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Abstract

Let X be areal or complex Banach space. Let/dlgnd algM be two nest algebras df. Suppose
that¢ is an additive bijective mapping from alg onto algM such thaip (A2) = ¢ (A)? for every
A € algN. Then¢ is either a ring isomorphism or a ring anti-isomorphism. Moreovek i a
real space or an infinite dimensional complex space, then there exists a continuous (conjugate) linear
bijective mappingl’ such that eithep (A) = TAT ~1 for every A € alg\ or ¢ (A) = TA*T 1 for
everyA € algN.
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1. Introduction and preliminaries

Let .4 and B be rings. An additive mapping:.4 — B is called a Jordan homomor-
phism if ¢ (a?) = ¢ (a)? holds for alla € A. In addition, if¢ is bijective theny is called
a Jordan isomorphism. The study of Jordan homomorphisms between rings was initiated
by Anococha [2] in connection with problems arising in projective geometry. Since then,
Jordan homomorphisms between rings has been investigated in a series of papers (see [4]
and references therein). Some results will be made of use in the present paper.

The utility of the study of Jordan isomorphisms of Banach algebras was noted by Kadi-
son [7] in the study of isometries @f*-algebras. In fact, it is often found that an isometry
@ between Banach algebras can be written as in the fbrsm U ¢, where¢ is a Jordan
homomorphism and is a suitable unitary element [3,10,12]. In [7], Kadison proved that
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a Jordans-isomorphism from a von Neumann algebra onto another can be decomposed
into the sum of ax-isomorphism and a-anti-isomorphism by a central projection. This
result was extended by Palacios [10]. In [12], Solel showed that every Jordan isomorphism
of CSL algebras (on a Hilbert space), whose restriction to the diagonal of the algebra is
a selfadjoint map, is the sum of an isomorphism and an anti-isomorphism. It follows that
such a Jordan isomorphism of nest algebras on a Hilbert space is either an isomorphism or
an anti-isomorphism. In [8], we extended this result. More precisely, we proved that every
Jordan isomorphism between nest algebras on a Hilbert space is either an isomorphism or
an anti-isomorphism. In these discussions, a Jordan homomorphism of Banach algebras is
usually assumed to be linear. A more general approach would be to consider these algebras
only as rings. Let us recall that a ring (anti-)isomorphism of algebras is a bijective additive
and (anti-)multiplicative mapping. It is clear that a ring (anti-)isomorphism of algebras is
a Jordan isomorphism.

In the present paper, we study additive Jordan isomorphisms between nest algebras on
a Banach algebra. We define again: an additive Jordan isomorphism of Banach algebras is
an additive bijective mapping which preserves squares, so it is hot assumed to be linear.
In Section 3, we shall prove that an additive mapping between nest algebras on a Banach
space is an additive Jordan isomorphism if and only if it is a ring isomorphism or a ring
anti-isomorphism. To prove this result, in Section 2 we improve the concept of nilpotent
Jordan ideals in a nest algebra introduced in [8], where we characterized linear Jordan
isomorphisms of nest algebras on Hilbert spaces. In Section 4, the general spatial form of
additive Jordan isomorphisms between nest algebras on a Banach space will be obtained.
That s, if the Banach space under considering is real or complex infinite dimensional, then
all such mapping are linear or conjugate linear, and hence they are spatially implemented.

Now we recall some definitions and notations.

ThroughoutF € {R, C}, X is a Banach space ovBr dimX > 1, B(X) is the set of all
linear bounded operators afi andX* is the dual Banach space &f For a subspack of
X and two subset® andS of B(X), wewrite7 L ={Tx: T €T, x € L}, Lt ={f € X*:
f(x)=0,VxelL},and7S={TS: T €7, S €S8}. Achain\ of closed subspaces &f
is called a nest if it contains the trivial subspa¢@sand X and if it is closed under inter-
section and closed span. We 8é&f= N\ {0, X}. ForE e \/, we defineE_ = \/{F e -
F <E}andE; = A\{F e N: F > E}. We also define0=0andX; =X.1f0; =0
and X_ = X, we say that\/ is sub-continuous. The nest algebra/&lgorresponding to
the nest\/ is defined by algv' = {T € B(X): TE C E, YE € N}. For non-zero vectors
x € X and f € X*, arank one operator® f is defined by(x ® f)y = f(y)x for every
yeX.

We need the following elementary facts about nest algebras and Jordan isomorphisms.

Lemma 1.1 [13, Lemma 1].Let \ be a nest orX. Thenx ® f belongs toalg\ if and
only if there exists an elemeBte N such thatx € £ and f e (E_)" .

It should be mentioned thatifc E and f € E* for E € Np thenx ® f € algN.

Lemma 1.2. Let N be anests oiX and7 be inB(X). If TA = AT for everyA in alg/N/,
thenT = A1 for A € F, where/ is the identity operator oiX.
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Proof. It is certainly well known. Here we give an elementary proof which will play a
demonstrative role in the proof of the related results below.A &g in N with E_ < X
and non-zero functiongl be in(E_)". Thenx® f e alg\ forall x € E. ThusTx ® f =

x® fT,and hence there exists a scaléF) € F such tha’x = A(E)x. SinceE1 < Ez or

E> < Epforall Eq, E» € N, we have that (E1) = A(E2). Consequently, there is a scalar

in F such thatl'x = Ax forall x e (J{E e N E_ < X}. Since\/{E e N: E_ < X} =X,

we obtainthal" =A/l. O

Theorem 1.3. Let A and M be nests orX. Suppose thap is an additive Jordan isomor-
phism fromalg\ ontoalg M. Then for anyA, B, C < alg/N/, we have

() 9(AB+ BA)=¢(A)¢p(B) + ¢ (B)p(A);
(i) ¢(ABA) =¢(A)p(B)p(A);
(i) ¢(ABC+CBA)=¢(A)p(B)p(C)+ ¢ (C)p(B)p(A);
(V) (1) =1;
(v) AB=0andBA =0ifand onlyif¢(A)¢(B) =0and¢(B)¢p(A) =0.

Proof. Parts (i)—(iii) can be found in [6]. Parts (iv) and (v) can be obtained using
Lemma 1.2 and the same argument in proofs of Propositions 3 and 4 inf8].

2. Nilpotent Jordan ideals
We begin with a definition.

Definition 2.1. A subset7 of a Banach algebral is called a nilpotent Jordan ideal if
J?=1{0} andAB + BA € J for every A € J and for everyB € A. 7 is a maximal
nilpotent Jordan ideal if there are no nilpotent Jordan ideals properly containing it.

It follows from Theorem 1.3(i) and (v) that an additive isomorphism maps a nilpotent
Jordan ideal to a nilpotent Jordan ideal. Now we shall give a model for maximal nilpotent
Jordan ideals of a nest algebra. Létbe a nest orX. Recall that\Vg = {E e N: 0 <
E < X). For E € Ny, we define

IWN,E)={T ealgN: TE ={0} andT X C E}.
By the Hahn—Banach extension theorem, it is easy to see that
I(N,E)=|{T ealgN: TE = {0} andT*E* = {0}}.

Remark 2.2. Let \/ be a nest orX. Then

(1) If x e E and f € E* for E € Np, thenx ® £ is in Z(N, E). We will see that those
rank one operators are useful elementg @V, E).

(2) Let E and F be in Np such thatE < F. For every B € Z(N, E), since its
range is contained i, we have thatAB = 0 for every A € Z(N, F) and hence
IZ(WN, F)Z(N, E) =0. This simple observation will play an important role.
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(3) Let E and F be in Ay such thatE # F. We may assume thaf < F. Then by
the Hahn-Banach extension theorem, there egist E- while f ¢ FL. Thus for
anon-zerovectat € E, x ® f isinZ(N, E) but notinZ(N, F), which implies that
I(N,E)#I(N, F).

It is easy to verify thaf (\V, E) is a nilpotent Jordan ideal of alg. Moreover, we have

Lemma 2.3. Let N be a nest orX. If 7 is a nilpotent Jordan ideal o&lg/N such that
J 2 I(N, E) for someE € Np, then =Z(N, E).

Proof. Suppose thaf € 7. Letx be inE and f be in EL. Sincex ® f e Z(N, E), we
have

Sx® f=0 and x® fS=0,

and hencedx =0 andA* f = 0. Sincex and f are arbitrary,SE = {0} and S*E = {0}.
Namely,S e Z(NV, E). O

Theorem 2.4. Let A/ be a nest orX. Suppose tha¥ is a maximal nilpotent Jordan ideal
of alg/N and 7 # {0}. Then there exists an elemdntn Ny such that7 =Z(\V, E).

Proof. Define
E:/\{Le/\/: JX C LY, F:\/{Le/\/: JL={0}}.

ThenJ X C E andJF ={0}. SinceJ # {0}, we have that > 0 andF < X.

We claim thatE < F. OtherwiseE > F. Then we can tak&, S € 7 and vectorg, f
suchthat ® f e alg\ andTe ® fS # 0 as follows. Note thak = A{L e N: J*L+ =
{0}}. If F = E_, by the definition off andF, thereexist € E\ F, f € F+,andT,S e J
suchthafl'e £ 0+ S*f. If F # E_, thenthereis an elemeftin N suchthatr < P < E.
By the definition of E and F, there exite ¢ P\ F, f € PL, andT, S € J such that
Te#0#S*f.

SinceJ isaJordanideal =Te® f +e® fT € J. ThusAS =0. But

AS=Te® fS+e®@ fTS=Te® fS#0.

ThereforeE < F, and thenE € NVp andJ € Z(VN, E). By the maximality, we have that
J=IWN,E). O

Let AV and M be nests orX. Suppose thap is an additive Jordan isomorphism from
alg/ onto algM. For everyE € Np, by Lemma 2.3Z(N, E) is a maximal nilpotent
Jordan ideal in alg/. It follows from Theorem 1.3(i) and (v) that(Z(\V/, E)) is also a
maximal nilpotent Jordan ideal in algl. By Theorem 2.4 and Remark 2.2(3), there is only
one element € Mo such thatp(Z(\, E)) = Z(M, E). Define a mag from A to Mo
by #(E) = E if E is in No such thatp (Z(N, E) = Z(M, E). We will call ¢ the induced
map ofe.

Proposition 2.5. Let AV and M be nests onX. Suppose thap is an additive Jordan
isomorphism fronalg " ontoalg M. Theng, the induced map af, is bijective.



F. Lu/J. Math. Anal. Appl. 284 (2003) 127-143 131

Proof. Firstwe show thap is injective. Indeed, i (E) = ¢ (F) for someE, F in N, then
¢ (I(N, E)) = ¢p(Z(N, F)). Applying ¢~ to this equality, we geT (N, E) = Z(N, F).
By Remark 2.2(3)E = F.

Consideringp—! instead ofp. For every element € Mo, ¢~ 1(Z(M, F)) is a maximal
nilpotent Jordan ideal of aliy. Hence there is an elemeaftin No such thatZ (V, E)=
¢~ YT (M, F)). Thus¢(Z (N, E)) = T(M, F) and henceF = ¢(E). That is to say¢ is
surjective. O

_ The nextgoal is to prove thatis either order-preserving (i.e?, < Q implies¢(P) <
¢(Q)) or anti-order preserving (i.eR < Q implies ?(P) > ¢(Q)). For conveniencg, in
the rest of this section and in Section 3, we shall H¢e denote the image df underg.

Lemma 2.6. Let N, M, ¢, angq?b be as in Firopositiori?.5 Suppose thaP and Q are in
Np suchthatP < Q and P < Q. ThenQ < E for everyE in A satisfyingQ < E.

Proof. Let E be inNp such thatQ < E.

If P<E<Q,takexe P, yeE, fe 0t geELsuchthatf(y)=1. Theny® g
isinZW, E) andx ® f is in ZW, P) N Z(N, Q). Thus¢(y ® g) is in Z(M, E) and
d(x ® f)isin (M, P)NI(M, Q). SinceP < E < O, by Remark 2.2(2), we have that
d(Y®P(x® f)=0andp(x ® /o (y ® g) = 0. It follows from Theorem 1.3(v) that
(x® )y ® g) = 0. But this is impossible, sinder ® f)(y ® g) =x ® g #0.

If E<P <Q,takexe P,y e Q, f € P+, g e EL suchthatf(y) = 1. Thenx® fisin
I, P) andy ® g is mI(/\/ Q)ﬂI(j\/’ E). Thusg(x ® f) isinZ(M, P)andg(y®g)
is in Z(M, Q) N Z(M, E). SinceE < P < O, we have thap(y @ g)¢p(x @ f) =0
ando(x ® fo(y ® g) = 0. Hence,(x ® f)(y ® g) = 0. But this is impossible, since
x®fHy®g=x®g#0.

ConsequentlyQ < E. O

Lemma2.7. Let N, M, é, andgb be as in Propositior2.5. Suppose tha? and Q are in
Np suchthatP < Q and P < Q. ThenE < P for everyE in Ny satisfyinge < P.

Proof. Applying Lemma 2.6 top~, P < O < E is impossible. IfP < E < 0, let
non-zero vectors € E, f € EL, y e P, g € QO such thatf(y) =1. Thenx ® f ¢
IW,E) andy® g is in ZN,P) N Z(N, Q). Thus¢(y ® g)¢(x ® f) =0 and
o(x ® fHo(y ® g) = 0. It follows from Theorem 1.3(v) thatx ® f)(y ® g) = 0. But
this is impossible. Consequentty <P. O

Theorem 2.8. Let N and M be nests orX. Suppose thap is an additive Jordan isomor-
phism fromalg A\ ontoalg M. Theng, the induced map af, is either order-preserving or
anti-order preserving.

Proof. Suppose thatthere afe< Q in Np suchthat? < Q. Let E andF be two arbitrary
elements in\p such thate < F. We will prove thatt < F.
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_Casel: E < F < P < Q. Then by Lemma 2.7F < P. Hence by Lemma 2.7 again,
E<F.
Case2: P < Q < E < F. Then by Lemma 2.60 < E. By Lemma 2.6 agairi < F.
Case3: P < E < Q < F.ThenbyLemma2.6? < O < F. And hence, by Lemma 2.7,
E<Q<F.
Cased: E < P < Q < F.Thenby Lemmas 2.6 and 2.E,< P < 0 < F.
Case5 E < P < F < Q. Thenby Lemma 2.7E < P. By Lemma 2.6 < P < F.
Caseb: P <E <F < Q.If E > F,byLemma2.6P > E and by Lemma 2.7/ > Q.
ThereforeQ < F < E < P, which conflicts with the hypothesi® < Q. Thusk < F.
Since Cases 1-6 exhaust all possibilities, wefget F. O

In the next section, we shall refer thitself as being order preserving or anti-order
preserving ag is order preserving or anti-order preserving, respectively.

Corollary 2.9. Let N/ and M be nests orX. Suppose thatlg\ is additive Jordan iso-
morphic toalgM. Then if one of\" and M is sub-continuous, so is the other.

Proof. Itis immediate from Theorem 2.8.00

3. Algebraicresults
The main result in this section is the following.

Theorem 3.1. Let ' and M be nests orX. Suppose thap is an additive Jordan iso-
morphism fromalgA\ onto algM. Theng is either a ring isomorphism or a ring anti-
isomorphism.

We will prove Theorem 3.1 distinguishing two casASis sub-continuous and is not
sub-continuous.

First we consider the first case. Recall that for a ésin X andE e Ny, Z(NV, E) =
(T calgN: TE =0andT X C E}.

Lemma 3.2. Let A/ be a nest ornX such that0, = 0 and A be an operator inB(X). If
I(N, E)A =0foreveryE € Ny, thenA =0.

Proof. Suppose thatd # 0. Then there is a vector in X such thatAx # 0. Since
(E: E € No} = {0}, there isE in Ny such thatAx ¢ E. By the Hahn-Banach exten-
sion theorem, there ig € E+ such thatf (Ax) # 0, which conflicts with the hypothesis
A*f=0. O

Lemma 3.3. Let N be a nest orX such thatX_ = X and A be an operator inB(X). If
AZ(N, E) =0 for everyE € Ny, thenA =0.
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Proof. Let E be inAp and fix a non-zero functiongf in E+. Then for everyr € E, we
have thatdx ® f = 0. Hencedx = O for everyx € E. SinceE is arbitrary and/{E: E €
No}=X,we havethat =0. O

Lemma 3.4. Let AV and M be nests oiX andE; (i = 1, 2) be inAg. Suppose that is an
additive Jordan isomorphism froedg " ontoalg M. Then

(1) If ¢ is order preserving, thep (B1AB2) = ¢ (B1)¢ (A)¢ (B>) for everyB; € (N, E;)
(i =1, 2) and for everyA € algN. In particular, ¢ (B1B2) = ¢ (B1)¢ (B2).

(2) If ¢ is anti-order preserving, theg (B1AB2) = ¢(B2)¢p(A)¢(B1) for every B;
IZ(N, E;) (i =1,2) and for everyA € alg/N. In particular, ¢ (B1B2) = ¢ (B2)¢ (B1).

Proof. We only prove part (1). The proof of part (2) is similar.

Note that¢p mapsZ(\, E;) onto Z(M, ¢(E;)), whereg is the induced map ap. If
E> < E1, then by Remark 2.2(2B1AB2 = ¢(B1)¢p (A)¢ (B2) = 0 and the desired equa-
tion holds.

Assume now thatE1 < E»>. Then BoAB1 = ¢(B2)¢p(A)¢(B1) = 0. From Theo-
rem 1.3(iii), we obtain

¢(B1AB2) = ¢p(B1AB2+ BoAB1)
=¢(B1)¢(A)p(B2) + ¢ (B2)p(A)p(B1) = dp(B1)P(A)p(B2).

Putting A = I in this equation, from Theorem 1.3(iv) we obtaitB1B2) = ¢ (B1)¢ (B2).
O

Proof of Theorem 3.1 (The case wherd/ is sub-continuous). By Theorem 2.8, we only
need to consider two cases.

Casel. ¢ is anti-order preserving. We will show thatis anti-multiplicative in this
case.

Let E be in . First we show thatp(AD) = ¢(D)¢(A) for A in algN and D in
Z(N, E). Let F be an arbitrary element iNg. Then by Lemma 3.4(2), we have that

P(ADYP(IN, F)) = ¢(ZN, F)AD) = p(D)p(A)p(I(N, F)).

Since¢ mapsZ(N, F) ontoZ(M, qS(F)) and M is sub-continuous by Corollary 2.9, we
have thaty(AD) = ¢ (D)¢(A) by Lemma 3.3.

Now let A and B be in alg\. For everyE € Ny, from the preceding result, we have
that

#(ZWN,E))$p(AB)=¢(ABI(N, E))
=¢(BZWN,E))¢(A) =¢(ZN, E))p(B)p(A).

Hence by Lemma 3.2 we have thiatAB) = ¢ (B)¢ (A).
Case2. ¢ is order preserving. Similarly, we can show tlgats multiplicative in this
case. O
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Now we turn to consider the case in whigh is not sub-continuous. In the following,
when confusions may occur we writé}anndXﬁf instead of Q andX _, respectively, for
anest\ onX.

Lemma 3.5. Let \V be a nest on a Banach spa&eand suppose that _ # X. Let P be an
idempotent irlg/\ such thatP X ¢ X_. If P has rank greater than one, then there are
two non-zero idempotenfy and P in alg/N such thatP = P; + P.

Proof. Suppose thaPx ¢ X_ for somex € X. Then we can takg’ € X+ such that
f(Px)=1.SetPi=Px® P*fandP,=P — Px ® P*f, as desired. O

Lemma 3.6. Let NV be a nest on a Banach spa&eand suppose thdl, # 0. Let P be an
idempotent iralg such thatP0,. # {0}. If P has rank greater than one, then there are
two non-zero idempotenfy and P> such thatP = P; + P».

Proof. Suppose that & Px € 04 for somex € 0;. Take f € X* such thatf(Px) = 1.
SetPi=PxQ® P*fandP,=P — Px ® P*f, as desired. O

Lemma 3.7. Let Y and M be nests orX and let¢ be an additive Jordan isomorphism
fromalg\ ontoalg M. Suppose thaP is an idempotent of rank one aig\. If ¢ (P)X &
XM or ¢(P)OM # {0} theng (P) is of rank one.

Proof. Assume to the contrary that(P) has at least rank two. Then by Lemmas 3.5
and 3.6 there ar@1 and Q> of non-zero idempotents in algt such thaty (P) = Q1+ Q».
HenceP is a sum of two non-zero idempotemis'(Q1) and¢~1(Q>). This is impossi-
ble. O

Let A/ be a nest and suppose thétis in A/ such thatV_ # N. In what follows, by
Idem(\/, N) we denote the sék @ f: x € N, f e N*, f(x)=1}.

Lemma 3.8. Let ' and M be nests orX and let¢ be an additive Jordan isomorphism
from alg/N onto alg M. Suppose thatv is in N such thatN_ # N. If for each P €
Idem(\/, N) eitherg(P)X ¢ XM or ¢(P)0 # {0}, then for allx € N and f € N+, the
operatorg (x ® f) is of rank one.

Proof. Let x € N and f € N=. First suppose that= f(x) # 0. Thenf(x/t) =1 and
hence by Lemma 3.%(x/t ® f) is of rank one. A direct computation shows that

(x®f)<1—%x®f)=<I—%x®f)(x®f)=0.

By Theorem 1.3(v), we have thagt(x ® f)¢(I —x/t ® f) =0. Hencegp(x ® f) =

(xR fo(x/t® f), and sop(x ® f) is of rank one.
Now suppose thaf (x) = 0. If f ¢ N1, then we can pickg € N such thatf (xg) = 1.
Supposethatt = ¢(x ® f) andp(xo ® f) =y ® g. By Theorem 1.3(ii), we have that

0=¢((x® NHx0® fHx® f)) = Ay ® A™g.
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Therefore, one ofily andA*g is zero. Hence from the equations
A=9p(x®@ N =¢(x @ NHNx0® )+ (x0® NHx® f)) =Ay®g+y®A'g

we see thatt is of rank one. Now letfp be in N+ but not inN-+. Then by the preceding
result,p (x ® fo) is of rank one. Suppose thatx ® fo) =z ® h. Letx1 € N be such that
fo(xy)=1landletB=¢(x1® f). Then

0=¢((x1® f)(x ® fo)(x1® f)) = Bz ® B*h.

Therefore, one oBz andB*#h is zero. Hence from

¢(x®f)=¢((x®fo)(X1®f)+(X1®f)(X®fo)) =zQhB+BzQ®h
we see thap (x ® f) is of rank one. O

Lemma 3.9. Let AV and M be non-trivial nests orX and let¢ be an additive Jordan
isomorphism fronalgA\” onto algM. Suppose thax?V # X and that eitherp (P)X €
XM or ¢(P)0£" = {0} for every P € ldem(\V, X). Letxge X and fp € (X’/,\/)l be such
that fo(x0) = 1. Then the following hold

(i) If p(xo® fo)X € XM, then there isgo € (XM)L with the property that for each
x € X there exists a vectoy € X such thaip(x ® fo) =y ® go;

@iy f p(x0® fo)Oﬁ" # {0}, then there igyg € Oﬁ" with the property that for each € X
there exists a functiongl € X* such thatp (x ® fo) = yo ® g.

Proof. Suppose that (xo® fo) = yo® go. Takex1 € XV. Theng (x1® fo) € Z(M, XV).
Note that @ < X < xM.

If ¢(x0® fo)X £ xM, thengp € (X)L and hence (xo® fo)¢(x1® fo) =0. There-
fore,

¢ (x1® fo) =P ((x1® f0)(x0 ® fo) + (x0 ® f0)(x1® f0))
=¢(x1® fo)p(x0® fo) = y1® go,

wherey; = ¢(x1 ® fo)yo € XN c xM. Forx € X, by Lemma 3.8 we can suppose that
¢(x ® fo) = y ® g. It suffices to prove thag is linearly dependent ofp. Indeed, since
x0® fo+x® foandx1 ® fo+x ® fo are both of rank one, so asg ® go +y ® g and
y1® go+ y ® g by Lemma 3.8. Ifg is not linearly dependent g, theny andyg as well
asy andy; are linearly dependent. Consequently,and y; are linearly dependent. But
this is impossible since; € XM while yo ¢ XM.

If ¢ (xo® fo)O! # {0}, thenyo € 0} and hence (x1 ® fo)¢ (xo® fo) = 0. Therefore,

P (x1® fo) =P ((x1® fo)(xo® fo) + (x0 ® fo)(x1® fo))
=¢(x0® fo)P(x1® fo) =yo® g1,

wheregs = ¢ (x1 ® fo)*go € (Oﬁ’l)l. Forx € X, suppose thap (x ® fo) =y ® g. Since
x0® fo+x® foandx1 ® fo+x ® fo are both of rank one, so asg ® go + y ® g and
y1® go+x ® g. If yis notlinearly dependent ob, theng andgg as well asg andg; are
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linearly dependent. Consequenidy,andg; are linearly dependent. But this is impossible
sincegy € (0}H* while go ¢ (011, Soy must be linearly dependent 6. O

Lemma 3.10. Let /' = {0, N, X} and M = {0, M, X} be non-trivial nests oX. Let¢ be
an additive Jordan isomorphism froatg\" ontoalg M. Then one of the following holds

() o(x® )X ¢ Mforall x € X and f € Nt with f(x) =1;
(i) ¢(x ® f)M # {0} forall x € X and f € N+ with f(x) = 1.

Proof. Itis easy to see that eithéi(x ® /)X € M or¢(x ® f)M # {0} forall x € X and
f € N+ with f(x) =1. Assume to the contrary that there afex, € X and f1, fo € N*
with f1(x1) = f2(x2) = 1 such thatp (x1 ® f1)X € M and¢ (x2 ® f2)M # {0}. Suppose
that

p(x1® fi)=y1®g1 and ¢(x2® f2) =2 ® g2.
Thengy € M+, y» € M, andgy ¢ M. Moreover, by Lemma 3.9 (x> ® f1) = y3® g1
for someys € X. Sincex2 ® fo + x2 ® f1 is of rank one, it follows from Lemma 3.8
thaty, ® g2 + y3 ® g1 = ¢((x2 ® (f1 + f2)) is also of rank one. Sincg; and g, are
linearly independent, it follows thag is linearly dependent of;. Consequentlyyz ® g1 €
Z(M, M). But this is impossible since ® f1 ¢ ZN,N). O

Lemma 3.11. Let N and M be nests onX and let¢ be an additive Jordan isomor-
phism fromalg/\" ontoalg.M. Suppose thal has at least four elements and" # X.

If ¢ is order-preserving, them(P)X ¢ XM for all P € IdemW\, X). If ¢ is anti-order-
preserving, thenab(P)Oﬁ" £ {0} for all P e ldem(\N, X).

Proof. Let N € A" with 0 < N < XV Takexo € N, x1 € XV, and f» € N+ such that
fo(x1) =1. Letxg® fp € ldemN, X) and f1 = fo. Set

Ai=xi®fi, i=012
Theng (A1) € T(M, XN) andé (A2) € T(M, N). SinceAgA; = 0, we have that

d(x2® fo) = p(A2A1A0) = ¢(A241A0 + ApA1A2)
=@ (A2)9p (A1) @ (Ao) + P (Ao)p(A1)P(A2). (3.1)
If ¢ is order-preserving andl(xo ® fo)X C XM theng(A1)¢(Ag) =0 andp (A1) x
¢(A2) = 0. Thus, from (3.1),¢0(x2 ® fo) = 0, which conflicts with the injectivity

of ¢. If ¢ is anti-order-preserving anfl(xo ® fo)Oﬁr"‘ = {0}, then¢(A2)¢ (A1) =0 and
¢ (Ap)p (A1) = 0. We therefore also get a contradictiort

Combining Lemmas 3.10 and 3.11 immediately yields
Proposition 3.12. Let A" and M be non-trivial nests o and suppose that?V = X Let

¢ be an additive Jordan isomorphism froag\” ontoalg M. Then one of the following
holds
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() ¢(P)X g XM forall P eldem\, X);
(i) ¢(P)OM {0} for all P e Idem(\, X).

Similarly, we can prove

Proposition 3.13. Let AV and M be non-trivial nests oiX and suppose thaﬁ{r\/ #0. Let
¢ be an additive Jordan isomorphism froag\” ontoalg M. Then one of the following
holds

(i) ¢(P)OM = (0} for all P e ldem(\, O);
(i) ¢(P)X ¢ xMforall P e ldem(\, 0).

Lemma 3.14. Let V' and M be nests onX and suppose thax v # X. Let¢ be an
additive Jordan isomorphism frormlg/\ onto algM. Let ¢ be the restriction ofp to
spaiix ® f: x e X, f € (Xi\/)l}. If Proposition3.12(i) holds, theny is an additive
Jordan isomorphism ontspariy ® g: y € X, g € (X)L} which preserves rank one
operators in both directions. If PropositioB12(ii) holds, theny is an additive Jordan
isomorphism onteparfy ® g: y € O{‘F/‘ g € X*} which preserves rank one operators in
both directions.

Proof. First suppose that Proposition 3.12(i) holds. Then by Lemma 3.9,

y(spax® f: x e X, fe(xV)")) cspafy®e: ye X, ge (XM)).

To establish another inclusion, consider!. From the above relation, it is easy to see that
there isQ € Idem(M, X) such thap—1(Q)X ¢ X*V. Applying Proposition 3.12 tg 1,
we getthap—1(Q)X ¢ XV forall 0 € ldem(M, X). Itfollows that the another inclusion
is true.

Now suppose that Proposition 3.12(ii) holds. Then by Lemma 3.9,

y(spax® f: x e X, fe(xV)")) csparfy®e: yeOM, g Xx*}.

The another inclusion can be obtained by applying Proposition 3.13 and Lemma3 8 to
O

Proof of Theorem 3.1 (The case wherd/ is not sub-continuous). We only consider the
casex?V # X. The proof for the case thaﬁ();ﬁ 0 is similar.
First we consider the exceptional case whéfeis the trivial nest{0, X}. By Theo-
rem 2.8, M is also trivial. Thusgp is an additive Jordan isomorphism froB(X) onto
B(X). SinceB(X) is a prime ring, it follows from [11] tha is either a ring isomorphism
or a ring anti-isomorphism.
In the following, we assume thaf is not trivial. We distinguish two cases.
Casel. Proposition 3.12(i) holds. Then the restrictiongpfio spafjx ® f: x € X,
f e (XxN)1}is an additive Jordan isomorphism onto spa® g: y € X, g € (XM)*}
which preserves rank one operators in both directions. Moreover, by Lemma 3.9, for every
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fe XN there isg € (XM)L with the property that for each € X there exists a vector
yeXsuchthap(x® fl=y®g.
Now arguing as in [9], we have that there exist two additive mApX — X and
S:(xN)Lt > (xM)+ such that
dp(x® f)=Tx®Sf forallxeX, feX=t.
Let A € algN be arbitrary. Fix a non-zero functiongle (XN)L. Thenfor allx € X,

TAx@Sf+TxQSA*f=¢p(Ax® f +x ® fA)
=¢(A)p(x® f)+d(x® NP(A) =p(A)Tx @ Sf +Tx ® SfP(A).
Therefore
PATx®Sf=TAxQ Sf +Tx ® (SA*f — $(A)*Sf), VxeX.
Applying both sides of the above equationype X satisfying(Sf)(yo) = 1, we get that
¢(A)Tx=TAx+uasTx, VxeX, (3.2)

whereu 4 € F is a constant not depending anlLet y € xN andg € (XN)L. SetB =
y®g. Then

0=¢(B?) =¢(B)$(B) =¢(B)Ty ® Sg,
which implies thaw (B)Ty = 0. Thus from (3.2) we have that
0=¢(B)Ty=TBy+upTy=pugTy.
It follows that¢ (B)Tx = T Bx for all x € X. Hence we have that
¢(A)¢(B)Tx = (A)TBx = TABx + uaT Bx
and
¢ (B)p(A)Tx = (B)(TAx + uaTx)=TBAx + uasT Bx.
On the other hand
¢(AB+ BA)Tx =TABx + TBAx.

It follows from Theorem 1.3(i) that 24,7 Bx = 0 for all x € X. Takingx € X such that
g(x)=1,we getthausTy =0 and henceis =0, and sap(A)Tx =T Ax forall x € X.
Consequentlyp(A) = TAT 1 for all A € alg//, from which it is easy to see thét is
multiplicative.

Case?2. Proposition 3.12(ii) holds. Then the restrictiongfto spafix ® f: x € X,
fe (Xi\/)l} is an additive Jordan isomorphism onto spa® g: y € O{‘F/‘ g € X*}
which preserves rank one operators in both directions. Moreover, by Lemma 3.9, for every
fe XN there isy € Oﬁ" with the property that for eache X there exists a vectgre X*
suchthap (x ® /) =y ® g.

Arguing as in [9] again, we have that there are two additive bijection¥+ — Oﬁ"
andS: X — X* such that

dp(x® f)=TfRSx forallxeX, feXz,

from which we get thap (A)* = SAS~1 and hence is anti-multiplicative. O
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Corollary 3.15. Let AV and M be nests on X. Let be a fixed integer greater than one.
Let ¢ is an additive bijective mapping fromg\” ontoalgM such thatp (AF) = ¢ (A)*
for all A inalg/N. Theng = u®, wherep € F such thatu*~1 = 1 and @ is either a ring
isomorphism or a ring anti-isomorphism froaflg A" ontoalg M.

Proof. It suffices to prove that there exist a scalae I satisfyingu*~1 = 1 and an addi-
tive Jordan isomorphism® from alg\ onto algM such thatp = u®.
Let A be in alg\" andt be positive integer. Consider

(I +1AY) = () +kp(A)e + %k(k — 1)¢(A? + sum of other terms ~ (3.3)
and
(I + 1A% = (p(D) + 16 (A)
k—1

=" +1)_ ¢ ¢p(A)p(D "/ +sumof otherterms  (3.4)
j=0

Comparing the coefficients of we get
k-1 ' '
kp(A) = (1) (A . (3.5)
j=0
Suppose thap(B) = I. PuttingA = B in (3.5), we get
dHt=1. (3.6)
Thus (3.5) becomes

k—2
(k—2p(A) =Y ¢/ p(A)p(D)} .

j=1

Further, applying (3.6) we have that

k—2
(k—2)p (NP2 =" ¢ rp(A)p (NP~

j=1
k—2 . ' k—2 ' '
=Y ¢ oA U = "o (1) p(A)p (D' T + ¢ (A)
j=1 j=2

= (k= 2)p(A) — p(DP(A)p (D %+ p(A).

Thus¢(A) = ¢ (1)¢(A)g(I)¥—2. Multiplying this equation by (7) from the right and
applying (3.6), we getp(I)¢p(A) = ¢(A)¢p(I). Since¢ is surjective, by Lemma 1.2,
¢(I) = ul for somey € F. Moreover, by (3.6)uf~1 =1.
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Now we can rewrite (3.4) as

1
o + 1A% = o (DF +kp(A)r + Skk - k=2 (A)%?
+ sum of other terms (3.7)

Comparing the coefficients of in (3.3) and (3.7), we hav@(A) = u*—2¢p(A)2.

Define a mapping from alg\” onto algM by @ (A) = u~1¢(A). Thend is additive
and bijective. Moreovep = u® and®(A2) = u 19 (A2) = uF 3¢ (A)2 = n 29 (A)2 =
®(A)2. O

4. Spatial results

In this section, we shall give the spatial structure of additive Jordan isomorphisms of
nest algebras. Recall that a (conjugate) algebraic isomorphism of algebras is an additive,
(conjugate) linear, multiplicative, bijective mapping. By Theorem 3.5 in [5] and its proof
(or the related result in [13]), we have

Lemma 4.1. Let A" and M be nests orX. Suppose thap is a mapping fronalg A\ onto
algM. Theng is an(conjugaté algebraic isomorphism if and only ¢f is of the form

d(A)=TAT ™,

whereT is a continuougrespectively, conjugaidéinear invertible operator fronk onto X.
¢ is a(conjugaté algebraic anti-isomorphism if and onlydf is of the form

P(A) =SA*SL

whereS is a continuougrespectively, conjugaldinear invertible operator from\/{f €
EL: EcN}ontoX.

Remark 4.2. Let N be a nest orX. If 0, # 0 or X is reflexive, it is easy to seg/{E*:
E € Np} = X*. But this equality may not hold if 0= 0 and X is not reflexive. For
instance, sefX = L1[0,1]. Forz € [0,1], let E; = {f € LY f([1,1—¢]) = 0}. Then
N ={E;: t €[0,1]} is a nest with Q =0 andX_ = X. It is obvious thatx* = L*> and
E} ={geL>: g([0,1)) =0} for everyt € (0,1). Let go= 1€ X*, then|lg — golloo = 1
for everyg € E;- and every € (0, 1), which implies thad\/{E;: ¢ € (0, 1)} # X*.

Lemma4.3.Let NV and M be nest ork . Suppose that is an additive Jordan isomorphism
from algN ontoalg M. Then there is a ring automorphism F — T such thaip (¢ A) =
h(a)¢p(A) for everya € I and for everyA € algN.

Proof. By Theorem 3.1, we may assume thpais a ring anti-isomorphism.

Leta be inF. Theng(al)¢p(A) = ¢p(A(al)) = ¢ ((al)A) = p(A)¢(al) for every A
in algN. Since¢ is surjective, by Lemma 1.2 there exists a scdlar) € F such that
¢(al) =h(a)l. Itis easy to verify thati(«) is a ring automorphism df. Now fora € F
andA e algN, we have that

¢(@A) =p(A)p(al) =p(Ah(a)] =h(a)¢p(A). O
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Lemma 4.4. Let X be either a real Banach spaceim X > 1, or an infinite dimensional
complex Banach space. Lt and M be nests oiX. Suppose that is an additive Jordan
isomorphism fronalg\” ontoalg M. Then in the real case is linear, and in the complex
caseg is either linear or conjugate linear.

Proof. By Lemma 4.3, there is a ring autoisomorphigmF — F such thaty («¢A) =
h(a)p(A) for everya € IF and for everyA € algN.

Casel: F=R. By aresult of [1, p. 57]i(x) = « for everya € F. Consequentlyp is
linear.

Case2: F = C and X is of infinite dimensions. By additivity and multiplicativity &f,
it suffices to prove thai is continuous.

We take a sequende; ® fi} of rank one operators in alg such that

(@) fi(xk+1) =1 for eachk,
(b) fi(xj)=0forj <k,
() xx ® fr+1is alsoin algV for eachk,

as follows. If V' is an infinite set, then there is a sequerdg} in A such that O<
N; < Niy1 < X for everyk. Take non-zero vectors, in N; and f; in N,} such that
fi(xrr1) = 1. If M is a finite set, there must be an eleméhin N such thatt \ E_ has
an infinite subset of linearly independent vectors sinceXlimoo. Let {x;} be a subset of
linearly independent vectors ii \ E_. Then by Hahn—Banach extension theorem, there
is a sequencgfi) of functionals inE+ satisfying conditions (a)—(c).

If his not continuous, then by [1},is unbounded on every neighborhood of 0. We pick
ax € C such that|ag (xx ® fi)]l < 1/2% and

kllp orr1 ® fir DIl + 1 (CFZf i (i @ i) (41 ® fiern)
lp (ke @ firn)l '

DefineA =Y ;2 axxx ® fi. ThenA isin alg\ and

k=1

A1 ® firr =) oi(xi ® f) (k41 ® fier) + ki ® fesd-
i=1
Since¢ is a ring isomorphism or a ring anti-isomorphism, we have that

6 (A)|]¢ i1 ® fir)|

k-1
= H‘P(Z% (i ® fi) (X1 ® fk+1)> +h(e)p Ok ® frs1)

i=1

|h()| >

>

k=1
¢(Zai (i @ fi) (k41 ® frr1) + Xk ® fk+1)

i=1

> |he)| |6 Gk ® fian)|

k—1
¢<Zai (xi @ fi) (X411 ® fk+1)) H
i=1

Thereforg|¢p (A)|| > k (k=1, 2,...), which contradicts that fact that(A) is bounded. O
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Combining Theorem 3.1 and Lemmas 4.1 and 4.4, we obtain

Theorem 4.5. Let X be either a real Banach spacgim X > 1, or an infinite dimensional
complex Banach space. L&f and M be nests ork. Suppose thap : algN — algM is
an additive Jordan isomorphism. Then we have in the real case either

H(A)=TAT 1
for all A in algN/, whereT : X — X is a continuous linear bijective mapping, or
$(A)=S5A*s71

for all A in alg\, whereS:\/{f € EX: E e N} — X is a continuous linear bijective
mapping. In the complex cages either of one of the above forms, or of one of the follow-
ing:

#(A)=TAT !
for all A in algN, whereT : X — X is a continuous conjugate linear bijective mapping,
or

H(A)=SA*ST

for all A in alg\, whereS:\/{f € EX: E e N} — X is a continuous conjugate linear
bijective mapping.

Now we treat an additive Jordan isomorphism of nest algebras on a finite dimensional
complex Banach space. By, (C) we denote the algebra of allx n matrices ovefC. For
every finite sequence of positive integeisno, .. ., ng, satisfyingny +na+ - - -+ nx =n,
we associate an algebra consisting ofiak n matrices of the form

A1 A2 ... An
0 Ay ... Ay

A= . . . . ,
0 0 ... Aw

where A;; is ann; x n; matrix. We will call such an algebra a block upper triangular
algebra inM,,(C). Given two nest algebras dff*, one of them can be assumed to be a
block upper triangular algebra i, (C) and another can be assumed to be a subalgebra of
M, (C) which is called a nest algebra M, (C).

Theorem 4.6. Let.4 be a block upper triangular algebra itf,, (C) and5 be a nest algebra
in M, (C). Letg is an additive Jordan isomorphism frogh onto 5. Then there is a ring
automorphisnt:: C — C and an invertible matrix” such thatp is of the form¢ (A) =
TH(A)T 1or¢(A)=TH(A)'T 1 forall Ae A, whereH[w;;]=[h(e;;)] ands stands
for the transpose.

Proof. By Lemma 4.3, there is a ring autoisomorphigmC — C such thatp (x¢A) =
h(x)¢(A) for everya € C and for everyA e A. For a matrixo;; ], we define
Hlajj] = [h(eij)] and H Yoij]1= [~ (o).

Then bothH andH 1 are ring isomorphisms.
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By Theorem 3.1, we distinguish two cases.
Casel. ¢ is a ring isomorphism. We introduce a new mappingn A by

(A =¢(H1(4), AcA

Itis not difficult to see that/ is a linear isomorphism fromd onto5. By Lemma 4.1, there
is an invertible matrixr” such thaty (A) = TAT 1. Consequentlyp(A) = TH(A)T 1
for everyA € A.

Case2. ¢ is a ring automorphism. Lef be a particular permutation matrix i, (C)
given by J = [8; »+1-i], wheres;; is the Kronecker delta symbol. ThehA4’J is also a
block upper triangular algebra. We introduce a new mappiren J A’ J by

YA ) =¢(H HA), AecA

It is not difficult to see that/ is a linear isomorphism fromi A’ J ontoB. By Lemma 4.1,
there is an invertible matri such thaty (JA'J) = TJA'JT~1. Consequentlyp(A) =
TJHA'JT 1= (TJ)HHA)(TJ) LforeveryAe A. O
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