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smoothing term if its transverse ray transform is known along all lines intersecting 
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1. Introduction

The study of transverse ray transforms (TRT) of symmetric tensor fields is of interest in problems arising 
in polarization and diffraction tomography. We are interested in an approximate inversion of a TRT acting 
on symmetric tensor fields restricted to all lines passing through a fixed curve in R3. More precisely, we use 
techniques from microlocal analysis to construct a relative left parametrix for such restricted TRT.

We denote the space of covariant symmetric m-tensors in R3 by Sm = Sm(R3). Let C∞
c (Sm) be the 

space of smooth compactly supported symmetric m-tensor fields in R3. In R3, an element f ∈ C∞
c (Sm) can 

be written as

f(x) = fi1···im(x)dxi1 · · ·dxim ,

with {fi1···im(x)} symmetric in its indices, smooth and compactly supported. With repeating indices, Ein-
stein summation convention will be assumed throughout this paper.
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Let TS2 = {(ω, x) ∈ S2 ×R3 : ω · x = 0} be the tangent bundle of the unit sphere S2 ⊂ R3 and let

TS2 ⊕ TS2 = {(ω, x, y) ∈ S2 ×R3 ×R3 : ω · x = 0, ω · y = 0}

be the Whitney sum.

Definition 1.1 ([28]). The transverse ray transform T : C∞
c (Sm) → C∞(TS2 ⊕ TS2) is the bounded linear 

map defined by

T f(ω, x, y) =
∫
R

〈f(x + tω), y�m〉dt,

where y�m denotes the mth symmetric tensor product of y and 〈f(x), y�m〉 is defined by fi1···im(x)yi1 · · · yim .

We will find it more convenient to work with an equivalent vectorial version of TRT which we define 
below. Let ω ∈ S2 be represented in spherical coordinates by

ω = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2)

where 0 ≤ θ1 < π and 0 ≤ θ2 < 2π. Consider the orthonormal frame {ω, ω1, ω2} with ω1 and ω2 defined by

ω1 = (− sin θ1, cos θ1 cos θ2, cos θ1 sin θ2) and ω2 = (0,− sin θ2, cos θ2) . (1)

We define the vectorial version of T as follows:

Definition 1.2. For 0 ≤ i ≤ m, define T = (Ti) : C∞
c (Sm) →

(
C∞(TS2)

)m+1 by

Tif(x, ω) =
∫
R

fj1j2···jm(x + tω)ωj1
1 · · ·ωjm−i

1 ω
jm−(i−1)
2 · · ·ωjm

2 dt. (2)

It is straightforward to see that these two definitions are equivalent.
In 2-dimensions, TRT and the standard ray transform [28], also called the longitudinal ray transform 

(LRT), give equivalent information and it is well-known that the latter transform on symmetric tensor fields 
has an infinite dimensional kernel. Hence it is not possible to reconstruct the full tensor field f from its 
transverse ray transform in 2-dimensions. Furthermore, the space of lines in Rn is 2n − 2 dimensional, and 
in dimensions n ≥ 3, the problem of recovery of f from T f is over-determined. Therefore a natural question 
is to investigate the inversion of T restricted to an n-dimensional data set. We address this problem for the 
case of dimension n = 3 in this paper, and the 3-dimensional set of lines we choose is the set of all lines 
passing through a fixed curve γ ∈ R3.

The inversion of TRT and of the corresponding non-linear problem appearing in polarization tomogra-
phy has been considered in several prior works [28,26,29,14,15,24,6,9,19,22]. With respect to the study of 
restricted TRT, we refer to the works [23,6]. Recently a support theorem for TRT in the setting of analytic 
simple Riemannian manifolds was considered by [1].

We study the inversion of restricted TRT using microlocal analysis techniques. We are interested in 
the reconstruction of singularities of the symmetric tensor field f given its restricted TRT. The study of 
generalized Radon transforms in the framework of Fourier integral operators began with the fundamental 
work of Guillemin [11] and Guillemin-Sternberg [12]. Since then, microlocal analysis has become a very 
powerful tool in the study of tomography problems; see [10,8,4,5,31,16,21,27,32,33,30,35,17,2]. Of these 
works, the paper [8] is a fundamental work where Greenleaf and Uhlmann studied a restricted ray transform 
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on functions in the setting of Riemannian manifolds. However, most of these works are done for LRT and 
to the best of our knowledge, other than the support theorem result [1], we are not aware of any prior work 
that studies a restricted TRT from the view point of microlocal analysis.

Specifically, we study the microlocal inversion of the Euclidean TRT on symmetric m-tensor fields given 
the restricted data set consisting of all lines passing through a fixed curve γ in R3. The transverse ray 
transform T defined in (2) restricted to lines passing through the curve γ will be denoted by Tγ and its 
formal L2 adjoint by T ∗

γ . We determine the extent to which the wavefront set of a symmetric m-tensor field 
can be recovered from the wavefront set of its restricted TRT. We are motivated by the related works done 
for restricted LRT [8,20,21,27,18] and we mainly follow the techniques from these works.

The article is organized as follows. §2 is devoted to stating some preliminary results about the restricted 
TRT, to some fundamental results about distributions associated to two cleanly intersecting Lagrangians 
introduced in [25,13,8], the microlocal results relevant for the analysis of our transform, and the statement 
of the main result. We give the proof of the main results in §3 and §4.

2. Preliminaries and statement of the main result

We first state precisely the conditions imposed on the curve γ, and the wavefront set directions that are 
potentially recoverable based on microlocal analysis of the restricted transverse ray transform.

Let B be a ball in R3. Let γ be a smooth regular curve without self-intersections in R3 defined on a 
bounded interval and with its range in the complement of B. We assume that there are uniform upper and 
lower bounds on the number of intersection points of almost every hyperplane passing through the set B
with the curve γ, and that the lower bound is at least m +1 (where m is the order of the tensor field under 
consideration). This condition on the lower bound is a modified form of so-called Kirillov-Tuy condition.

For our microlocal analysis approach to work, we need to restrict ourselves to certain wavefront set 
directions that we can potentially recover. The sets defined below (see [8,27,18]) are motivated by this 
restriction. Given (x, ξ) ∈ T ∗B \ {0}, we denote by H(x, ξ), the plane passing through x and perpendicular 
to ξ. The points {γ(ti)} on the curve γ below refer to the points of intersection of the curve γ and the 
hyperplane H(x, ξ).

Ξ =
{

(x, ξ) ∈ T ∗B \ {0} : there exists at least m + 1 points {γ(tj)}m+1
j=1 such that

all pairs of vectors from {(x− γ(tj))}m+1
j=1 are linearly independent

}
. (3)

Ξ′ =
{

(x, ξ) ∈ Ξ : all the intersection points of H(x, ξ) with γ are transverse
}
.

Ξ′′ =
{

(x, ξ) ∈ Ξ : the tangential intersection points {γ(tj))} satisfy〈γ′′(tj), ξ〉 
= 0
}
.

The potentially recoverable singularities belong to the union Ξ′ ∪Ξ′′ (see the statement of Theorem 2.2 for 
a more precise description). Therefore, without loss of generality, in all the analysis below we will restrict 
ourselves to the cotangent directions in this union. Below we give an example of a curve γ satisfying the 
Kirillov-Tuy condition for vector fields and also discuss the corresponding Ξ, Ξ′, and Ξ′′.

Example 2.1 ([34,36]). For m = 1 (vector fields), consider the curve γ as the union of three orthogonal great 
circles on the sphere of radius 2 (the equator and the meridians of 0◦ and 90◦) and center at the origin. 
Then every plane H intersecting the unit ball B will intersect the curve γ at least two different points γ1
and γ2. And for almost every x ∈ H, the vectors x − γ1 and x − γ2 are linearly independent.

With respect to above example, we have Ξ = Ξ′ = T ∗B \ {0} = B × Rn \ {0} and Ξ′′ is the empty set. 
In this case, the potentially recoverable singularities consist of the set Ξ′. Instead of three great circles, if 
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we consider the curve γ to be union of two orthogonal great circles of radius 2, then the curve γ satisfies 
the Kirillov-Tuy condition of order one for almost every hyperplane. In that case, we have to exclude a set 
of measure zero from Ξ = Ξ′ = T ∗B \ {0} = B ×Rn \ {0} and Ξ′′ is the same as above.

Next we state some preliminary microlocal results concerning the operators Tγ and T ∗
γ Tγ . The proofs 

of these statements follow by suitable adaptations of the arguments given in [20,18] and therefore we skip 
them.

Let us denote by C, the line complex consisting of all lines passing through the curve γ. Let � be a line 
in C and

Z = {(�, x) : x ∈ �} ⊂ C ×R3

be the point-line relation. For given t (in the domain of γ) and ω = (θ1, θ2) ∈ S2, we can define a unique 
line � ∈ C by � = {γ(t) + sω : s ∈ R}. Therefore, we have that (t, ω, s) is a local parametrization of Z. The 
conormal bundle of Z is given by

N∗Z =
{
(�, x; Γ, ξ) : (�, x) ∈ Z and (Γ, ξ)|T(�,x)Z = 0

}
.

It has been shown in [20,18] that N∗Z can be parametrized by {(t, ω, s, Γ, ξ)} where

ξ = z1ω1 + z2ω2 for some z1 and z2 ∈ R, (4)

and ω1, ω2 are given by (1), and

Γ =
(Γ1

Γ2
Γ3

)
=
( −ξ · γ′(t)

−sz1
−sz2 sin θ1

)
. (5)

Lemma 2.1. The map

Φ : (t, θ1, θ2, s, z1, z2) → (t, θ1, θ2,Γ;x, ξ)

with Γ as in (5), ξ as in (4) and x = γ(t) + sω gives a local parametrization of N∗Z at the points where 
θ1 
= 0, π.

Proposition 2.1. Each component of the operator Tγ is a Fourier integral operator of order −1/2 with the 
associated canonical relation C given by (N∗Z)′ where Z = {(�, x) : x ∈ �}. The left and the right projections 
πL and πR from C drop rank simply by 1 on the set

Σ := {(t, θ1, θ2, s, z1, z2) : γ′(t) · ξ = 0}, (6)

where ξ is given by (4). The left projection πL has a blowdown singularity along Σ and the right projection 
πR has a fold singularity along Σ.

We refer the reader to [7] for the definitions of fold and blowdown singularities.

Lemma 2.2. The wavefront set of the Schwartz kernel of T ∗
γ Tγ satisfies

WF (T ∗
γ Tγ) ⊂ Δ ∪ Λ,

where Δ and Λ are defined as follows:
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Δ =
{
(x, ξ;x, ξ) : x = γ(t) + sθ, ξ ∈ θ⊥ \ {0}

}
and (7)

Λ =
{(

x, ξ, y,
τ

τ̃
ξ
)

: x = γ(t) + τθ, y = γ(t) + τ̃ θ, ξ ∈ θ⊥ \ {0},γ′(t) · ξ = 0, τ 
= 0 
= τ̃
}
. (8)

The condition imposed on the curve in the definition of Ξ′′ entails the clean intersection of the sets Δ and 
Λ. We have

Δ ∩ Λ = {(x, ξ;x, ξ) : x = γ(t) + sθ, ξ ∈ θ⊥ \ {0},γ′(t) · ξ = 0}.

Δ ∩ Λ is a smooth submanifold of codimension k = 1 in both Δ or Λ.

Lemma 2.3. [20] The Lagrangian Λ defined in (8) arises as a flowout from the set πR(Σ).

2.1. Paired Lagrangian distributions

We will analyze the operators Tγ and T ∗
γ Tγ in the framework of Ip,l classes of distributions. We refer 

the reader to the three seminal works on this subject [25,13,8]. For the convenience of the reader, we give a 
quick summary of the properties of the Ip,l class of distributions [13] that we require in this paper.

Let u ∈ Ip,l(Δ, Λ), where Δ and Λ are two cleanly intersecting Lagrangians with intersection Σ = Δ ∩Λ. 
As an example, the reader may take Δ and Λ from (7) and (8).

Then

1. WF (u) ⊂ Δ ∪ Λ.
2. Microlocally, the Schwartz kernel of u equals the Schwartz kernel of a pseudodifferential operator of 

order p + l on Δ \ Λ and that of a classical Fourier integral operator of order p on Λ \ Δ.
3. Ip,l ⊂ Ip

′,l′ if p ≤ p′ and l ≤ l′.
4. ∩lI

p,l(Δ, Λ) ⊂ Ip(Λ).
5. ∩pI

p,l(Δ, Λ) ⊂ The class of smoothing operators.
6. The principal symbol σ0(u) on Δ \Σ has the singularity on Σ as a conormal distribution of order l− k

2 , 
where k is the codimension of Σ as a submanifold of Δ or Λ.

7. If the principal symbol σ0(u) = 0 on Δ \ Σ, then u ∈ Ip,l−1(Δ, Λ) + Ip−1,l(Δ, Λ).
8. u is said to be elliptic if the principal symbol σ0(u) 
= 0 on Δ \ Σ if k ≥ 2, and for k = 1, if σ0(u) 
= 0

on each connected component of Δ \ Σ.

The Lagrangian Λ defined in (8) arises as a flowout, and the main tool in the construction of a relative 
left parametrix for our operator T ∗

γ Tγ is the following composition calculus due to Antoniano and Uhlmann 
[3]:

Theorem 2.1 ([3]). If A ∈ Ip,l(Δ, Λ) and B ∈ Ip
′,l′(Δ, Λ), then composition of A and B, A ◦ B ∈

Ip+p′+ k
2 ,l+l′− k

2 (Δ, Λ) and the principal symbol, σ0(A ◦B) = σ0(A)σ0(B), where, k is the codimension of Σ
as a submanifold of either Δ or Λ.

Let B be the ball that appears in the definition of the set Ξ (see (3)) above. Let K ⊂ Ξ′ be a closed conic 
subset. The space of compactly supported distributions in B whose wavefront set is contained in K will be 
denoted by E ′

K(B). We now state the main result.

Theorem 2.2. Let Ξ0 ⊆ Ξ′ be such that Ξ0 ⊆ Ξ′ ∪ Ξ′′ and K be a closed conic subset of Ξ0. There exists an 
operator B ∈ I0,1(Δ, Λ) and an operator A ∈ I−1/2(Λ) such that for any symmetric m-tensor field f with 
coordinates in E ′

K(B),
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BT ∗
γ Tγf = f + Af + smoothing terms.

Remark 2.1. The condition Ξ0 ⊆ Ξ′ implies that the points (x, ξ, x, ξ) ∈ Δ \ Σ and also gives the ellipticity 
of the operator T ∗

γ Tγ ; see (9). Furthermore, the condition Ξ0 ⊆ Ξ′ ∪ Ξ′′ ensures the applicability of the 
functional calculus from [3] (see the statement of Theorem 2.1 above).

The proof of this result is based on a suitable adaptation of the techniques from [8,21,27,18] to the 
TRT setting. To this end, we compute the principal symbol of the operator T ∗

γ Tγ on the diagonal Δ
away from the set Σ and use this to construct a relative left parametrix for this operator. Our inversion 
procedure introduces an additional error term (in addition to smoothing terms) because we are working 
with a restricted transverse ray transform. This error term is a Fourier integral operator associated to the 
known Lagrangian Λ; see (8).

3. Principal symbol of the operator T ∗
γ Tγ

In this section, we give the principal symbol matrix of the operator T ∗
γ Tγ and show that it is elliptic.

The operator T ∗
γ Tγ can be written as

T ∗
γ Tγ =

m∑
i=0

[
R∗

γ

(
ωj1

1 · · ·ωjm−i

1 ω
jm−(i−1)
2 · · ·ωjm

2 ωl1
1 · · ·ωlm−i

1 ω
lm−(i−1)
2 · · ·ωlm

2

)
Rγ

]
,

where Rγ is the restricted scalar ray transform (that is, ray transform of functions) and R∗
γ is its formal 

L2 adjoint. The set K below is as in the statement of Theorem 2.2.

Proposition 3.1. The principal symbol matrix A0(x, ξ) of the operator T ∗
γ Tγ for (x, ξ) ∈ K is

A0(x, ξ) =
∑
j

m∑
i=0

2πωj1
1 (tj) · · ·ωjm−i

1 (tj)ω
jm−(i−1)
2 · · ·ωjm

2 (tj)ωl1
1 (tj) · · ·ωlm−i

1 (tj)ω
lm−(i−1)
2 (tj) · · ·ωlm

2 (tj)
|ξ||(γ′(tj(ξ0)) · ξ0)||(γ(tj(ξ0)) − x)| .

(9)
In (9) above, ξ0 is the unit vector in the direction of ξ, j varies over the number of intersection points of 
the plane H(x, ξ) with the given curve γ.

The derivation of this formula is similar to the one in [20,27,18] and therefore we do not give the details 
here.

Proposition 3.2. For (x, ξ) ∈ K, the principal symbol matrix A0(x, ξ) for ξ 
= 0 is injective.

Proof. For (x, ξ) ∈ T ∗R3 \{0}, without loss of generality, we choose a spherical coordinate system such that 
ω(·) and ω1(·) are parallel to the plane H(x, ξ) and ω2(·) is in the direction of ξ.

The plane H(x, ξ) intersects the curve γ in at least (m + 1) points, say t1, · · · , tm+1, · · · , tj′ .
Denote the collection of unit vectors in the directions x − γ(t1), · · · , x − γ(tj′) by

A =
{
ω(tj) =

x− γj

|x− γj |
: γj = γ(tj), 1 ≤ j ≤ j′

}
where j′ ≥ m + 1.

Now any two of the vectors in A are linearly independent since (x, ξ) ∈ Ξ. This in turn implies that for 
almost all points x, any two of the vectors in the collection
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A′ =
{
ω1(tj) : 1 ≤ j ≤ j′

}
where, recall, ω1(tj) corresponding to ω(tj) defined in (1), is also linearly independent.

Denote the matrix Uq = U1 · · · 1︸ ︷︷ ︸
q

2 · · · 2︸ ︷︷ ︸
m−q

, for 0 ≤ q ≤ m, whose columns are

(
2π

|ξ||(γ′(tj(ξ0)) · ξ0)||(γ(tj(ξ0)) − x)|

)1/2

ω1(tj)�q � ω2(tj)�m−q for 1 ≤ j ≤ j′,

where � denotes the symmetric tensor product. Let us denote the matrix P with column blocks {Ui}, 0 ≤
i ≤ m:

P = (Um Um−1 · · · Uq · · · U0 ) . (10)

Note that the number of rows in P is (m + 2)(m + 1)/2.
We have

A0(x, ξ) = PP t,

with P defined in (10). In Lemma 3.4, we show that Rank(P ) = (m +2)(m +1)/2. Since P has real entries, 
Rank(PP t) = Rank(P ). Therefore the principal symbol matrix A0(x, ξ) has full rank on Δ \ Σ. �
Lemma 3.1. For q ≥ 1, consider a collection of q+1 pair-wise independent vectors v1, · · · , vq+1 in R3. Then 
the collection of vectors

v�q
1 , · · · , v�q

q+1

is also linearly independent.

Proof. We can write vi = ci1v1 + ci2v2 for i ≥ 3 and for two non-zero constants ci1 and ci2.
Assume

q+1∑
i=1

div
�q
i = 0,

for some nonzero constants di. Then using the above, we have

d1v
�q
1 + d2v

�q
2 +

q+1∑
i=3

di (ci1v1 + ci2v2)�q = 0

From this, we get,(
d1 +

q+1∑
i=3

dic
q
i1

)
v�q
1 +

q+1∑
i=3

(
q−1∑
r=1

(
q

r

)
dic

q−r
i1 cri2

)
v�q−r
1 � v�r

2 +
(
d2 +

q+1∑
i=3

dic
q
i2

)
v�q
2 = 0.

Since v1 and v2 are linearly independent, the collection of tensors {v�q−r
1 � v�r

2 : 0 ≤ r ≤ q} is also linearly 
independent. Thus (

d1 +
q+1∑

dic
q
i1

)
= 0, (11)
i=3
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(
d2 +

q+1∑
i=3

dic
q
i2

)
= 0 (12)

and (
q+1∑
i=3

(
q

r

)
dic

q−r
i1 cri2

)
= 0, for 1 ≤ r ≤ q − 1. (13)

Since ci1 and ci2 are both non-zero constants for all i, by factoring out ci1ci2, the system of equations in 
(13) can be written as (

q+1∑
i=3

dic
q−r−1
i1 cr−1

i2

)
= 0, for 1 ≤ r ≤ q − 1.

This can be written as a matrix system

BY = 0,

where

B =

⎛⎜⎜⎜⎜⎜⎝
cq−2
31 cq−2

41 · · · cq−2
q+1,1

cq−3
31 c32 cq−3

41 c42 · · · cq−3
q+1,1cq+1,2

...
...

. . .
...

cq−2
32 cq−2

4,2 · · · cq−2
q+1,2

⎞⎟⎟⎟⎟⎟⎠ (14)

and Y = (d3, · · · , dq+1)t.
Let

qi = ci2
ci1

and bi = (ci1, ci2) for 3 ≤ i ≤ q + 1.

Since any two vectors from {vi : 3 ≤ i ≤ q+1} are linearly independent, we have that any two vectors from 
the set {bi : 3 ≤ i ≤ q + 1} are also linearly independent. This gives that the ratios qi’s are all distinct.

We are interested in proving that Kernel(B) = {0}. It is enough to prove that Kernel(Bt) = {0}. Now

BtX = 0,

gives

q−2∑
r=0

cq−2−r
i1 cri2er = 0,

for 3 ≤ i ≤ q + 1 and X = (e0, · · · , eq−2)t. This in turn gives

q−2∑
r=0

qri er = 0, for 3 ≤ i ≤ q + 1. (15)

We arrive at a Vandermonde matrix and hence X = 0. This then implies that Y = 0. Now going back to 
(11) and (12), we have that d1 = d2 = 0. �
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Lemma 3.2. The matrix Uq satisfies Rank(Uq) ≥ q + 1.

Proof. We are interested in computing the principal symbol at points in Ξ. We have at least m +
1 pairwise linearly independent vectors ω(t1), · · · , ω(tm+1). The corresponding perpendicular vectors 
ω1(t1), · · · , ω1(tm+1) are pairwise linearly independent and are also perpendicular to ξ. Now the collec-
tion of vectors {ω1(t1)�q, · · · , ω1(tq+1)�q} has rank q + 1 by Lemma 3.1. Therefore the rank of the matrix 
whose columns are ω1(t1)�q, · · · , ω1(tm+1)�q is at least q + 1. Finally, the rank of Uq is at least q + 1 as 
well, since ω2(tk)’s are in the direction of the nonzero vector ξ. �
Lemma 3.3. Consider an arbitrary Us for 0 ≤ s ≤ m. Assume that the values of tk corresponding to s + 1
linearly independent columns of Us are tj1 , · · · , tjs+1 . Any column among these s + 1 linearly independent 
columns cannot be written as a linear combination of the columns of the matrices Uq for 0 ≤ q ≤ m, q 
= s

and the remaining s linearly independent columns of the matrix Us.

Proof. After reordering, we may assume with loss of generality that tji = ti for 1 ≤ i ≤ s +1. Fix one of the 
linearly independent columns from Us, say, ω1(t1)�s � ξ�m−s (note that since ω(t1) and ω1(t1) are parallel 
to the plane H(x, ξ), ω2(t1) is in the direction of ξ). Suppose there exists constants cqi’s and dj ’s such that

ω1(t1)�s � ξ�m−s =
m∑

q=0,q �=s

j′∑
i=1

cqiω1(ti)�q � ξ�m−q +
s+1∑
j=2

djω1(tj)�s � ξ�m−s. (16)

We write ω1(ti) =
∑2

j=1 aijω1(tj) for i ≥ 3 for some constants aij . Substituting this above, we have,

ω1(t1)�s � ξ�m−s =
m∑

q=0,q �=s

⎛⎝cq1ω1(t1)�q + cq2ω1(t2)�q +
j′∑
i=3

cqi

⎛⎝ 2∑
j=1

aijω1(tj)

⎞⎠�q⎞⎠� ξ�m−q (17)

+
s+1∑
j=3

dj (aj1)s ω1(t1)�s � ξ�m−s +

⎛⎝d2 +
s+1∑
j=3

dj (aj2)s
⎞⎠ω1(t2)�s � ξ�m−s (18)

+
s−1∑
r=1

s+1∑
j=3

d̃j (aj1)s−r (aj2)r ω1(t1)�s−r � ω1(t2)�r � ξ�m−s. (19)

In the sum above, (17) is the expansion of the first summand in (16) in terms of ω1(t1) and ω1(t2), (18)
contains terms involving the powers of ω1(t1)�s and ω1(t2)�s when the second summand in (16) is expanded 
in terms of ω1(t1) and ω1(t2), and (19) consists of the remaining terms from the second summand in (16). 
Also d̃j are certain new constants involving dj’s and binomial coefficients. This implies, for certain constants 
cr1r2 ,

m∑
q=0,q �=s

∑
r1+r2=q

cr1r2ω1(t1)�r1 � ω1(t2)�r2 � ξ�m−q

+

⎛⎝s+1∑
j=3

dj (aj1)s − 1

⎞⎠ω1(t1)�s � ξ�m−s +

⎛⎝d2 +
s+1∑
j=3

dj (aj2)s
⎞⎠ω1(t2)�s � ξ�m−s

+
s−1∑
r=1

s+1∑
j=3

d̃j (aj1)s−r (aj2)r ω1(t1)�s−r � ω1(t2)�r � ξ�m−s = 0.
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The vectors {ω1(t1), ω1(t2), ξ} are linearly independent. Therefore the collection of tensors {ω1(t1)�j1 �
ω1(t2)�j2 � ξ�j3 : j1 + j2 + j3 = m} is also linearly independent. Thus

cr1r2 = 0 (20)
s+1∑
j=3

dj (aj1)s − 1 = 0 (21)

d2 +
s+1∑
j=3

d̃j (aj2)s = 0 (22)

s+1∑
j=3

d̃j (aj1)s−r (aj2)r = 0 for 1 ≤ r ≤ s− 1. (23)

Note that the product aj1aj2 appears as a factor in (23) and since aj1 and aj2 are both non-zero, we can 
cancel it out and after this write (23) as a matrix system:

AX = 0,

where

A =

⎛⎜⎜⎜⎜⎜⎝
as−2
31 as−2

41 · · · as−2
s+1,1

as−3
31 a32 as−3

41 a42 · · · as−3
s+1,1as+1,2

...
...

. . .
...

as−2
32 as−2

4,2 · · · as−2
s+1,2

⎞⎟⎟⎟⎟⎟⎠ (24)

and

X = (d̃3, d̃4, · · · , d̃s+1)t.

Now the argument proceeds exactly as in Lemma 3.1. Therefore we have {d̃j = 0, 3 ≤ j ≤ s + 1}, and this 
implies dj = 0 for 3 ≤ j ≤ s + 1. However, this contradicts (21). �
Lemma 3.4. The rank of A0 for ξ 
= 0 is (m + 2)(m + 1)/2.

Proof. From the previous lemma, we have that Rank(P ) ≥ (m + 2)(m + 1)/2. Since A0 = PP t and 
Rank(P ) = Rank(PP t), we have that Rank(A0) ≥ (m +2)(m +1)/2. However A0 has exactly (m +2)(m +1)/2
rows and columns. Hence Rank(A0) = (m + 2)(m + 1)/2. �

Now going back to the proof of Lemma 3.2, we have that Rank(Uq) is exactly q + 1 as well.

Remark 3.1. In the general case of fixing a spherical coordinate system independent of the plane H(x, ξ), 
the arguments would follow similarly as above, except that, one would need to consider linear combinations 
of the components Ti of the TRT T in the proofs above.

4. Microlocal inversion

In this section, we give a relative left parametrix for the operator T ∗
γ Tγ . This will complete the proof of 

Theorem 2.2.
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Proof of Theorem 2.2. Now that ellipticity of A0(x, ξ) is shown, the construction of the relative left 
parametrix follows the arguments of [27,18]. We sketch the proof.

Since A0(x, ξ) is a symmetric matrix of order (m +1)(m +2)/2, we diagonalize A0(x, ξ) by an orthogonal 
matrix O such that

A0(x, ξ) = ODOt,

where D is the diagonal matrix consisting eigenvalues of A0 and O is an orthogonal matrix whose columns 
are eigenvectors corresponding to the eigenvalues of A0. Since A0 has full rank, all diagonal entries in D are 
non-zero. Let

B0(x, ξ) = OD−1Ot

where D−1 is the inverse of D. We have

B0(x, ξ)A0(x, ξ) = Id.

Define the matrix b0 as

b0 =
{
B0 if (x, ξ) ∈ Ξ0,

0 otherwise,
(25)

and B0 be the operator with symbol matrix b0(x, ξ). The entries of B0(x, ξ) belong to the symbol of an 
Ip,l(Δ, Λ) class, since the possible singularities of O and D−1 are only on Σ. Note that away from the 
intersection Σ, A0 is a symbol of order −1 and since B0 is formed by inverting A0, B0 is the symbol of a 
pseudodifferential operator of order 1 away from the intersection. Therefore the operator B0 ∈ I0,1(Δ, Λ).

Now the operator T ∗
γ Tγ ∈ I−1,0(Δ, Λ), and since the principal symbol of the composition B0T ∗

γ Tγ on 
Δ away from the intersection Δ ∩ Λ is the product of the respective principal symbols by [3], which by 
construction is the identity on Δ away from Δ ∩Λ, we have that B0T ∗

γ Tγ ∈ I−
1
2 ,

1
2 (Δ, Λ) using the composition 

calculus of Antoniano-Uhlmann; see Theorem 2.1.
Define T1 = B0T ∗

γ Tγ − Id. By construction the principal symbol of T1 is 0. Let us recall the symbol 
calculus for Ip,lΔ, Λ) which is given by the following exact sequence [13]:

0 → Ip,l−1(Δ,Λ) + Ip−1,l(Δ,Λ) → Ip,l(Δ,Λ) σ0−→ Sp,l(Δ,Σ) → 0

where Sp,l(Δ, Σ) denotes the space of product type symbols, see [18, Definition 2.3]. With the help of this 
exact sequence, we decompose T1 as T1 = T11 + T12 where T11 ∈ I−

3
2 ,

1
2 and T12 ∈ I−

1
2 ,− 1

2 .
Since A0 has full rank, we can find two matrices t11 and t12 such that the principal symbol σ0(T1j) = t1jA0

for j = 1, 2.
Let B11 and B12 be the operators having symbol matrices −t11 and −t12 respectively. For B1 = B11 +B12, 

define T2 = (B0 + B1)T ∗
γ Tγ − Id. We have

T2 = (B0 + B1)T ∗
γ Tγ − Id

= B11T ∗
γ Tγ + B12T ∗

γ Tγ + B0T ∗
γ Tγ − Id

= B11T ∗
γ Tγ + T11︸ ︷︷ ︸
K1

+B12T ∗
γ Tγ + T12︸ ︷︷ ︸
K2

.
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In the above expression K1 ∈ I−
3
2 ,

1
2 and K2 ∈ I−

1
2 ,− 1

2 . Also, by construction, σ0(K1) = 0 and σ0(K2) = 0
because σ0(B11T ∗

γ Tγ) = −σ0(T11) and σ0(B12T ∗
γ Tγ) = −σ0(T12). Therefore we can again use the exact 

sequence to decompose K1 and K2 as follows:

K1 = K11 + K12, with K11 ∈ I−
5
2 ,

1
2 ,K12 ∈ I−

3
2 ,− 1

2

K2 = K21 + K22, with K21 ∈ I−
3
2 ,− 1

2 ,K22 ∈ I−
1
2 ,− 3

2 .

Putting this in T2, we get

T2 = K11︸︷︷︸
T20

+K12 + K21︸ ︷︷ ︸
T21

+ K22︸︷︷︸
T22

where T20 ∈ I−
5
2 ,

1
2 , T21 ∈ I−

3
2 ,− 1

2 , T22 ∈ I−
1
2 ,− 3

2 . Therefore

T2 ∈
2∑

j=0
I−

1
2−2+j, 12−j .

Proceeding recursively, we get a sequence of operators

TN ∈
N∑
j=0

I−
1
2−N+j, 12−j .

We write this as

TN ∈
[N2 ]∑
j=0

I−
1
2−N+j, 12−j +

N∑
j=[N2 ]+1

I−
1
2−N+j, 12−j .

In the first sum −1
2 −N + j ≤ −1

2 −N +
[
N
2
]

and 1
2 − j ≤ 1

2 . Similarly in the second sum, −1
2 −N + j ≤ −1

2
and 1

2 − j ≤ −1
2 −

[
N
2
]
. Now we use Ip,l ⊂ Ip

′,l′ for p ≤ p′, l ≤ l′ to get

[N2 ]∑
j=0

I−
1
2−N+j, 12−j ∈ I−

1
2−N+

[
N
2
]
, 12 and

N∑
j=[N2 ]+1

I−
1
2−N+j, 12−j ∈ I−

1
2 ,− 1

2−
[
N
2
]
.

In the limit N → ∞, the first term in the above expression is a smoothing term by the property that 
∩pI

p,l(Δ, Λ) ⊂ C∞ and the second term is an operator A in I−
1
2 (Λ) by the property ∩lI

p,l(Δ, Λ) ⊂ Ip(Λ). 
Finally, we define B = B0 + B1 + · · · and from the construction above, we get,

BT ∗
γ Tγ(f) = f + Af + C∞.

This completes the proof of Theorem 2.2. �
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