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Abstract

LetX be a real or complex Banach space. Let algN and algM be two nest algebras onX. Suppose
thatφ is an additive bijective mapping from algN onto algM such thatφ(A2) = φ(A)2 for every
A ∈ algN . Thenφ is either a ring isomorphism or a ring anti-isomorphism. Moreover, ifX is a
real space or an infinite dimensional complex space, then there exists a continuous (conjugat
bijective mappingT such that eitherφ(A) = T AT −1 for everyA ∈ algN or φ(A) = T A∗T −1 for
everyA ∈ algN .
 2003 Published by Elsevier Inc.
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1. Introduction and preliminaries

Let A andB be rings. An additive mappingφ :A → B is called a Jordan homomo
phism if φ(a2) = φ(a)2 holds for alla ∈ A. In addition, ifφ is bijective thenφ is called
a Jordan isomorphism. The study of Jordan homomorphisms between rings was in
by Anococha [2] in connection with problems arising in projective geometry. Since
Jordan homomorphisms between rings has been investigated in a series of papers
and references therein). Some results will be made of use in the present paper.

The utility of the study of Jordan isomorphisms of Banach algebras was noted by
son [7] in the study of isometries ofC∗-algebras. In fact, it is often found that an isome
Φ between Banach algebras can be written as in the formΦ = Uφ, whereφ is a Jordan
homomorphism andU is a suitable unitary element [3,10,12]. In [7], Kadison proved
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a Jordan∗-isomorphism from a von Neumann algebra onto another can be decom
into the sum of a∗-isomorphism and a∗-anti-isomorphism by a central projection. Th
result was extended by Palacios [10]. In [12], Solel showed that every Jordan isomo
of CSL algebras (on a Hilbert space), whose restriction to the diagonal of the alge
a selfadjoint map, is the sum of an isomorphism and an anti-isomorphism. It follow
such a Jordan isomorphism of nest algebras on a Hilbert space is either an isomorp
an anti-isomorphism. In [8], we extended this result. More precisely, we proved that
Jordan isomorphism between nest algebras on a Hilbert space is either an isomorp
an anti-isomorphism. In these discussions, a Jordan homomorphism of Banach alg
usually assumed to be linear. A more general approach would be to consider these a
only as rings. Let us recall that a ring (anti-)isomorphism of algebras is a bijective ad
and (anti-)multiplicative mapping. It is clear that a ring (anti-)isomorphism of algebr
a Jordan isomorphism.

In the present paper, we study additive Jordan isomorphisms between nest alge
a Banach algebra. We define again: an additive Jordan isomorphism of Banach alge
an additive bijective mapping which preserves squares, so it is not assumed to be
In Section 3, we shall prove that an additive mapping between nest algebras on a B
space is an additive Jordan isomorphism if and only if it is a ring isomorphism or a
anti-isomorphism. To prove this result, in Section 2 we improve the concept of nilp
Jordan ideals in a nest algebra introduced in [8], where we characterized linear
isomorphisms of nest algebras on Hilbert spaces. In Section 4, the general spatial
additive Jordan isomorphisms between nest algebras on a Banach space will be o
That is, if the Banach space under considering is real or complex infinite dimensiona
all such mapping are linear or conjugate linear, and hence they are spatially implem

Now we recall some definitions and notations.
Throughout,F ∈ {R,C}, X is a Banach space overF, dimX > 1, B(X) is the set of all

linear bounded operators onX, andX∗ is the dual Banach space ofX. For a subspaceL of
X and two subsetsT andS of B(X), we writeT L = {T x: T ∈ T , x ∈ L}, L⊥ = {f ∈ X∗:
f (x) = 0, ∀x ∈ L}, andT S = {T S: T ∈ T , S ∈ S}. A chainN of closed subspaces ofX

is called a nest if it contains the trivial subspaces{0} andX and if it is closed under inter
section and closed span. We setN0 =N \ {0,X}. ForE ∈N , we defineE− =∨{F ∈N :
F < E} andE+ =∧{F ∈ N : F > E}. We also define 0− = 0 andX+ = X. If 0+ = 0
andX− = X, we say thatN is sub-continuous. The nest algebra algN corresponding to
the nestN is defined by algN = {T ∈ B(X): T E ⊆ E, ∀E ∈ N }. For non-zero vector
x ∈ X andf ∈ X∗, a rank one operatorx ⊗ f is defined by(x ⊗ f )y = f (y)x for every
y ∈ X.

We need the following elementary facts about nest algebras and Jordan isomorp

Lemma 1.1 [13, Lemma 1].Let N be a nest onX. Thenx ⊗ f belongs toalgN if and
only if there exists an elementE ∈ N such thatx ∈ E andf ∈ (E−)⊥.

It should be mentioned that ifx ∈ E andf ∈ E⊥ for E ∈ N0 thenx ⊗ f ∈ algN .

Lemma 1.2. LetN be a nests onX andT be inB(X). If T A = AT for everyA in algN ,
thenT = λI for λ ∈ F, whereI is the identity operator onX.
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Proof. It is certainly well known. Here we give an elementary proof which will pla
demonstrative role in the proof of the related results below. LetE be inN with E− < X

and non-zero functionalf be in(E−)⊥. Thenx ⊗f ∈ algN for all x ∈ E. ThusT x ⊗f =
x ⊗f T , and hence there exists a scalarλ(E) ∈ F such thatT x = λ(E)x. SinceE1 � E2 or
E2 � E1 for all E1,E2 ∈N , we have thatλ(E1) = λ(E2). Consequently, there is a scalaλ
in F such thatT x = λx for all x ∈⋃{E ∈ N : E− < X}. Since

∨{E ∈N : E− < X} = X,
we obtain thatT = λI . ✷
Theorem 1.3. LetN andM be nests onX. Suppose thatφ is an additive Jordan isomor
phism fromalgN ontoalgM. Then for anyA,B,C ∈ algN , we have

(i) φ(AB + BA) = φ(A)φ(B) + φ(B)φ(A);
(ii) φ(ABA) = φ(A)φ(B)φ(A);
(iii) φ(ABC + CBA) = φ(A)φ(B)φ(C) + φ(C)φ(B)φ(A);
(iv) φ(I) = I ;
(v) AB = 0 andBA = 0 if and only ifφ(A)φ(B) = 0 andφ(B)φ(A) = 0.

Proof. Parts (i)–(iii) can be found in [6]. Parts (iv) and (v) can be obtained u
Lemma 1.2 and the same argument in proofs of Propositions 3 and 4 in [8].✷

2. Nilpotent Jordan ideals

We begin with a definition.

Definition 2.1. A subsetJ of a Banach algebraA is called a nilpotent Jordan ideal
J 2 = {0} and AB + BA ∈ J for everyA ∈ J and for everyB ∈ A. J is a maximal
nilpotent Jordan ideal if there are no nilpotent Jordan ideals properly containing it.

It follows from Theorem 1.3(i) and (v) that an additive isomorphism maps a nilpo
Jordan ideal to a nilpotent Jordan ideal. Now we shall give a model for maximal nilp
Jordan ideals of a nest algebra. LetN be a nest onX. Recall thatN0 = {E ∈ N : 0 <

E < X}. ForE ∈N0, we define

I(N ,E) = {
T ∈ algN : T E = {0} andT X ⊆ E

}
.

By the Hahn–Banach extension theorem, it is easy to see that

I(N ,E) = {
T ∈ algN : T E = {0} andT ∗E⊥ = {0}}.

Remark 2.2. Let N be a nest onX. Then

(1) If x ∈ E andf ∈ E⊥ for E ∈ N0, thenx ⊗ f is in I(N ,E). We will see that those
rank one operators are useful elements inI(N ,E).

(2) Let E and F be in N0 such thatE � F . For every B ∈ I(N ,E), since its
range is contained inE, we have thatAB = 0 for everyA ∈ I(N ,F ) and hence
I(N ,F )I(N ,E) = 0. This simple observation will play an important role.
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(3) Let E and F be in N0 such thatE �= F . We may assume thatE < F . Then by
the Hahn–Banach extension theorem, there existf ∈ E⊥ while f /∈ F⊥. Thus for
a non-zero vectorx ∈ E, x ⊗ f is in I(N ,E) but not inI(N ,F ), which implies that
I(N ,E) �= I(N ,F ).

It is easy to verify thatI(N ,E) is a nilpotent Jordan ideal of algN . Moreover, we have

Lemma 2.3. Let N be a nest onX. If J is a nilpotent Jordan ideal ofalgN such that
J ⊇ I(N ,E) for someE ∈ N0, thenJ = I(N ,E).

Proof. Suppose thatS ∈ J . Let x be inE andf be inE⊥. Sincex ⊗ f ∈ I(N ,E), we
have

Sx ⊗ f = 0 and x ⊗ f S = 0,

and henceAx = 0 andA∗f = 0. Sincex andf are arbitrary,SE = {0} andS∗E = {0}.
Namely,S ∈ I(N ,E). ✷
Theorem 2.4. LetN be a nest onX. Suppose thatJ is a maximal nilpotent Jordan idea
of algN andJ �= {0}. Then there exists an elementE in N0 such thatJ = I(N ,E).

Proof. Define

E =
∧

{L ∈N : JX ⊆ L}, F =
∨{

L ∈N : JL = {0}}.
ThenJX ⊆ E andJF = {0}. SinceJ �= {0}, we have thatE > 0 andF < X.

We claim thatE � F . OtherwiseE > F . Then we can takeT ,S ∈ J and vectorse, f

such thate ⊗ f ∈ algN andT e ⊗ f S �= 0 as follows. Note thatE =∧{L ∈N : J ∗L⊥ =
{0}}. If F = E−, by the definition ofE andF , there existe ∈ E \F , f ∈ F⊥, andT ,S ∈J
such thatT e �= 0 �= S∗f . If F �= E−, then there is an elementP in N such thatF < P < E.
By the definition ofE and F , there exite ∈ P \ F , f ∈ P⊥, andT ,S ∈ J such that
T e �= 0 �= S∗f .

SinceJ is a Jordan ideal,A = T e ⊗ f + e ⊗ f T ∈J . ThusAS = 0. But

AS = T e ⊗ f S + e ⊗ f T S = T e ⊗ f S �= 0.

ThereforeE � F , and thenE ∈ N0 andJ ⊆ I(N ,E). By the maximality, we have tha
J = I(N ,E). ✷

Let N andM be nests onX. Suppose thatφ is an additive Jordan isomorphism fro
algN onto algM. For everyE ∈ N0, by Lemma 2.3,I(N ,E) is a maximal nilpoten
Jordan ideal in algN . It follows from Theorem 1.3(i) and (v) thatφ(I(N ,E)) is also a
maximal nilpotent Jordan ideal in algM. By Theorem 2.4 and Remark 2.2(3), there is o
one element̂E ∈M0 such thatφ(I(N ,E)) = I(M, Ê). Define a map̂φ fromN0 to M0
by φ̂(E) = Ê if E is in N0 such thatφ(I(N ,E) = I(M, Ê). We will call φ̂ the induced
map ofφ.

Proposition 2.5. Let N and M be nests onX. Suppose thatφ is an additive Jordan
isomorphism fromalgN ontoalgM. Thenφ̂, the induced map ofφ, is bijective.
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Proof. First we show that̂φ is injective. Indeed, if̂φ(E) = φ̂(F ) for someE, F in N0, then
φ(I(N ,E)) = φ(I(N ,F )). Applying φ−1 to this equality, we getI(N ,E) = I(N ,F ).
By Remark 2.2(3),E = F .

Consideringφ−1 instead ofφ. For every elementF ∈ M0, φ−1(I(M,F )) is a maximal
nilpotent Jordan ideal of algN . Hence there is an elementE in N0 such thatI(N ,E) =
φ−1(I(M,F )). Thusφ(I(N ,E)) = I(M,F ) and henceF = φ̂(E). That is to say,̂φ is
surjective. ✷

The next goal is to prove that̂φ is either order-preserving (i.e.,P < Q impliesφ̂(P ) <

φ̂(Q)) or anti-order preserving (i.e.,P < Q implies φ̂(P ) > φ̂(Q)). For convenience, in
the rest of this section and in Section 3, we shall useÊ to denote the image ofE underφ̂.

Lemma 2.6. LetN , M, φ, andφ̂ be as in Proposition2.5. Suppose thatP andQ are in
N0 such thatP < Q andP̂ < Q̂. ThenQ̂ < Ê for everyE in N0 satisfyingQ < E.

Proof. Let E be inN0 such thatQ < E.
If P̂ < Ê < Q̂, takex ∈ P , y ∈ E, f ∈ Q⊥, g ∈ E⊥ such thatf (y) = 1. Theny ⊗ g

is in I(N ,E) andx ⊗ f is in I(N ,P ) ∩ I(N ,Q). Thusφ(y ⊗ g) is in I(M, Ê) and
φ(x ⊗ f ) is in I(M, P̂ ) ∩ I(M, Q̂). SinceP̂ < Ê < Q̂, by Remark 2.2(2), we have th
φ(y ⊗ g)φ(x ⊗ f ) = 0 andφ(x ⊗ f )φ(y ⊗ g) = 0. It follows from Theorem 1.3(v) tha
(x ⊗ f )(y ⊗ g) = 0. But this is impossible, since(x ⊗ f )(y ⊗ g) = x ⊗ g �= 0.

If Ê < P̂ < Q̂, takex ∈ P , y ∈ Q, f ∈ P⊥, g ∈ E⊥ such thatf (y) = 1. Thenx⊗f is in
I(N ,P ) andy ⊗g is in I(N ,Q)∩I(N ,E). Thusφ(x ⊗f ) is in I(M, P̂ ) andφ(y ⊗g)

is in I(M, Q̂) ∩ I(M, Ê). Since Ê < P̂ < Q̂, we have thatφ(y ⊗ g)φ(x ⊗ f ) = 0
andφ(x ⊗ f )φ(y ⊗ g) = 0. Hence,(x ⊗ f )(y ⊗ g) = 0. But this is impossible, sinc
(x ⊗ f )(y ⊗ g) = x ⊗ g �= 0.

Consequently,̂Q < Ê. ✷
Lemma 2.7. LetN , M, φ, andφ̂ be as in Proposition2.5. Suppose thatP andQ are in
N0 such thatP < Q andP̂ < Q̂. ThenÊ < P̂ for everyE in N0 satisfyingE < P .

Proof. Applying Lemma 2.6 toφ̂−1, P̂ < Q̂ < Ê is impossible. IfP̂ < Ê < Q̂, let
non-zero vectorsx ∈ E, f ∈ E⊥, y ∈ P , g ∈ Q⊥ such thatf (y) = 1. Thenx ⊗ f ∈
I(N ,E) and y ⊗ g is in I(N ,P ) ∩ I(N ,Q). Thus φ(y ⊗ g)φ(x ⊗ f ) = 0 and
φ(x ⊗ f )φ(y ⊗ g) = 0. It follows from Theorem 1.3(v) that(x ⊗ f )(y ⊗ g) = 0. But
this is impossible. Consequently,Ê < P̂ . ✷
Theorem 2.8. LetN andM be nests onX. Suppose thatφ is an additive Jordan isomor
phism fromalgN ontoalgM. Thenφ̂, the induced map ofφ, is either order-preserving o
anti-order preserving.

Proof. Suppose that there areP < Q in N0 such thatP̂ < Q̂. LetE andF be two arbitrary
elements inN0 such thatE < F . We will prove thatÊ < F̂ .
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Case1: E < F < P < Q. Then by Lemma 2.7,̂F < P̂ . Hence by Lemma 2.7 agai
Ê < F̂ .

Case2: P < Q < E < F . Then by Lemma 2.6,̂Q < Ê. By Lemma 2.6 again,̂E < F̂ .
Case3: P < E < Q < F . Then by Lemma 2.6,̂P < Q̂ < F̂ . And hence, by Lemma 2.7

Ê < Q̂ < F̂ .
Case4: E < P < Q < F . Then by Lemmas 2.6 and 2.7,Ê < P̂ < Q̂ < F̂ .
Case5: E < P < F < Q. Then by Lemma 2.7,̂E < P̂ . By Lemma 2.6,Ê < P̂ < F̂ .
Case6: P < E < F < Q. If Ê > F̂ , by Lemma 2.6,P̂ > Ê and by Lemma 2.7,̂F > Q̂.

ThereforeQ̂ < F̂ < Ê < P̂ , which conflicts with the hypothesiŝP < Q̂. ThusÊ < F̂ .
Since Cases 1–6 exhaust all possibilities, we getÊ < F̂ . ✷
In the next section, we shall refer toφ itself as being order preserving or anti-ord

preserving aŝφ is order preserving or anti-order preserving, respectively.

Corollary 2.9. Let N andM be nests onX. Suppose thatalgN is additive Jordan iso-
morphic toalgM. Then if one ofN andM is sub-continuous, so is the other.

Proof. It is immediate from Theorem 2.8.✷

3. Algebraic results

The main result in this section is the following.

Theorem 3.1. Let N andM be nests onX. Suppose thatφ is an additive Jordan iso
morphism fromalgN onto algM. Thenφ is either a ring isomorphism or a ring ant
isomorphism.

We will prove Theorem 3.1 distinguishing two cases:N is sub-continuous andN is not
sub-continuous.

First we consider the first case. Recall that for a nestN on X andE ∈ N0, I(N ,E) =
{T ∈ algN : T E = 0 andT X ⊆ E}.

Lemma 3.2. Let N be a nest onX such that0+ = 0 and A be an operator inB(X). If
I(N ,E)A = 0 for everyE ∈ N0, thenA = 0.

Proof. Suppose thatA �= 0. Then there is a vectorx in X such thatAx �= 0. Since⋂{E: E ∈ N0} = {0}, there isE in N0 such thatAx /∈ E. By the Hahn–Banach exten
sion theorem, there isf ∈ E⊥ such thatf (Ax) �= 0, which conflicts with the hypothes
A∗f = 0. ✷
Lemma 3.3. Let N be a nest onX such thatX− = X andA be an operator inB(X). If
AI(N ,E) = 0 for everyE ∈ N0, thenA = 0.
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Proof. Let E be inN0 and fix a non-zero functionalf in E⊥. Then for everyx ∈ E, we
have thatAx ⊗ f = 0. HenceAx = 0 for everyx ∈ E. SinceE is arbitrary and

∨{E: E ∈
N0} = X, we have thatA = 0. ✷
Lemma 3.4. LetN andM be nests onX andEi (i = 1,2) be inN0. Suppose thatφ is an
additive Jordan isomorphism fromalgN ontoalgM. Then

(1) If φ is order preserving, thenφ(B1AB2) = φ(B1)φ(A)φ(B2) for everyBi ∈ I(N ,Ei)

(i = 1,2) and for everyA ∈ algN . In particular,φ(B1B2) = φ(B1)φ(B2).
(2) If φ is anti-order preserving, thenφ(B1AB2) = φ(B2)φ(A)φ(B1) for every Bi ∈

I(N ,Ei) (i = 1,2) and for everyA ∈ algN . In particular,φ(B1B2) = φ(B2)φ(B1).

Proof. We only prove part (1). The proof of part (2) is similar.
Note thatφ mapsI(N ,Ei) ontoI(M, φ̂(Ei)), whereφ̂ is the induced map ofφ. If

E2 � E1, then by Remark 2.2(2),B1AB2 = φ(B1)φ(A)φ(B2) = 0 and the desired equa
tion holds.

Assume now thatE1 � E2. Then B2AB1 = φ(B2)φ(A)φ(B1) = 0. From Theo-
rem 1.3(iii), we obtain

φ(B1AB2) = φ(B1AB2 + B2AB1)

= φ(B1)φ(A)φ(B2) + φ(B2)φ(A)φ(B1) = φ(B1)φ(A)φ(B2).

PuttingA = I in this equation, from Theorem 1.3(iv) we obtainφ(B1B2) = φ(B1)φ(B2).✷
Proof of Theorem 3.1 (The case whereN is sub-continuous). By Theorem 2.8, we on
need to consider two cases.

Case1. φ is anti-order preserving. We will show thatφ is anti-multiplicative in this
case.

Let E be in N0. First we show thatφ(AD) = φ(D)φ(A) for A in algN andD in
I(N ,E). Let F be an arbitrary element inN0. Then by Lemma 3.4(2), we have that

φ(AD)φ
(
I(N ,F )

)= φ
(
I(N ,F )AD

)= φ(D)φ(A)φ
(
I(N ,F )

)
.

Sinceφ mapsI(N ,F ) ontoI(M, φ̂(F )) andM is sub-continuous by Corollary 2.9, w
have thatφ(AD) = φ(D)φ(A) by Lemma 3.3.

Now let A andB be in algN . For everyE ∈ N0, from the preceding result, we ha
that

φ
(
I(N ,E)

)
φ(AB) = φ

(
ABI(N ,E)

)
= φ

(
BI(N ,E)

)
φ(A) = φ

(
I(N ,E)

)
φ(B)φ(A).

Hence by Lemma 3.2 we have thatφ(AB) = φ(B)φ(A).
Case2. φ is order preserving. Similarly, we can show thatφ is multiplicative in this

case. ✷
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Now we turn to consider the case in whichN is not sub-continuous. In the following
when confusions may occur we write 0N+ andXN− instead of 0+ andX−, respectively, for
a nestN onX.

Lemma 3.5. LetN be a nest on a Banach spaceX and suppose thatX− �= X. LetP be an
idempotent inalgN such thatPX �⊆ X−. If P has rank greater than one, then there a
two non-zero idempotentsP1 andP2 in algN such thatP = P1 + P2.

Proof. Suppose thatPx /∈ X− for somex ∈ X. Then we can takef ∈ X⊥− such that
f (Px) = 1. SetP1 = Px ⊗ P ∗f andP2 = P − Px ⊗ P ∗f , as desired. ✷
Lemma 3.6. LetN be a nest on a Banach spaceX and suppose that0+ �= 0. LetP be an
idempotent inalgN such thatP0+ �= {0}. If P has rank greater than one, then there a
two non-zero idempotentsP1 andP2 such thatP = P1 + P2.

Proof. Suppose that 0�= Px ∈ 0+ for somex ∈ 0+. Takef ∈ X∗ such thatf (Px) = 1.
SetP1 = Px ⊗ P ∗f andP2 = P − Px ⊗ P ∗f , as desired. ✷
Lemma 3.7. Let N andM be nests onX and letφ be an additive Jordan isomorphis
fromalgN ontoalgM. Suppose thatP is an idempotent of rank one inalgN . If φ(P )X �⊆
XM− or φ(P )0M+ �= {0} thenφ(P ) is of rank one.

Proof. Assume to the contrary thatφ(P ) has at least rank two. Then by Lemmas
and 3.6 there areQ1 andQ2 of non-zero idempotents in algM such thatφ(P ) = Q1+Q2.
HenceP is a sum of two non-zero idempotentsφ−1(Q1) andφ−1(Q2). This is impossi-
ble. ✷

Let N be a nest and suppose thatN is in N such thatN− �= N . In what follows, by
Idem(N ,N) we denote the set{x ⊗ f : x ∈ N, f ∈ N⊥− , f (x) = 1}.

Lemma 3.8. Let N andM be nests onX and letφ be an additive Jordan isomorphis
from algN onto algM. Suppose thatN is in N such thatN− �= N . If for eachP ∈
Idem(N ,N) eitherφ(P )X �⊆ XM− or φ(P )0M+ �= {0}, then for allx ∈ N andf ∈ N⊥− , the
operatorφ(x ⊗ f ) is of rank one.

Proof. Let x ∈ N andf ∈ N⊥− . First suppose thatt = f (x) �= 0. Thenf (x/t) = 1 and
hence by Lemma 3.7,φ(x/t ⊗ f ) is of rank one. A direct computation shows that

(x ⊗ f )

(
I − 1

t
x ⊗ f

)
=
(

I − 1

t
x ⊗ f

)
(x ⊗ f ) = 0.

By Theorem 1.3(v), we have thatφ(x ⊗ f )φ(I − x/t ⊗ f ) = 0. Henceφ(x ⊗ f ) =
φ(x ⊗ f )φ(x/t ⊗ f ), and soφ(x ⊗ f ) is of rank one.

Now suppose thatf (x) = 0. If f /∈ N⊥, then we can pickx0 ∈ N such thatf (x0) = 1.
Suppose thatA = φ(x ⊗ f ) andφ(x0 ⊗ f ) = y ⊗ g. By Theorem 1.3(ii), we have that

0 = φ
(
(x ⊗ f )(x0 ⊗ f )(x ⊗ f )

)= Ay ⊗ A∗g.
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Therefore, one ofAy andA∗g is zero. Hence from the equations

A = φ(x ⊗ f ) = φ
(
(x ⊗ f )(x0 ⊗ f ) + (x0 ⊗ f )(x ⊗ f )

)= Ay ⊗ g + y ⊗ A∗g

we see thatA is of rank one. Now letf0 be inN⊥− but not inN⊥. Then by the precedin
result,φ(x ⊗ f0) is of rank one. Suppose thatφ(x ⊗ f0) = z ⊗ h. Let x1 ∈ N be such tha
f0(x1) = 1 and letB = φ(x1 ⊗ f ). Then

0 = φ
(
(x1 ⊗ f )(x ⊗ f0)(x1 ⊗ f )

)= Bz ⊗ B∗h.

Therefore, one ofBz andB∗h is zero. Hence from

φ(x ⊗ f ) = φ
(
(x ⊗ f0)(x1 ⊗ f ) + (x1 ⊗ f )(x ⊗ f0)

)= z ⊗ hB + Bz ⊗ h

we see thatφ(x ⊗ f ) is of rank one. ✷
Lemma 3.9. Let N andM be non-trivial nests onX and letφ be an additive Jordan
isomorphism fromalgN onto algM. Suppose thatXN− �= X and that eitherφ(P )X �⊆
XM− or φ(P )0M+ �= {0} for everyP ∈ Idem(N ,X). Let x0 ∈ X andf0 ∈ (XN− )⊥ be such
thatf0(x0) = 1. Then the following hold:

(i) If φ(x0 ⊗ f0)X �⊆ XM− , then there isg0 ∈ (XM− )⊥ with the property that for each
x ∈ X there exists a vectory ∈ X such thatφ(x ⊗ f0) = y ⊗ g0;

(ii) If φ(x0 ⊗ f0)0M+ �= {0}, then there isy0 ∈ 0M+ with the property that for eachx ∈ X

there exists a functionalg ∈ X∗ such thatφ(x ⊗ f0) = y0 ⊗ g.

Proof. Suppose thatφ(x0⊗f0) = y0⊗g0. Takex1 ∈ XN− . Thenφ(x1⊗f0) ∈ I(M, X̂N− ).

Note that 0M+ � X̂N− � XM− .
If φ(x0⊗f0)X �⊆ XM− , theng0 ∈ (XM− )⊥ and henceφ(x0⊗f0)φ(x1⊗f0) = 0. There-

fore,

φ(x1 ⊗ f0) = φ
(
(x1 ⊗ f0)(x0 ⊗ f0) + (x0 ⊗ f0)(x1 ⊗ f0)

)
= φ(x1 ⊗ f0)φ(x0 ⊗ f0) = y1 ⊗ g0,

wherey1 = φ(x1 ⊗ f0)y0 ∈ X̂N− ⊆ XM− . For x ∈ X, by Lemma 3.8 we can suppose th
φ(x ⊗ f0) = y ⊗ g. It suffices to prove thatg is linearly dependent ofg0. Indeed, since
x0 ⊗ f0 + x ⊗ f0 andx1 ⊗ f0 + x ⊗ f0 are both of rank one, so arey0 ⊗ g0 + y ⊗ g and
y1 ⊗ g0 + y ⊗ g by Lemma 3.8. Ifg is not linearly dependent ofg0, theny andy0 as well
asy andy1 are linearly dependent. Consequently,y0 andy1 are linearly dependent. Bu
this is impossible sincey1 ∈ XM− while y0 /∈ XM− .

If φ(x0⊗f0)0M+ �= {0}, theny0 ∈ 0M+ and henceφ(x1 ⊗f0)φ(x0⊗f0) = 0. Therefore,

φ(x1 ⊗ f0) = φ
(
(x1 ⊗ f0)(x0 ⊗ f0) + (x0 ⊗ f0)(x1 ⊗ f0)

)
= φ(x0 ⊗ f0)φ(x1 ⊗ f0) = y0 ⊗ g1,

whereg1 = φ(x1 ⊗ f0)
∗g0 ∈ (0M+ )⊥. For x ∈ X, suppose thatφ(x ⊗ f0) = y ⊗ g. Since

x0 ⊗ f0 + x ⊗ f0 andx1 ⊗ f0 + x ⊗ f0 are both of rank one, so arey0 ⊗ g0 + y ⊗ g and
y1 ⊗ g0 + x ⊗ g. If y is not linearly dependent ofy0, theng andg0 as well asg andg1 are
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linearly dependent. Consequently,g0 andg1 are linearly dependent. But this is impossib
sinceg1 ∈ (0M+ )⊥ while g0 /∈ (0M+ )⊥. Soy must be linearly dependent ofy0. ✷
Lemma 3.10. LetN = {0,N,X} andM = {0,M,X} be non-trivial nests onX. Letφ be
an additive Jordan isomorphism fromalgN ontoalgM. Then one of the following holds:

(i) φ(x ⊗ f )X �⊆ M for all x ∈ X andf ∈ N⊥ with f (x) = 1;
(ii) φ(x ⊗ f )M �= {0} for all x ∈ X andf ∈ N⊥ with f (x) = 1.

Proof. It is easy to see that eitherφ(x ⊗ f )X �⊆ M or φ(x ⊗ f )M �= {0} for all x ∈ X and
f ∈ N⊥ with f (x) = 1. Assume to the contrary that there arex1, x2 ∈ X andf1, f2 ∈ N⊥
with f1(x1) = f2(x2) = 1 such thatφ(x1 ⊗ f1)X �⊆ M andφ(x2 ⊗ f2)M �= {0}. Suppose
that

φ(x1 ⊗ f1) = y1 ⊗ g1 and φ(x2 ⊗ f2) = y2 ⊗ g2.

Theng1 ∈ M⊥, y2 ∈ M, andg2 /∈ M⊥. Moreover, by Lemma 3.9,φ(x2 ⊗ f1) = y3 ⊗ g1
for somey3 ∈ X. Sincex2 ⊗ f2 + x2 ⊗ f1 is of rank one, it follows from Lemma 3.
that y2 ⊗ g2 + y3 ⊗ g1 = φ((x2 ⊗ (f1 + f2)) is also of rank one. Sinceg1 andg2 are
linearly independent, it follows thaty3 is linearly dependent ofy2. Consequently,y3⊗g1 ∈
I(M,M). But this is impossible sincex2 ⊗ f1 /∈ I(N ,N). ✷
Lemma 3.11. Let N and M be nests onX and let φ be an additive Jordan isomo
phism fromalgN ontoalgM. Suppose thatN has at least four elements andXN− �= X.
If φ is order-preserving, thenφ(P )X �⊆ XM− for all P ∈ Idem(N ,X). If φ is anti-order-
preserving, thenφ(P )0M+ �= {0} for all P ∈ Idem(N ,X).

Proof. Let N ∈ N with 0 < N < XN− . Takex2 ∈ N , x1 ∈ XN− , andf2 ∈ N⊥ such that
f2(x1) = 1. Letx0 ⊗ f0 ∈ Idem(N ,X) andf1 = f0. Set

Ai = xi ⊗ fi, i = 0,1,2.

Thenφ(A1) ∈ I(M, X̂N− ) andφ(A2) ∈ I(M, N̂). SinceA0A1 = 0, we have that

φ(x2 ⊗ f0) = φ(A2A1A0) = φ(A2A1A0 + A0A1A2)

= φ(A2)φ(A1)φ(A0) + φ(A0)φ(A1)φ(A2). (3.1)

If φ is order-preserving andφ(x0 ⊗ f0)X ⊆ XM− , thenφ(A1)φ(A0) = 0 andφ(A1) ×
φ(A2) = 0. Thus, from (3.1),φ(x2 ⊗ f0) = 0, which conflicts with the injectivity
of φ. If φ is anti-order-preserving andφ(x0 ⊗ f0)0M+ = {0}, thenφ(A2)φ(A1) = 0 and
φ(A0)φ(A1) = 0. We therefore also get a contradiction.✷

Combining Lemmas 3.10 and 3.11 immediately yields

Proposition 3.12. LetN andM be non-trivial nests onX and suppose thatXN− �= X. Let
φ be an additive Jordan isomorphism fromalgN ontoalgM. Then one of the followin
holds:
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(i) φ(P )X �⊆ XM− for all P ∈ Idem(N ,X);
(ii) φ(P )0M+ �= {0} for all P ∈ Idem(N ,X).

Similarly, we can prove

Proposition 3.13. LetN andM be non-trivial nests onX and suppose that0N+ �= 0. Let
φ be an additive Jordan isomorphism fromalgN ontoalgM. Then one of the followin
holds:

(i) φ(P )0M+ �= {0} for all P ∈ Idem(N ,0N+ );
(ii) φ(P )X �⊆ XM− for all P ∈ Idem(N ,0N+ ).

Lemma 3.14. Let N and M be nests onX and suppose thatXN− �= X. Let φ be an
additive Jordan isomorphism fromalgN onto algM. Let ψ be the restriction ofφ to
span{x ⊗ f : x ∈ X, f ∈ (XN− )⊥}. If Proposition3.12(i) holds, thenψ is an additive
Jordan isomorphism ontospan{y ⊗ g: y ∈ X, g ∈ (XM− )⊥} which preserves rank on
operators in both directions. If Proposition3.12(ii) holds, thenψ is an additive Jordan
isomorphism ontospan{y ⊗ g: y ∈ 0M+ , g ∈ X∗} which preserves rank one operators
both directions.

Proof. First suppose that Proposition 3.12(i) holds. Then by Lemma 3.9,

ψ
(
span

{
x ⊗ f : x ∈ X, f ∈ (XN−

)⊥})⊆ span
{
y ⊗ g: y ∈ X, g ∈ (XM−

)⊥}
.

To establish another inclusion, considerφ−1. From the above relation, it is easy to see t
there isQ ∈ Idem(M,X) such thatφ−1(Q)X �⊆ XN− . Applying Proposition 3.12 toφ−1,
we get thatφ−1(Q)X �⊆ XN− for all Q ∈ Idem(M,X). It follows that the another inclusio
is true.

Now suppose that Proposition 3.12(ii) holds. Then by Lemma 3.9,

ψ
(
span

{
x ⊗ f : x ∈ X, f ∈ (XN−

)⊥})⊆ span
{
y ⊗ g: y ∈ 0M+ , g ∈ X∗}.

The another inclusion can be obtained by applying Proposition 3.13 and Lemma 3.8 tφ−1.✷
Proof of Theorem 3.1 (The case whereN is not sub-continuous). We only consider t
caseXN− �= X. The proof for the case that 0N+ �= 0 is similar.

First we consider the exceptional case whereN is the trivial nest{0,X}. By Theo-
rem 2.8,M is also trivial. Thusφ is an additive Jordan isomorphism fromB(X) onto
B(X). SinceB(X) is a prime ring, it follows from [11] thatφ is either a ring isomorphism
or a ring anti-isomorphism.

In the following, we assume thatN is not trivial. We distinguish two cases.
Case1. Proposition 3.12(i) holds. Then the restriction ofφ to span{x ⊗ f : x ∈ X,

f ∈ (XN− )⊥} is an additive Jordan isomorphism onto span{y ⊗ g: y ∈ X, g ∈ (XM− )⊥}
which preserves rank one operators in both directions. Moreover, by Lemma 3.9, for
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f ∈ XN− there isg ∈ (XM− )⊥ with the property that for eachx ∈ X there exists a vecto
y ∈ X such thatφ(x ⊗ f ) = y ⊗ g.

Now arguing as in [9], we have that there exist two additive mapsT :X → X and
S : (XN− )⊥ → (XM− )⊥ such that

φ(x ⊗ f ) = T x ⊗ Sf for all x ∈ X, f ∈ X⊥−.

Let A ∈ algN be arbitrary. Fix a non-zero functionalf ∈ (XN− )⊥. Then for allx ∈ X,

T Ax ⊗ Sf + T x ⊗ SA∗f = φ(Ax ⊗ f + x ⊗ f A)

= φ(A)φ(x ⊗ f ) + φ(x ⊗ f )φ(A) = φ(A)T x ⊗ Sf + T x ⊗ Sf φ(A).

Therefore

φ(A)T x ⊗ Sf = T Ax ⊗ Sf + T x ⊗ (
SA∗f − φ(A)∗Sf

)
, ∀x ∈ X.

Applying both sides of the above equation toy0 ∈ X satisfying(Sf )(y0) = 1, we get that

φ(A)T x = T Ax + µAT x, ∀x ∈ X, (3.2)

whereµA ∈ F is a constant not depending onx. Let y ∈ XN− andg ∈ (XN− )⊥. SetB =
y ⊗ g. Then

0 = φ(B2) = φ(B)φ(B) = φ(B)Ty ⊗ Sg,

which implies thatφ(B)Ty = 0. Thus from (3.2) we have that

0 = φ(B)Ty = T By + µBTy = µBTy.

It follows thatφ(B)T x = T Bx for all x ∈ X. Hence we have that

φ(A)φ(B)T x = φ(A)T Bx = T ABx + µAT Bx

and

φ(B)φ(A)T x = φ(B)(T Ax + µAT x) = T BAx + µAT Bx.

On the other hand

φ(AB + BA)T x = T ABx + T BAx.

It follows from Theorem 1.3(i) that 2µAT Bx = 0 for all x ∈ X. Takingx ∈ X such that
g(x) = 1, we get thatµATy = 0 and henceµA = 0, and soφ(A)T x = T Ax for all x ∈ X.
Consequently,φ(A) = T AT −1 for all A ∈ algN , from which it is easy to see thatφ is
multiplicative.

Case2. Proposition 3.12(ii) holds. Then the restriction ofφ to span{x ⊗ f : x ∈ X,

f ∈ (XN− )⊥} is an additive Jordan isomorphism onto span{y ⊗ g: y ∈ 0M+ , g ∈ X∗}
which preserves rank one operators in both directions. Moreover, by Lemma 3.9, for
f ∈ XN− there isy ∈ 0M+ with the property that for eachx ∈ X there exists a vectorg ∈ X∗
such thatφ(x ⊗ f ) = y ⊗ g.

Arguing as in [9] again, we have that there are two additive bijectionsT :X⊥− → 0M+
andS :X → X∗ such that

φ(x ⊗ f ) = Tf ⊗ Sx for all x ∈ X, f ∈ X⊥−,

from which we get thatφ(A)∗ = SAS−1 and henceφ is anti-multiplicative. ✷
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Corollary 3.15. Let N andM be nests on X. Letk be a fixed integer greater than on
Let φ is an additive bijective mapping fromalgN ontoalgM such thatφ(Ak) = φ(A)k

for all A in algN . Thenφ = µΦ, whereµ ∈ F such thatµk−1 = 1 andΦ is either a ring
isomorphism or a ring anti-isomorphism fromalgN ontoalgM.

Proof. It suffices to prove that there exist a scalarµ ∈ F satisfyingµk−1 = 1 and an addi-
tive Jordan isomorphismΦ from algN onto algM such thatφ = µΦ.

Let A be in algN andt be positive integer. Consider

φ
(
(I + tA)k

)= φ(I) + kφ(A)t + 1

2
k(k − 1)φ(A2)t2 + sum of other terms (3.3

and

φ(I + tA)k = (
φ(I) + tφ(A)

)k
= φ(I)k + t

k−1∑
j=0

φ(I)j φ(A)φ(I)k−1−j + sum of other terms. (3.4)

Comparing the coefficients oft , we get

kφ(A) =
k−1∑
j=0

φ(I)j φ(A)φ(I)k−1−j . (3.5)

Suppose thatφ(B) = I . PuttingA = B in (3.5), we get

φ(I)k−1 = I. (3.6)

Thus (3.5) becomes

(k − 2)φ(A) =
k−2∑
j=1

φ(I)j φ(A)φ(I)k−1−j .

Further, applying (3.6) we have that

(k − 2)φ(I)φ(A)φ(I)k−2 =
k−2∑
j=1

φ(I)j+1φ(A)φ(I)2k−3−j

=
k−2∑
j=1

φ(I)j+1φ(A)φ(I)k−1−(j+1) =
k−2∑
j=2

φ(I)j φ(A)φ(I)k−1−j + φ(A)

= (k − 2)φ(A) − φ(I)φ(A)φ(I)k−2 + φ(A).

Thusφ(A) = φ(I)φ(A)φ(I)k−2. Multiplying this equation byφ(I) from the right and
applying (3.6), we getφ(I)φ(A) = φ(A)φ(I). Sinceφ is surjective, by Lemma 1.2
φ(I) = µI for someµ ∈ F. Moreover, by (3.6),µk−1 = 1.
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Now we can rewrite (3.4) as

φ(I + tA)k = φ(I)k + kφ(A)t + 1

2
k(k − 1)µk−2φ(A)2t2

+ sum of other terms. (3.7)

Comparing the coefficients oft2 in (3.3) and (3.7), we haveφ(A) = µk−2φ(A)2.

Define a mappingΦ from algN onto algM by Φ(A) = µ−1φ(A). ThenΦ is additive
and bijective. Moreoverφ = µΦ andΦ(A2) = µ−1φ(A2) = µk−3φ(A)2 = µ−2φ(A)2 =
Φ(A)2. ✷

4. Spatial results

In this section, we shall give the spatial structure of additive Jordan isomorphis
nest algebras. Recall that a (conjugate) algebraic isomorphism of algebras is an a
(conjugate) linear, multiplicative, bijective mapping. By Theorem 3.5 in [5] and its p
(or the related result in [13]), we have

Lemma 4.1. LetN andM be nests onX. Suppose thatφ is a mapping fromalgN onto
algM. Thenφ is an(conjugate) algebraic isomorphism if and only ifφ is of the form

φ(A) = T AT −1,

whereT is a continuous(respectively, conjugate) linear invertible operator fromX ontoX.
φ is a (conjugate) algebraic anti-isomorphism if and only ifφ is of the form

φ(A) = SA∗S−1,

whereS is a continuous(respectively, conjugate) linear invertible operator from
∨{f ∈

E⊥− : E ∈N } ontoX.

Remark 4.2. Let N be a nest onX. If 0+ �= 0 or X is reflexive, it is easy to see
∨{E⊥:

E ∈ N0} = X∗. But this equality may not hold if 0+ = 0 andX is not reflexive. For
instance, setX = L1[0,1]. For t ∈ [0,1], let Et = {f ∈ L1: f ([1,1 − t]) = 0}. Then
N = {Et : t ∈ [0,1]} is a nest with 0+ = 0 andX− = X. It is obvious thatX∗ = L∞ and
E⊥

t = {g ∈ L∞: g([0, t)) = 0} for everyt ∈ (0,1). Let g0 = 1 ∈ X∗, then‖g − g0‖∞ � 1
for everyg ∈ E⊥

t and everyt ∈ (0,1), which implies that
∨{E⊥

t : t ∈ (0,1)} �= X∗.

Lemma 4.3. LetN andM be nest onX. Suppose thatφ is an additive Jordan isomorphism
from algN ontoalgM. Then there is a ring automorphismh :F → F such thatφ(αA) =
h(α)φ(A) for everyα ∈ F and for everyA ∈ algN .

Proof. By Theorem 3.1, we may assume thatφ is a ring anti-isomorphism.
Let α be in F. Thenφ(αI)φ(A) = φ(A(αI)) = φ((αI)A) = φ(A)φ(αI) for everyA

in algN . Sinceφ is surjective, by Lemma 1.2 there exists a scalarh(α) ∈ F such that
φ(αI) = h(α)I . It is easy to verify thath(α) is a ring automorphism ofF. Now for α ∈ F

andA ∈ algN , we have that

φ(αA) = φ(A)φ(αI) = φ(A)h(α)I = h(α)φ(A). ✷
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Lemma 4.4. Let X be either a real Banach space,dimX > 1, or an infinite dimensiona
complex Banach space. LetN andM be nests onX. Suppose thatφ is an additive Jordan
isomorphism fromalgN ontoalgM. Then in the real caseφ is linear, and in the comple
caseφ is either linear or conjugate linear.

Proof. By Lemma 4.3, there is a ring autoisomorphismh :F → F such thatφ(αA) =
h(α)φ(A) for everyα ∈ F and for everyA ∈ algN .

Case1: F = R. By a result of [1, p. 57],h(α) = α for everyα ∈ F. Consequently,φ is
linear.

Case2: F = C andX is of infinite dimensions. By additivity and multiplicativity ofh,
it suffices to prove thath is continuous.

We take a sequence{xk ⊗ fk} of rank one operators in algN such that

(a) fk(xk+1) = 1 for eachk,
(b) fk(xj ) = 0 for j � k,
(c) xk ⊗ fk+1 is also in algN for eachk,

as follows. If N is an infinite set, then there is a sequence{Nk} in N such that 0<
Nk < Nk+1 < X for every k. Take non-zero vectorsxk in Nk and fk in N⊥

k such that
fk(xk+1) = 1. If N is a finite set, there must be an elementE in N such thatE \ E− has
an infinite subset of linearly independent vectors since dimX = ∞. Let {xk} be a subset o
linearly independent vectors inE \ E−. Then by Hahn–Banach extension theorem, th
is a sequence{fk} of functionals inE⊥− satisfying conditions (a)–(c).

If h is not continuous, then by [1],h is unbounded on every neighborhood of 0. We p
αk ∈ C such that‖αk(xk ⊗ fk)‖ < 1/2k and

∣∣h(αk)
∣∣> k‖φ(xk+1 ⊗ fk+1)‖ + ‖φ(

∑k−1
i=1 αi(xi ⊗ fi)(xk+1 ⊗ fk+1)‖

‖φ(xk ⊗ fk+1)‖ .

DefineA =∑∞
k=1 αkxk ⊗ fk . ThenA is in algN and

Axk+1 ⊗ fk+1 =
k−1∑
i=1

αi(xi ⊗ fi)(xk+1 ⊗ fk+1) + αkxk ⊗ fk+1.

Sinceφ is a ring isomorphism or a ring anti-isomorphism, we have that∥∥φ(A)
∥∥∥∥φ(xk+1 ⊗ fk+1)

∥∥
�
∥∥∥∥∥φ
(

k−1∑
i=1

αi(xi ⊗ fi)(xk+1 ⊗ fk+1) + αkxk ⊗ fk+1

)∥∥∥∥∥
=
∥∥∥∥∥φ
(

k−1∑
i=1

αi(xi ⊗ fi)(xk+1 ⊗ fk+1)

)
+ h(αk)φ(xk ⊗ fk+1)

∥∥∥∥∥
�
∣∣h(αk)

∣∣∥∥φ(xk ⊗ fk+1)
∥∥−

∥∥∥∥∥φ
(

k−1∑
i=1

αi(xi ⊗ fi)(xk+1 ⊗ fk+1)

)∥∥∥∥∥.
Therefore‖φ(A)‖ � k (k = 1,2, . . .), which contradicts that fact thatφ(A) is bounded. ✷
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Combining Theorem 3.1 and Lemmas 4.1 and 4.4, we obtain

Theorem 4.5. Let X be either a real Banach space,dimX > 1, or an infinite dimensiona
complex Banach space. LetN andM be nests onX. Suppose thatφ : algN → algM is
an additive Jordan isomorphism. Then we have in the real case either

φ(A) = T AT −1

for all A in algN , whereT :X → X is a continuous linear bijective mapping, or

φ(A) = SA∗S−1

for all A in algN , whereS :
∨{f ∈ E⊥− : E ∈ N } → X is a continuous linear bijective

mapping. In the complex caseφ is either of one of the above forms, or of one of the follo
ing:

φ(A) = T AT −1

for all A in algN , whereT :X → X is a continuous conjugate linear bijective mappin
or

φ(A) = SA∗S−1

for all A in algN , whereS :
∨{f ∈ E⊥− : E ∈ N } → X is a continuous conjugate linea

bijective mapping.

Now we treat an additive Jordan isomorphism of nest algebras on a finite dimen
complex Banach space. ByMn(C) we denote the algebra of alln × n matrices overC. For
every finite sequence of positive integersn1, n2, . . . , nk , satisfyingn1 + n2 + · · ·+ nk = n,
we associate an algebra consisting of alln × n matrices of the form

A =




A11 A12 . . . A1k

0 A22 . . . A2k
...

...
. . .

...

0 0 . . . Akk


 ,

whereAij is an ni × nj matrix. We will call such an algebra a block upper triangu
algebra inMn(C). Given two nest algebras onCn, one of them can be assumed to b
block upper triangular algebra inMn(C) and another can be assumed to be a subalgeb
Mn(C) which is called a nest algebra inMn(C).

Theorem 4.6. LetA be a block upper triangular algebra inMn(C) andB be a nest algebra
in Mn(C). Let φ is an additive Jordan isomorphism fromA ontoB. Then there is a ring
automorphismh :C → C and an invertible matrixT such thatφ is of the formφ(A) =
T H(A)T −1 or φ(A) = T H(A)tT −1 for all A ∈ A, whereH [αij ] = [h(αij )] andt stands
for the transpose.

Proof. By Lemma 4.3, there is a ring autoisomorphismh :C → C such thatφ(αA) =
h(α)φ(A) for everyα ∈ C and for everyA ∈ A. For a matrix[αij ], we define

H [αij ] = [
h(αij )

]
and H−1[αij ] = [

h−1(αij )
]
.

Then bothH andH−1 are ring isomorphisms.
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By Theorem 3.1, we distinguish two cases.
Case1. φ is a ring isomorphism. We introduce a new mappingψ onA by

ψ(A) = φ
(
H−1(A)

)
, A ∈A.

It is not difficult to see thatψ is a linear isomorphism fromA ontoB. By Lemma 4.1, there
is an invertible matrixT such thatψ(A) = T AT −1. Consequently,φ(A) = T H(A)T −1

for everyA ∈ A.
Case2. φ is a ring automorphism. LetJ be a particular permutation matrix inMn(C)

given byJ = [δi,n+1−i ], whereδij is the Kronecker delta symbol. ThenJAt J is also a
block upper triangular algebra. We introduce a new mappingψ on JAt J by

ψ(JAtJ ) = φ
(
H−1(A)

)
, A ∈ A.

It is not difficult to see thatψ is a linear isomorphism fromJAt J ontoB. By Lemma 4.1,
there is an invertible matrixT such thatψ(JAtJ ) = T JAtJT −1. Consequently,φ(A) =
T JH(A)tJT −1 = (T J )H(A)t(T J )−1 for everyA ∈ A. ✷
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