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1. INTRODUCTION AND MAIN RESULTS

Consider the semilinear elliptic Dirichlet boundary problem,

��u � f x , u in � , u � 0 on � � , 1Ž . Ž .

N Ž .where � � R N � 1 is a bounded smooth domain and f : � � R � R
is a Caratheodory function. Throughout this paper we assume that there´

qŽ .are a positive constant C and a real function f � L � such that1 0

p�1 �� �f x , t � C t 	 f x and f �, 0 � L � 2Ž . Ž . Ž . Ž . Ž .1 0

2 N
 � 
 �for all t � R and a.e. x � �, where p � 2, for N � 3, p � 2, 	�N � 2

for N � 1, 2, and 1�q 	 1�p � 1. Let

0 � � � � � � � ���1 2 3
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be the sequence of the distinct eigenvalues of the eigenvalue problem

��u � �u in � , u � 0 on � � ,

and let k be a fixed positive integer.
With the reduction method, the existence and multiplicity results of

Ž .solutions are obtained for the nonresonant or resonant elliptic problem 1
Ž � 
 . � 
see 1, 2, 4�6, 8 and their references . Motivated by the results in 8 , Cac
� 
4 proved the following theorem under the condition that there are
positive constants c , c such that1 2

� �f x , t � c 	 c t iŽ . Ž .1 2

for all t � R and a.e. x � �.

� 
THEOREM A 4 . Suppose that

Ž . �Ž . Ž .P1 There exists a real function a � L � with a x � � for a.e.k	1
x � �,

meas x � � � a x � � � 0 ii� 4Ž . Ž .k	1

and

f x , s � f x , tŽ . Ž .
� a x iiiŽ . Ž .

s � t

for all s, t � R, s � t, and a.e. x � �.
Ž . �Ž .P2 There exist real functions h , h � L � � R and a constant1 2

M � 0 such that

� t 	 h x , t f x , t � t � h x , tŽ . Ž . Ž .k 1 k	1 2� � ivŽ .
t t t

� �for all t � M and a.e. x � �. Moreo�er, we assume that

H x , u dx � 	� vŽ . Ž .H 1
�

� � Ž .as u � � in E � , and thatk

H x , u dx � 	� viŽ . Ž .H 2
�

� � Ž . Ž . t Ž .as u � � in E � , where H x, t � H h x, s ds, i � 1, 2.k	1 i 0 i
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Ž . Ž . Ž . Ž .I Then under the assumptions P1 and P2 the problem in 1 has
1Ž .at least one solution in H � .0

Ž . Ž . Ž .II Assume in addition to P1 and P2 that
Ž . Ž .P3 f x, 0 � 0 for a.e. x � � and there exists � � 0 such that

f x , tŽ .
� � viiŽ .kt

� �for all 0 � t � � and a.e. x � �.

Ž . 1Ž .Then the problem in 1 has at least one nontri�ial solution in H � .0

Ž . Ž . Ž . Ž .III In the case k � 1 assume in addition to P1 , P2 , and P3 that
Ž .P4

f x , tŽ .
� � viiiŽ .k�1t

for all t � 0 and a.e. x � �.

Ž .Then the problem in 1 has at least two nontri�ial solutions if the
eigen�alue � is simple.k

� 
Moti�ated by 4 , we obtain some existence and multiplicity results which
generalize the results mentioned abo�e. Our approach is based on the reduc-
tion method and the minimax methods. The main results are the following
theorems.

Ž .THEOREM 1. Suppose that 2 holds and that there exists a real function
�Ž . Ž .a � L � with a x � � for a.e. x � �,k	1

meas x � � � a x � � � 0 3� 4Ž . Ž .k	1

and

f x , s � f x , tŽ . Ž .
� a x 4Ž . Ž .

s � t

for all s, t � R, s � t, and a.e. x � �. Assume that there exist M � 0 and a
measurable function h: � � R � R with

h x , t � g x 5Ž . Ž . Ž .
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1Ž .for all t � R, a.e. x � �, and some real function g � L � , and

H x , u dx � 	� 6Ž . Ž .H
�

� � Ž .as u � � in E � , such thatk

f x , t � t 	 h x , tŽ . Ž .k� 7Ž .
t t

� � Ž . t Ž .for all t � M and a.e. x � �, where H x, t � H h x, s ds. Then the0
Ž . 1Ž .problem in 1 has at least one solution in H � .0

Ž .Remark 1. Theorem 1 generalizes I of Theorem A. In fact, Theorem
Ž . Ž .1 does not need condition vi and the right inequality of iv of Theorem

Ž . �Ž . Ž .A. Moreover, 5 is weaker than h � L � � R and 2 is weaker than1
Ž .i . There are functions f satisfying our Theorem 1 and not satisfying
Theorem A. For example, let

f x , t � � t 	 � � � 	 t 
 x ,Ž . Ž . Ž . Ž .k k	1 k

where

2 � �t� 1 	 t t � 1Ž .
	 t �Ž . ½ � �t� 2 � t t � 1Ž .

and

� ��Ž2 N�1.�4 � �� x � x x � x � r0 0
 x �Ž . ½ � �1 x � x � r .0

Ž . Ž .Choose x � �, r small enough that the ball B x , r � �, and H 
 x dx0 0 �

Ž . Ž .� 0. Then f satisfies our Theorem 1 and does not satisfy iv and v in
Theorem A.

Ž . Ž .THEOREM 2. Suppose that 2 � 7 hold and that there exist a real function
Ž . �Ž . Ž .b � � L � with b x � � for a.e. x � �,k

meas x � � � b x � � � 0, 8� 4Ž . Ž .k

and � � 0 such that

f x , tŽ .
� b x 9Ž . Ž .

t
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� � Ž .for all 0 � t � � and a.e. x � �. Then the problem in 1 has at least one
1Ž .nontri�ial solution in H � .0

Ž . � 
Remark 2. Theorem 2 generalizes II of Theorem A in 4 . In fact,
Ž . Ž .besides the reason in Remark 1, 9 is weaker than vii of Theorem A.

There are functions f satisfying our Theorem 2 and not satisfying Theo-
rem A. For example, let

� ��b x t t � 1�2Ž .
� � � �2b x � � t 	 � � b x t t 	 � � b x t� 4 tŽ . Ž . Ž . Ž .Ž . Ž . Ž .
f x , t �Ž .

� �1�2 � t � 1� � � � ��t � � � b x 3t� 4 t t � 1,Ž . Ž .Ž .


 � Ž . �Ž .where � is a constant in � , � and b x is a real function in L �k k	1
Ž .with b x � � for a.e. x � �,k

meas x � � � b x � � � 0.� 4Ž . k

Ž . Ž .THEOREM 3. Suppose that 2 � 7 hold and that there exist 0 � m � k
Ž . �Ž . Ž .and a real function b � � L � with b x � � for a.e. x � �,m

meas x � � � b x � � � 0, 10� 4Ž . Ž .m

and � � 0 such that

f x , tŽ .
� � � b x 11Ž . Ž .m� 1 t

� � Ž .for all 0 � t � � and a.e. x � �. Then the problem in 1 has at least two
1Ž .nontri�ial solutions in H � .0

Ž .Remark 3. Theorem 3 generalizes III of Theorem A. In fact, besides
the reason in Remarks 1 and 2, Theorem 3 does not need the condition

Ž .that the eigenvalue � is simple, and the left inequality of 11 is weakerk
Ž .than viii of Theorem A. There are functions f satisfying our Theorem 3

� 
and not satisfying the corresponding results in 1, 2, 4�6, 8 . For example,
let

� ��b x t t � 1�2Ž .
� � � �2b x � � t 	 � � b x t t 	 � � b x t� 4 tŽ . Ž . Ž . Ž .Ž . Ž . Ž .
f x , t �Ž .

� �1�2 � t � 1� � � � ��t � � � b x 3t� 4 t t � 1,Ž . Ž .Ž .
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 � Ž . �Ž .where � is a constant in � , � and b x is a real function in L �k k	1
Ž . Ž .with � � b x � � 0 � m � k for a.e. x � �, andm� 1 m

meas x � � � b x � � � 0.� 4Ž . m

2. PROOF OF THEOREMS

1Ž .Define the functional � on the Sobolev space H � by0

1 2 1� �� u � � u 	 F x , u dx , u � H � ,Ž . Ž . Ž .H 02
�

Ž . t Ž . � � Ž � � 2 .1�2where F x, t � H f x, s ds, and u � H �u dx is the usual norm0 �
1Ž .in H � . Then � is continuously differentiable and0

² � :� u , � � � �u �� dx 	 f x , u � dxŽ . Ž .H H
� �

1Ž . 1Ž .for u, � � H � . It is well known that u � H � is a solution of0 0
Ž .problem 1 if and only if u is a critical point of �. Let

H � E � � ��� � E � ,Ž . Ž .k 1 k

� Ž .V � H , and W � V , where E � stands for the eigenspace correspond-k i
ing to � , i.e., the finite-dimensional space spanned by the eigenfunctionsi
corresponding to � . Define the functional 
 ,i


 � � sup � � 	 w , � � V .Ž . Ž .
w�W

Ž . �Ž . Ž .LEMMA 1. Suppose that a � � L � with a x � � for a.e. x � �,l
and

meas x � � � a x � � � 0.� 4Ž . l

Then there exists a constant a � 1 such that0

2 � � 2a x w dx � a �w dxŽ .H H0
� �

for all w � H � .l�1
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� 4� �Proof. If not, there exists a sequence w � H such thatn n�1 l�1

1 22 � �a x w dx � 1 � �w dxŽ .H Hn nž /n� �

for all n, which implies that w � 0 for all n. By the homogeneity of then
� �above inequality we may assume that w � 1 andn

1
2a x w dx � 1 � 12Ž . Ž .H n n�

for all n. It follows from the weak compactness of the unit ball of H �
l�1

� 4that there exists a subsequence, say w , such that w weakly converges ton n
w in H � . Now Sobolev’s embedding theorem suggests that w convergesl�1 n

2Ž . Ž .to w in L � . From 12 we obtain

a x w2 dx � 1.Ž .H
�

Moreover, one has

� � 2 � � 2 � � 21 � �w dx � � w dx � a x w dx � 1.Ž .H H Hl
� � �

Hence we have

� � 2 � � 21 � �w dx � � w dxH Hl
� �

and

� � 2� � a x w dx � 0,Ž .Ž .H l
�

Ž . � 4which implies that w � E � � 0 and w � 0 on a positive measure subset.l
It contradicts the unique continuation property of the eigenfunction.

Ž . Ž .LEMMA 2. Suppose that 2 and 4 hold. Then 
 : V � R is continuously
differentiable and


 � � � P �� � 	 � � , � � V ,Ž . Ž .Ž .V

1Ž .where P : H � � V is the corresponding projection onto V along W, andV 0
� : V � W is a continuous mapping satisfying


 � � � � 	 � �Ž . Ž .Ž .
for e�ery � � V.
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Ž .It is a simple corollary that � 	 � � is a critical point of � if � is a critical
point of 
 .

Ž .Proof. For � � V, w � W, it follows from 4 and Lemma 1 that

² � � :� � � 	 w � �� � 	 w , w � wŽ . Ž .Ž .w 1 w 2 1 2

2� � w � w dxŽ .H 1 2
�

� f x , � 	 w � f x , � 	 w w � w dxŽ . Ž . Ž .Ž .H 1 2 1 2
�

2 2� � w � w dx � a x w � w dxŽ . Ž . Ž .H H1 2 1 2
� �

2� 1 � a � w � w dx .Ž . Ž .H0 1 2
�

� 
It follows easily from Theorem 2.3 of Amann 1 that the lemma holds.

Ž . Ž . Ž .LEMMA 3. Suppose that 2 and 5 � 7 hold. Then � is coerci�e on V,
i.e.,

� �� � � 	� as � � � in V .Ž .

Thus 
 is coerci�e.

Ž . Ž . Ž .Proof. Let Q x, t � f x, t � � t � h x, t andk

C x � min inf Q x , t , sup Q x , t .Ž . Ž . Ž .½ 5
0�t�M �M�t�0

Then one has

� �0 t � M
Q x , t t �Ž . ½ � �C x t t � MŽ .

for a.e. x � �. Hence we have

M�
0 s �

� �t
Q x , st t �Ž . M
C x t 0 � s �Ž .� � �t
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� 
for a.e. x � �. Integrating the two sides in s over 0, 1 , we obtain

t1 � �M� t
Q x , st t ds � C x t ds � C x MŽ . Ž . Ž .H H � �t0 0

for all t � 0 and a.e. x � �, which implies that

1 2F x , t � � t 	 H x , t � C x MŽ . Ž . Ž .k2

Ž .for all t � R and a.e. x � �. Hence for u � H , � � E � , we havek�1 k


 u 	 � � � u 	 �Ž . Ž .
21� � � u 	 � dx 	 F x , u 	 � dxŽ . Ž .H H2

� �

2 21 1� � � u 	 � dx 	 � u 	 � dxŽ . Ž .H Hk2 2
� �

	 H x , u 	 � dx � M C x dxŽ . Ž .H H
� �

2 21 1� � � u 	 � dx 	 � u 	 � dx 	 H x , � dxŽ . Ž . Ž .H H Hk2 2
� � �

1
	 h x , su 	 � u dt dx � M C x dxŽ . Ž .H H H

� 0 �

1 2 � �� � � � u dx � g x dx uŽ . Ž .H H �k k�12
� �

	 H x , � dx � M C x dx ,Ž . Ž .H H
� �

Ž .which implies that � is coercive on V by 6 and the equivalence of the
� � 2 � �norms u and u in the finite-dimensional space H .L � k�1

Ž . Ž . Ž . Ž .LEMMA 4. Let V � E � 	 ��� 	E � . Suppose that 3 , 4 , and2 m k
Ž .11 hold. Then there exists � � 0 such that0

� �
 � � 0 for � � V with � � � .Ž . 2 0

Ž .Proof. It follows from 4 that

f x , t t � f x , 0 t 	 a x t 2Ž . Ž . Ž .
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for all t � R and a.e. x � �. Hence one has

f x , ts t � f x , 0 t 	 a x st 2Ž . Ž . Ž .

for all t � R, 0 � s � 1, and a.e. x � �, which implies that

1 2F x , t � f x , 0 t 	 a x tŽ . Ž . Ž .2

1 2� �� f x , 0 t 	 � tŽ . � k	12

� � p� C t2

11�p 2�p� � � Ž .�for all t � � and a.e. x � �, where C � f x, 0 � 	 � � .�2 k	12
Ž .Moreover, by 11 we have

1 p2 � �F x , t � b x t 	 C t 13Ž . Ž . Ž .22

for all t � R and a.e. x � �. By Sobolev’s embedding theorem, there
exists C � 0 such that

� � p � �u � C uL

1Ž .for all u � H � . From Lemma 1 there exists b � 1 such that0 0

2 � � 2b x u dx � b �u dx 14Ž . Ž .H H0
� �

for all u � H � . It follows from the continuity of � that there existsm� 1

 �� � 0, � such that0

Ž .1� p�21 � b0� 	 � � �Ž . pž /2C C2

� � Ž . Ž .for all � � V with � � � . Thus 13 and 14 imply that2 0


 � � � � 	 � �Ž . Ž .Ž .
p2 21 1

p� � � 	 � � 	 b � 	 � � 	 C � 	 � �Ž . Ž . Ž . L0 22 2

1 � b p0 2 p� � � 	 � � 	 C C � 	 � �Ž . Ž .22

� 0

� �for all � � V with � � � .2 0
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Proof of Theorem 1. It follows from Lemma 3 that 
 is coercive, which
Ž .implies that 
 satisfies the PS condition. By the proof of Lemma 3, to

prove that � is bounded from below we only need to prove that
Ž . Ž . Ž .H H x, � dx is bounded from below for � in E � . From 6 there exists� k

Ž . Ž . � �M � 0 such that H H x, � dx � 0 for all � � E � with � � M. By the� k
Ž .finite dimensionality of E � , there exists C � 0 such thatk 3

� �sup � x � x � � � C �� 4Ž . 3

Ž . Ž .for all � � E � . Moreover, it follows from 5 thatk

� �H x , � dx � g x � dxŽ . Ž .H H
� �

� �� C � g x dxŽ .H3
�

� �� C � ,4

which implies that

H x , � dx � �C MŽ .H 4
�

Ž .for all � � E � . Hence 
 is bounded from below. It follows fromk
� 
Theorem 4.4 in 7 that 
 has a minimum, which leads to Theorem 1.

Proof of Theorem 2. It follows from the proof of Theorem 1 that 
 has
Ž .a minimum � . We only need to prove � � 0. � 0 � 0 implies that0 0

Ž .
 0 � 0. By Lemma 4, one has


 � � 0Ž .

Ž . � �for all � � E � with � � � . In the case where inf 
 � 0, it is obviousk 0
Ž . � �that � � 0. In the case where inf 
 � 0, all � � E � with � � � are0 k 0

minimum of 
 . Hence 
 has at least one nontrivial minimum, which
implies Theorem 2.

Proof of Theorem 3. By the finite dimensionality of V and Lemma 3 we
Ž .know that 
 satisfies the PS condition.

Ž . Ž . Ž . Ž .Let V � E � 	 ��� 	E � , V � E � 	 ��� 	E � . By the fi-1 1 m�1 2 m k
nite dimensionality of V , there exists C � 0 such that1 5

� �sup � x � x � � � C �� 4Ž . 5
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� 4 � �for all � � V . Let � � min � , ��C . Then for � � V , � � � , one1 1 0 5 1 1
has

1 2 1 2
2� � � �
 � � � � � � � 	 � � � 0.Ž . Ž . Lm�12 2

Ž . � �In the case where inf 
 � � 0, all � � V with � � � are infi-� � V 2 0
mum of 
 by Lemma 4, which implies that 
 has infinite critical points.

Ž .In the case where inf 
 � � 0, from the proof of Theorem 1 we� � V
� 
know that 
 is bounded from below. It follows from Theorem 4 in 3 that


 has at least two nonzero critical points by Lemma 4. Hence � has at
Ž .least two nonzero critical points. Thus problem 1 has at least two

1Ž .nontrivial solutions in H � .0
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