

< Csup(fum ()] + [u(@) ) lwllgollwll g lwm: — wllgpolltm: — ullg
1 3

+ = | o llum: — ullgn

1 1 1 1
< Clfwme Il [lwme llr> + lull g llull =) lullgo lull g llwm

1 1 1 1 3
< Cllwm Nl 1w Nl gz lullgo 1l gga llums — ullgpo lltmr — wllgp
1 3
¢ = ullgpolltims — ullggs - (5.72)

1 1 3
+llullggo 1wl g lull g | wm
Collecting (5.68)-(5.72) and using the Holder inequality, we deduce that

T
/ P (it )t — P ([u]?)u, (8)e;) prodt
0

T T
1 1
<€ sup o (O ([ Ot ([ () = u@)rodt) ” + O [ 1) = ) o
t€[0,T] A

T
1 3 1 1
+C/HUHfﬁﬁoHUH]ﬁpHum'(t)llﬁl||um'||ﬁzllum' Ul gol[tm: — ullgp dt

T
1 5 1 1
+C/HUHﬁoHUHﬁpHUH]ﬁIzllum' — t|ggo l[wm — ullggdt

T T
s | W 0t / o (1) — u(D)fBodt)* + ON / e (2) — () o

< C sup |um(t)
te[0,T]

1
1 1 Z
O sup [u(0) o (0 s o 1) / ey / o — o) / e = ulfprd)

+C sup [Jul®)ll (Ol / u(®leat)* ( / o — ullfrodt) ( / o (1) — () )
t€[0,T7] 0 9

—0, as m — oo,
where (5.61), u,,, — u strongly in L?([0, T]; H') and u € L?([0, T]; H?) N L>([0, T]; H') are used

-
Using similar method as (4.29) in [24], we get

T
i / Z/ ot (1), )t =

which implies

)—1) —o(t,u(t), 2)(g(t, z) — 1)||mo¥(dz)dt = 0,
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([ ottt (6),2)(0(t,2) = 19(d2), (0)e; o

N

— </ o(t,u(t), 2)(g(t, z) — 1)(dz), Y (t)e;)modt,
Z

T
—/(u(t),w'(t)ej>Hodt+/(Au(t),lp(t)ej}Hodt
0
T
— (u(0), $(0)e; g0 — / (Bult), u(t)), $(t)e; ot
0
(Pay (u()]?)u(t), ¥ (t)e) podt

+ (/a(t,u(t),z)(g(t,z) — 1)9(dz),(t)e;)modt. (5.73)

Z

1
/

Actually, (5.73) holds for any ¢ € H, which is a finite linear combination of e;. That is

T T
—O/<u(t) Hodt-l-o/ C)modt
T
— (u(0) / B0 modt

/ ot u(t), 2)(g(t, =) — 1)3(d2), b(t)podt. (5.74)
Z
As a result, we obtain
du(t) + Au(t)dt + B(u(t))dt + Pgn (|Ju(t)|?)u(t)dt = /J(t,u(t), 2)(g(t, 2) — 1)9(dz)dt (5.75)
Z

holds as an equality in distribution in L2([0,T7]; HO).

From here, using similar arguments as in the proof of Theorem 3.1 in Temam [22], we can conclude that
u is the desired solution.

By Lemma 4.2 and using the same arguments as in the proof of Theorem 3.2 in Temam [22], we can
obtain



Z. Dong, R. Zhang / J. Math. Anal. Appl. 492 (2020) 124404 37

du
— e L%(J0, T]; HO).
= € ([0, T); H')

Since u € L*(]0, T); H?), we deduce from Lemma 5.2 that u € C([0, T]; H').
(Uniqueness) Suppose u1,us are two solutions of (5.58). Let u = u; — ug and u(0) = u1(0) — u2(0), we
have

du(t) = (F(uy) — ))dt +/ (t,u1,2) — o(t,ug, 2))(g(t, z) — 1)9(dz)dt.
zZ

Now, we make L? estimates of u(t) as follows. By the chain rule, it gives that

t

lu(®)llfo = [lu(0)]lFo +2/<U(8),F(U1) — F(ug))pmods

0

+2/ / s,u1,2) —o(s,ug, 2))(g(s, z) — 1)3(dz))mods

0
=t [[u(0)|[fgo + 11() + I2(t).
By (2.15), we obtain

t

t
/ Ju(s) |2 ds + 2C / (loszllg e + D)lfu(s) [Zods,

0

| A

0

t
2//||a s 11, 2) — 0 (s, us, 2|0 9(s, 2) — 1]][u(s) o9 (d2)ds

0

<2 / (o)l / (s, 2l selg(s, =) — 116(d) ) ds.

Collecting all the above estimates, we get

t

t
()0 + / lu(s) |l ds < [[u(0)fo + 200/(HU2||H1IIU2HH2 +1)[[u(s)llfods
0

+2 / (o)l Z/ lo(s, =)l solg(s, 2) — 119(d=) ) ds.

By Gronwall inequality, we deduce that

() o
t t
< [[u(0) o exp {26 / lualgzs sl + 1)ds + 2 / / los. 2l solg(s.2) — 19(d=)ds )
0 0
t

t
< [0l exp {200t +200 s sl [ ol 2 [ [l 2wl =) — 19tz)as).
te(0,T
0 0 Z
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Since the two solutions u; of (5.58) are in the state space C([0, T]; H')N L2([0, T]; H?) for i = 1,2, we deduce
that u; = ug if u1(0) = uz(0). O

6. Large deviations

This section is devoted to the proof of the main result (Theorem 4.2). According to Theorem 3.1, we
need to prove (i) and (ii) in Condition A.
Firstly, we prove (i) in Condition A. For g € S, from Theorem 5.1, we can define

G°(03) =
Proposition 6.1. For any M € N*, and {gn}n>1 C SM,g € SM satisfying gn — g as n — oo. Then
W) — ¢°(w4) in C([0,T);H).
Proof. Recall that G°(95") = u9. For simplicity, denote u™ = u9n.

Using similar method as Theorem 3.1, we obtain that there exist constants Ci (M), Co(M) and Co s
such that

n T n
L suP,eo,ry 1w ()i + fy [[w"(s)l[f=ds < C1(M),

n T n n
2. subyero.ry 1w (s)lIf + fo 11w (8)lgga lu” (5) s < Co(M),
3. [0 1%y a2 (o.13:10) < Canrs @ € (0, 3).

Hence, by Lemma 5.1, we can assert the existence of an element v € L2([0,T]; H?) N L*([0,T]; H') and a
subsequence u"™ ™" such that

(a) u™ — u weakly in L2([0, T]; H?),
(b) u™ — u weak-star in L°°([0, T]; H'),
(c) u™ — w strongly in L2([0, T]; H').
We will prove that u = u? = G%(9%).

Let ¢ be a continuously differential function defined on [0, 7] with ¢(T) = 0. Multiplying the equation
(5.58) satisfied by u™ (t) by ¥(t)e; and using integration by parts, we obtain

T T
/ eJ Yaodt + / €]>Hodt
0 0

T
— (w0, $(0)e;) 10 — / (B (1), ™ (1)), (t)e;)modt
0

/

(Pyn (|u™ (&) )u™ (1), v (t)e; ymodt

T O\H

/0 2)(gms (t, 2) — 1)0(dz), ¥(t)e;)modt.
z

Utilizing the same method as Theorem 5.1, we deduce that
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T

= [ @0 esmodt + [ (4w (0, wit)esods

0

—(uo,%(0)e; ) o + /(B(W’ (1), u™ (£)), ¥ (t)e; ) podt
0

For the remain term f0T<fZ o(t,u™(t), z)(gn(t, 2) —1)9(dz), ¥ (t)e;)modt, applying the same method as Propo-
sition 4.1 in [24], and by using Lemma 4.1 and Lemma 4.3, it gives that

( / ot u™ (), 2) (g (£ 2) — 1)9(d2), D(t)e)podt

St~

%

z
</0(t, u(t), 2)(g(t, 2) — 1)I(dz), P(t)e;j)modt.
Z

Ot~

Therefore, we get
T T
- / (ult), ¢ (B)e; ot + / (Au(t), §(t)e; ot
0 0
T
— <u0,¢(0)ej>Ho — /(B(u(t),u(t)),w(t)ej>Hodt
0

(Pan (lu(t)*)u(t), ¥ (t)e;)modt

St~

T
+ / < / o (¢ u(t), 2)(g(t, 2) — 1)I(dz), b(t)e;)podt
0

Z

Based on the above, applying the same method as the proof of Theorem 3.1 in [22], we obtain u = u9.
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In the following, we aim to prove u™ — u in C([0,T]; H'). Let Zm" = y™ —u, then we have

dZ™ (t) = (F(u™) — F(u))dt + / [o(t, u™ (t), 2) (gm (£, 2) — 1) — o (t,u, 2)(g(t, 2) — 1)]0(dz)dt,
Z

with Z™ (0) = 0.
By the chain rule, we get

127 Ol =2 / (27 (5), F(™) = F(w)nds

+2/ / [(5, 1™ (5, 2) (gor (5, 2) — 1) — (5, 1, 2)(g(s, 2) — 1)]9(d2))gr ds
0

= () + T (1),

By (2.16), it follows that

t

m/ 1 m m' m'
R0 <~ / 127 ()| 2geds + C /<1+||u e+ el + lall2e) 12 ()| ds,
0

and

g3 (1) = 2 <Zm/(8)’/[U(S’uml(S)aZ)(gm'(SaZ) —1) = G(s,u,2)(9(s, 2) — D]I(d2))m ds
Z

<Zm/(8)7/[(0(5’um/ (8),2) —o(s,uls), 2))(g(s, z) = V)]0(dz))m ds
Z

/

42 [127(6), [los,u™ (9. 2) g (5,2) = 1) = 0,07 (5),2)(g(5. ) — 1)]9(d2) s ds
0 Z

= K7 (t) + K3 (t).

It’s easy to deduce that

<2 / 127 s / lo(s,w™ (), 2) — o(s, u(s), 2)) luw g(s. 2) — 1|(dz)ds
0 Z

= / 127 ( Z/ lo(s,2) g2t lo(s, ) — 119(dz) ) ds

Collecting all the above estimates, we get

’ 1 ’ ’ ’
1™ Ol + 5 / 1Z™ () fz=ds < C/(l + ™ Ml + el + lullge) 2™ ()| ds
0 0
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t
w2 (127 ([ ot 2)lanlats,2) = 10d) ds + K3 1),
0 Z
Setting

¥(s) = C(L+ [[u™ [l + Nullfg + ) + 2/”‘7(372)”1,1}111‘9(573) — 1[9(dz),
Z

we have

t t
m/ 1 m,/ m/ m/
127 Ol + 5 [ 127 Glfeds < [ w6127 (9)fds + K3 1),
0 0

Hence, we obtain

t

T
exp (= [ ws)ds)1z7 Ol < [ K3 (5)ds.
0

0

By Lemma 4.1, it follows that

Y(s)ds < o0,

St~

which implies that

t
sup [|Z2™ (8)|3n <exp ( [ ¥(s K3V (s)ds. (6.76)
(from) [

te[0,T]

Using the same method as (4.61) in [24], we have
T
/K;”/(s)ds —0, as m — occ.
0

Therefore, by (6.76), we get

lim sup |27 (][ =0,
m’—00 ¢e[0,T]

which implies the desired result. O

Recall that (4.56) has a unique strong solution u¢ for every € > 0, which defines a measurable mapping
G¢ : M — D(]0, T]; H') such that, for any Poisson random measure n® “on [0, T] x Z with intensity measure
e~ !Ar ® ¥ given on some probability space, ga(snsfl) is the unique solution of (4.56) with 77571 replaced

—1

by n¢
Let . € UM and ¥, = i. The following lemma was proved by Budhiraja et al. [6].
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Lemma 6.1. Recall (7}, 97) are introduced in Section j.1.
Ef(Ve) :=exp { / log(9:(s, 2))n(dsdzdr)
(0,t)xZx[0,e—1]

+ / (—9:(s,2) + l)ﬁT(dsdzdr)},

(0,t)xZx[0,e—1]

is an {F;}-martingale. Then

Q5(@) = / £2(9.)dP, for G e B(V)
G

defines a probability measure on M.

Since 577‘5_1“’5 under Q% has the same law as that of 5175_1 under P, it follows that there exists a unique
solution to the following controlled stochastic evolution equations %°:

|
B
)
zZ
~
<
o
©
N—
<
o
©
QL
®
+
o _
N—_
Q
—
“CIJ
<
o0
—
V2]
S~—
S
N~—
—
)
3
®
<
0
=
“CIJ
W
&
|
<
—
IsH
&
QL
®
N—

\
)
Q
2
)
N
m
w
T
S~—
IS
m
S
Q
»
+
o .
N—_

Q
—
\.Clb
I
[0}
—
Vo)
S~—
N
S~—
—
S
o
—~
fn
N
S~—
\
—
S~—
2
QU
Q
S~—
QL
=

+//50(s,ﬂs(s),z)(n571% (ds,dz) — e Lo (s, 2)0(dz)ds), (6.77)
0 Z

and we have
G (en® #°) = @t°. (6.78)
Before proving (ii) in Condition A, we make a priori estimates of @°.

Lemma 6.2. There exists g > 0 such that

T
sup [E sup ||af||3s +E/Ha5(t)\|]2ﬂgdt] < 00, (6.79)
<T

0<e<eg s

T
sup [E sup_ [ +E/\|a€<t)\|ﬁ2||asuﬁﬁldt] < o0, (6.80)
0<e<eq 0<t<T 0
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and for a € (0, %), there exists a positive constant Cy, such that

sup E[”,&EHW&’Q([O,T];HO)] < Cy < 00. (6.81)
0<e<eq

Thus, the family {G°;0 < e < eo} s tight in L?([0,T]; H*).

The proof of Lemma 6.2 is similar to the proof of (5.61)-(5.63) and Lemma 4.2 in [24], hence, we omit it
here.

To get our main results, we need to prove that {a°}occ<e, is tight in D([0, T]; D(A™%)) for some « > 0.
Firstly, we recall the following two lemmas related to the tightness of {@°;0 < & < g9}. The proof can be
found in [10] and [2].

Lemma 6.3. Let E be a separable Hilbert space with the inner product (-, -). For an orthonormal basis {&} ren
in E, define the function r? : E — R* by

@) = Y (x,&)? LeN.

k>L+1

Let Eqy be a total and closed under addition subset of E. Then a sequence {X.}.c(0,1) of stochastic process
with trajectories in D([0,T); E) iff the following Condition B holds:

1. {Xc}ee(o,1) s Eo-weakly tight, that is, for every h € Eo, {(Xc,h)}ee(o,1) s tight in D([0, T];R),

2. For every n > 0,
lim lim ]P(T%(XE(S)) > 7 for some s € [O,T]) =0. (6.82)
L—o00e—0

Consider a sequence {7, d.} satisfying the following Condition C:
(1) For each €, 7. is a stopping time with respect to the natural o-fields, and takes only finitely many
values.

(2) The constant J. € [0, T] satisfying . — 0 as € — 0.

Let {Y:}cc(0,1) be a sequence of random elements of D([0,T];R). For f € D([0,T];R), let J(f) denote the
maximum of the jump |f(t) — f(t—)|. We introduce the following Condition D on {Y.}:

(1) For each sequence {7, 0. } satisfying Condition C, Y. (7. +d.) — Yz(7.) — 0 in probability, as € — 0.

Lemma 6.4. Assume {Y:}.c(0,1) satisfies Condition D, and either {Y:(0)} and J(Yz) are tight on the line or
{Y.(t)} is tight on the line for each t € |0,T], then {Y.} is tight in D([0, T]; R).

Let @° be defined by (6.78). We have
Lemma 6.5. {@°}o<c<e, is tight in D([0,T]; D(A™Y)), for some oo > 0.

Proof. Note that {\%e;};en is a complete orthonormal system of D(A~%). Since

oo

lim imE sup r%(@°(t)) = lim limE sup (1), A8ei) % Ao
L—o00e—0 te[0,T] L( ()) L—ooe—=0 tE[O’T]i:zL;rl( () )D(A )
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oo
—Q~E

= lim lim E sup ATYGE(t), e;)3
L—00e—0 te[O’T]i:zL;rl< () Z>HO

o0 ~c 2
u(t), e;
= lim lim E sup 7< ();al>H0
L—oco0e—0 te[O’T]i:LJrl )‘i

lim E su s (t)]?
< lim e—0 Pielo,T] [ ()”HO

— 2
L—oo )\L+1

:07

which implies (6.82) holds with F = D(A™%).

Choosing Eg = D(A%). We now prove {@°;0 < ¢ < go} C H is Ep-weakly tight. Let h € D(A®), and
{7, d.} satisfies Condition C. It’s easy to see {(a°(t),h)g;0 < € < o} is tight on the real line for each
t €[0,7).

We now prove that {(a°(¢),h)g,0 < e < e¢} satisfies (I). It follows from (6.77) that

Te+0e Te+0e
W (Te +9.) —a°(72) = / F(a®(s))ds + / /a(s,ﬂs(s),z)(gpe(s,z) — 1)¥(dz)ds
Te+0e
+ / /60’(8,116(8),2) (775_1“"5 (ds,dz) — sflgog(s,z)ﬂ(dz)ds)
Te Z
=17+ 15+ 1I5. (6.83)
It’s easy to show
s £ 2
tim E| (15, ) = 0. (6.84)

Referring to (3.14) in [24], and by using (6.79)-(6.81), we deduce that

lim E|(I7, k) g
e—0

Te+0e
<ty o[ [ 1) fods]
e—0 L
Te
Te+0e
<t [l [ (e + 12 )]
e—0 L
Te

Te+0e .

< lim Al E[5. sup |8 + (3% / I Vis)
e—0 L tefo,1)

Te

=0. (6.85)
For I5, we have

: £
lim E|(I5, 1) 5

Te+0c
< ||hllmo limy E| / /||0(s,ﬂ€,z)||Ho|gpg(s,z)71|19(dz)d5}
e—0
Te Z
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Te+0e
< o lim B[ sup (1+ [ 5z) / /||a(s,z)|\o,Ho|¢E(s,z)—1|19(dz)ds}
e=0  Lgelo, 1
Te Z
Te+0e

< 17|l go limIE[ sup (14 ||@°||go) sup / /HO’(S,Z)||07H0|()06(S,Z)—1|’l9(d2:)d8:|.
e=0  Lgepo,1 geSM

Te

By Lemma 4.1, we have

. . _

lim E[{/3, h)p| = 0. (6.86)
Based on (6.84)-(6.86), we conclude that {(@°(t), h)g;0 < € < go} satisfies Condition D. O

Fix the solution @° of (6.77), consider the following equation:

AYE(t) = —AVE(t)dt + ¢ / g(t,af(tf),z)(nf’l% (dt, dz) — s_lcps(t,z)ﬁ(dz)dt), (6.87)
Z

with Y¢(0) = 0. Referring to Proposition 3.1 in [15], (6.87) admits a unique solution Y*(¢),t > 0. Moreover,

Ve e D([0, T); HY) N L*([0, T); H?), (6.88)
and
T
lm E sup [|Y(t)|/3: +E/||Yf€(t)\|§pdt:0. (6.89)
=0 4ej0,7) J

Now, we are ready to prove (ii) in Condition A. Recall G¢ (51}5_1%) = 4° is defined by (6.78).

Theorem 6.2. Fiz M € N, and let {¢.;0 < e < eo} CUM, o € UM be such that @. converges in distribution
to ¢ ase — 0. Then

-1 . . . .
G(en® ¥¢) converges in distribution to G°(9%.)
in D([0,T]; HY).
Proof. Note that ga(ena’l%) = @°. From Lemma 6.2, Lemma 6.5 and (6.89), we know that

1. {@%;0 < € < go} is tight in D([0, T); D(A=)) N L2([0, T]; H'), for a > 0,
2 limesoE[supier VSOl + f) 175 (0)]Fmd] =0,

where Y¢ is defined in (6.87). Set
I = (D(0, 7); D(A™)) N L2([0, T} 1Y), ™, ([0, T H') 0 L2([0, T]; H2) ).

Let (@, ¢,0) be any limit of the tight family {(a°, ¢.,Y®);e € (0,0)}. We will show that @ has the same
law as GY(97) and @° converges in distribution to @ in D([0,77; H').
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By the Skorokhod representative theorem, there exists a stochastic basis (!, F!, {ftl}te[o,T], P!) and, on
this basis, II-valued random variables (@5, oL, Y) (vesp. (i1, ", 0)) such that (@5, ok, Y¥) (resp. (@1, 0", 0))
has the same law as (i€, ., Y®) (resp. (@, ¢,0)), and (a5, oL, YE) — (i1, ¢",0) in II, Pl-a.s.

From the equations satisfied by (4, ¢., Y*), we see that (a5, !, Y¥) satisfies the following integral equa-
tions:

ai(t) = Y (t) = uo — /A(ﬂ‘i(S) — Y (s))ds — /B(ﬁi(S),ﬁi(S))dS

and
Pl(ag — V¢ e (o, T]; HY) N L2([0,T};H2))
- P(ae — Ve ec(o,T];HY) N LQ([(LT];H?)) -

Let Q} be the subset of Q' such that (a5, pl, Y7) — (i1, 9", 0) in II, then P1(Q}) = 1 and for any fixed
wl e O},

sup ||a5(wh,t) —ay (W t)|fn — 0 as e—0. (6.90)
t€[0,T

Set Z¢(t) = @5 (t) — Y (). Then, Z¢(w',t) € C([0,T); HY) N L3([0, T]; H?), and Z°(w',t) satisfies

t t

Z5(t) = ug — /AZE(S)dS - /B(Zs(s) + Y (s), Z5(s) + Y (s))ds

0 0

- /PgN(IZE(S) +YT(5)P)(Z°(s) + Y¥ (s))ds
0

£ \E 1 . 2)ds.
+ / / 0(5, Z2°(s) + ¥ (5), 2) (9 (5. 2) — 1)i(d2)d

Define 4(t) be the solution of

t t

a(t) = uo —/Aﬁ(s)ds—/B(ﬂ(s),ﬂ(s))ds—/PgN(|ﬁ(s)|2)ﬂ(s)ds
0

0 0
7 1 — z)ds.
+O/Z/a(s,u(s),z)(cp (s,2) — 1)¥(dz)d

Since

lim{ sup ||Y€(w t||H1 +/||Y€ wt tHszt
e—0 te[0,T)
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we have

lim sup @5 (w!,t) — a(wh, )3

€=04¢(0,77]

<lim sup [[|Z°(w",t) = a(w", )llF + Y7 (@" 1)l
€204¢(0,77]

<lim sup ||Z°(w,t) — a(w',t)||3:. (6.91)
€204¢(0,7]

Using the similar argument as Proposition 6.1, we obtain

lim sup ||Z%(w',t) — a(w, t)||}: = 0. (6.92)
e—0 te[0,7)

Hence, combining (6.91) and (6.92), we deduce that

lim sup ||@5(w',t) — a(w', |3 =0, (6.93)
E*)OtE[O,T]

which imply that @; = @& = G°(9¢'), and @ has the same law as G°(99). Since @€ = @€ in law, we deduce
from (6.93) that @° converges to G°(9¥). We complete the proof. 0O
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