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Abstract

This work is concerned with optimal policies for two age-structured biological populations in a
competing system, which is controlled by fertilities. The maximum principles for problems with free
terminal, infinite horizon and target sets are obtained respectively via Dubovitskii—Milyutin's general
extremal theory.
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1. Introduction

There have been many studies for the control problems of multi-species by the help
of mathematical modelling, see Refs. [1-9]. However all of these investigations are con-
centrated on the systems without age-depeoéelt is well known tht age-composition
is one of the key factors in population dyngs, since the fertility and mortality of an
individual depend heavily on its age. To chettie age effects on the control problems
of multi-species, we in the sequel examine several optimal control problems for systems
composed of two age-depend@opulations competing each other.
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The purpose of this article is to establithe necessary optimality conditions for the
optimal control problems. This task is finished via a powerful functional approach first
suggested by Dubovitskii and Milyutin for general extremal problems (Ref. [10]). We will
follow the spirits in Refs. [11,12]. Neverthelg, because of the presence of interactions,
additional difficulties have to be overconar fgoing through our investigations. The work
generalizes the corresponding results in Ref. [11].

The remainder of this paper is organized dbfes. In Section 2, we formulate the basic
model and treat its well-posedness. From Section 3 to 5, we study, respectively, optimal
control problems with free terminal state, infinite horizon and target sets. Section 6 is
composed of some comments and a topic for future research.

2. Themodel and its well-posedness

In [13], Webb formulated the following model for two age-dependent species with in-
teraction of competition or predator—prey:

B 4 2 = [ (P, ) + pia(Pla( )i (a, 1), i=1,2,
10,0 = [5° fi(L—e"lia, 1) da, i=1,2,
li(a,0)=gi(a), i=12,
Pl (-, 1) =f(;’°l,~(a,t)da, i=12 (a,t) € (0,00) x (0, 00),
wherel;(a,t) (i =1, 2) are the density with respect to agef ith population at time;
a1, a2, B1, B2 are all positive constants; mortality modulg (i, j = 1, 2) are all bounded
and twice continuously differentiable functions fragrto (0, co).
Under certain conditions he considered first the extinction of one of the species, then
the local stability of nontrivial equilibrium solution.
Motivated by the idea of Webb, we introduce the following model:

% + % = —pa(a, 1)p1 — ri(a, 1) P2(t) p1,

% + % = —p2(a, t)p2 — r2(a, 1) P1(t) p2,

pi0,1) =i (1) [;2mi(a, 1) pi(a,1)da, (1)
pi(a,0) = pio(a),
Pty = [ pita,tyda, i=12 (a,1)€Q,

where Q = (0, A) x (0, +00), [a1, az] is the fertility interval, and the other parameters
mean as followsi(= 1, 2):

pi(a,t): the density of populationof agea at timet;

wi(a,t): the average mortality of populatign;

Bi(1): the average feitity of population p;;

Mi(a,t): the interaction coefficients;

mi(a,t): the ratio of females of populatiopy;

pio(a):  the initial age distribution of populatiop;

A: the life expectancy, & A < +o0. Here, without loss of generality, we assume
that the two populations have the same life expectancy.
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Throughout this paper, we suppobe following conditions hold:

(H1) pi € Lpo(0), i(a,1) >0, [3! wi(a,t + a)da=+00, (a,1) € Q.

(H2) 0< Ai(a,t) < A;, A; are constants.

(H3) 0< m;(a,t) < M;, M; are constantss; (a, t) = 0 whena < a1 ora > ay.

(Hg) Bi € U; :={hj € L®(0, 00): 0< Bo < hi (1) < O, Vr > 0}, Bo andp® are constants,
U=U; x U».

(Hs) pio € L*(0, A), pio(a) >0,Va € (0, A).

For any givenT > 0 andv = (v1, v2) € L2(Q7, R?), Or = (0, A) x (0,T), v >0,
define
A
Vi(t) =/U,~(a,t)da, i=1,2
0
Consider the system

1 4 81 = —pig(a, 1) p1 — Ala, )Va(1) p1,
9 9
P2 4 22 = —po(a, 1) p2 — ra(a, HVi(1) pa, @)

pi0,1) =i (1) [;2mi(a, 1) pi(a,1)da,
pi(a,0)=pio(a), i=12 (a,1)€Qr.
The above system has a unique nonnegative solution (Refs. [14,15])
p' = (pi. p3) € C(0,T; L3O, A; R%)) N L™(Qr; R?)
and
pi(A,1)=0, Vte[0,T],i=12

Note that, from the comparison principle of linear system (Ref. [15]), it follows that
pi(a,t) < pi(a,t),(a,t) € Qr,i =1,2, wherep; is the unique nonnegative and bounded
solution of the following system:

O E = —pi(a, 0y,
y(0,0) =B [?mi(a,n)y(a, 1) da,
y(a,0) = pio(a), (a,t)€ Q7.
For anyv) = (vi1, vi2) € L2(0r; R?), 0< v;j < pj, let the corresponding state be
pa) = (pi1, pi2), i =1,2,x = (x1, x2) := p1) — P(2)-
It follows from (2) that
2+ 39 = —pgxs — M Via(H)x1 — (Vo) — Vaa(1))A1pa1.
B2 4+ 32 = —poxp — A2Vaa(t)xz — (V1a(t) — Vaa(t))A2p22,
xi(0,1) = Bi (1) [2 mi(a, )xi(a, 1) da, 3)
xi(a,0)=0,
Vij(t) =[5t vij(a, nyda, i,j=1,2, (a,1) € Qr.
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Multiplying (3); (i.e., theith equation in (3)) by;, i = 1, 2, and integrating o160, A) x
(0, 1) yield

t
|xiC, 0] < C/ |via(-, 5) = vaal-, )| * ds (4)
0
and
t
|xa(-, 0] < C/ Jvi1(-, ) — vaa(-, )| * ds, (5)
0
wherec is a constant independentqf, i =1, 2, || - || is the ordinary norm irL2(0, A).

Consider the set
I={(v1,v2) € LX(Qr; R}): 0< vi(a, 1) < pi(a.1), i =1,2; V(a,1) € Qr}.
Define the mapping : I — I,
(Gv)(a,t) =p"(a,1), V(a,t)€Qr,

and an equivalent norull, = (v1]2 + [[v212Y2

T
||u,~||§=/||u,~(-,t)||2exp(—2ct)dt, i=12
0

Using (4) and (5), we get that

Gv) — Gvyll« = llpw — P ll«
- L 1/2
= / (2.0 4 xaC-.0)]%) exp—2en) dt}
-0
- T t

f f c([oraC ) — v21C. )2+ JoraC . s) — vaal-.5) D) dis
-0 0

/A

1/2
X exp(—2ct) dt]

T

< [/(an(' ,8) = v21(, )| 2+ iz, ) = vaa(, ) %)

0

T 1/2
X / cexp(—2ct) dt ds:|
N
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1 T
< 7 [O/(HUHC ) =21, )P + Jvrat, ) = v2al-, ) [%)
1/2
X exp(—2cs) ds:|

1
= —llvw — vl
\/E D (ARIES

So,G is a contraction oni/, || - ||«), which has a unique fixed point. It is clear that™* is
the solution of the system (1). We have proved that

Theorem 1. For any givens € U, there is a unique solutiop? to systen{1), such that

(i) p# €C(0,00; L%(0, A));
(i) 0< pla.0) < pia.0),Va.n e Q,i=12;
(iii) It can be shown in a similar manner thaf depends continuously gh

3. Freeterminal problem

Consider the control problem: Determi(g*, p*), 8* € U, such that
J(B*, p*)=min{J (B, p): B € U, (B, p) is subject to (1),
JB.p) = [y J3 L(BL(0), Bo(0), p1la, 1), pala, 1), a, 1) dadt (6)
+3 5% J3pita. ) — pi(@))da,
whereT > 0 and p;(a) > 0 (i = 1,2) are prescribed. The functiondl, defined on
[Bo, B912 x [L2(0, A)]2 x [0, A] x [0, 00), satisfies the following conditions:

(i) oaL/3B; anddL/dp; (i =1,2) are continuous in the first four arguments, ands
continuous with respect to its all variables.

(i) o 18L(BL, B2, p1(@), pa(a), a,1)/3f;|da, f3 [L(B1, B2, p1(a), p2(a), a,1)/dpi|da
(i = 1,2) are bounded for any € [0, T'] and any bounded subset ffo, 8% x
[L2(0, A))? x [0, A] x [0, T].

In the sequel, byB, p, a,t) we denotgB1(¢), B2(2), p1(a,t), p2(a,t),a,t).

Theorem 2. Any solution(8*, p*) of problem(6) satisfies
B (1)S; (1) = max{ B; S (1): o< Bi < ﬂo}, aerel0,T], i=12,

where
A

Si(t) = /[qi(o, 1)(mipf)(a, 1) —IL(B*, p*,a,1)/0pi]da,
0
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gi, i =1, 2, is the solution of the adjoint system
¥ 4 091 — g1 — m1Biqu(0, 1) + higqiPy (1)

+ 3L (%, p*oa, 0 + f3 (Gap3g2)(a, 1) da,
%2 4 %492 — 1iagy — moBiq2(0, 1) + hagqa Py (1)

+ 3L (B, p*oa, 0 + f3 Gapiqya, D da,
gi(a,T) = pi(a) — p;(a,T),
gi(A,1)=0, P*)= [ pia,nda, (a,1)€ Or.

(7)

Proof. Forany giver: = (h1, h2) € Ty (B8*) (the tangent cone t& at $*) ande > 0 small
enough, we havg® :=8*+eh e U.
Denoting byp?® the state corresponding g5, we can write

J(B%, p) = J(B*, p"),
T A 5 A
//L(,Bs, p,a,t)dadt + Z/[pf(a, T)— ﬁi(a)]zda
0 0 i=1lyp

T A
>//L<ﬂ*,p*,a,t)dadt+
00

Dividing (8) by ¢ and passing to the limit as— 0", we obtain that

T
://[h (1) — (,3 pra, t)+zi(a, t)—(,B p¥,a, t)i|dadt
00

A
+/Z (a, D)[pf(a,T)— ﬁi(a)]da} >0, )
0

ie.,

NI =

NI =

2 A
> / [} (@.T) - pi(@)]*da. (8)
0

i=1
i=

wherez;(a, t) :=lim._o+ Y[ pf (a. 1) — p}(a, )] satisfies

%0 4+ 88 = —pnz1 — Mpi Zo(t) — APy (0)z1,

Bzz + L)zz = —u2z2 — haps Z1(t) — A2 Py (t)z2,

z,(O, t)_ (t)f (mizi)(a,t)da+ h; (t)f (m,p Ya,t)da,
zi(a,00=0, Z; (t)—fo zi(a,t)da, (a,t)e Qr.

Multiplying (10); by g;(a, t), integrating onQr and using the system (7), we derive out
that

(10)

A

2 T A
L
Z://z,-(a,r)?—p(ﬁ*,p*,a,r)dadr+/z,-(a,T)[p;*(a,T)—ﬁ,»(aﬂda}
00 '

i=1 0
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2 T A

=—Z/q,»(o, t)/(m,»p;‘)(a,t)da.h,»(t) dt. (11)
0 0

Combining (11) w

2 T A
Z://[Qi(O, Hm;(a,t)p;(a,t) — g—;(ﬁ*,p*,a,t)} da'h,'(t)dt} <0
i=11p o '

holds for any: € Ty (8*), soS; € Ny (8*) (the normal cone t&/ at 8*). Consequently the
conclusion of Theorem 2 follows immediately.

ith (9), we are led to that

4. Infinite horizon problem

We consider further the optimal control problem: Fig#t, p*), 8« € U, such that

{ J(B*, p*) =min{J (B, p): B € U, (B, p) is subject to (1))
JB, p) = [5° [ L(BL(), B2(1), p1(a, 1), pa(a,1),a, 1) dadt,
with other conditions similar to problem)@vioreover we suppose that for each admissible

pair (8, p), the integral in (12) is convergent.
Itis trivial to prove that

(12)

Lemmal. If (8*, p*) is a solution to the problerfl2), then for any giverl” > 0, (8%, p*)
is a solution to the following problem

Jr(B*, p*) =Tmir/1{JT(,3, p): BeU},
Jr(B.p)=Jo Jo L(BL(1), B2(1), p1(a, 1), p2(a,1),a,1)dadt,

where(8, p) is subject to the system

(13)

14— 1 (a,1) p1 — Mla. 1) Pa(t) pa,

B2 1 002 — 11, 1) pa — Aala, ) Pr() p2,
pi(0,1) = Bi (1) [Zmi(a, 1) pi(a, 1) da,

pi(a,0)=pio(a), pi(a,T)=p{@aT), (a,1)e€Q.

(14)

Let X = L°°(0, T; R%) x C(0, T; L%(0, A; R?)). We first investigate the necessary con-
ditions which must be satisfied for the solution to the problem (13)—(14). Define

210={B.p)eX: fo<Bi(t) <P’ aerel0,T], i=12}
22 ={(B. p) € X: (B, p) solves the system (1}4)

Then the problem (13)—(14) is equivalent to the problem: Kjgit] p*) € £21 N £22, such
that

Jr(B*, p*) =min{Jr (B, p): (B, p) € 21N 22}. (15)
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In what follows, we will use the general theory of Dubovitskii and Milyutin for extremal
problems to deal with the problem (15), which needs to determine the corresponding cones.
Under the assumptions faf(8, p), the functionalJr is differentiable at any point

(. p) and

1

Lo 2 (7 AL ~ _ aL -
JT(,BaP)(:B’p)Z //[ﬂi(t)__(ﬂ7p7a’t)+pl'(a7t)_'(:35paa7t)}dadt~
—19 9B api

SinceJr (B, p) is regularly decreasing &8*, p*), its directions of decrease cone is

Ko= {(;37 P) €X: J%(;B*v p*)(ﬁ’ P) < O}

If Ko# ¢, then for anyfp € K (the dual cone oKp), there exists.o > 0 such that

9Bi

1

2 T A
aL
=10 0

aL
+p,~(a,t)8—p(ﬂ*,p*,a,t)j| dadt. (16)
1

Note that21 = £21 x C(0, T; L?(0, A; R?)) (where 21 = {8 € L*®(0,T; R?): Bo <
Bi(t) < %) is a closed convex subset &f Thus

int($21) = int(£21) x C(0, T; L?(0, A; R2)) # ¥,
where int£21) denotes the interior of21. Hence the feasible directions cone @i at
(B*, p*) is
K1 = {A(int(221) — (B*, p)): A >0}
= {)\((ﬂ, p)—(B*.p"): (B, p) €int(21), 1> 0}.

For any functionalfy € K, if there existsy; (t) € LY(0, T), i =1, 2, such that

2 T
AB =) f a; (1) Bi (1) dt, (17)

i=179

then [10, p. 76]

2
> ai®)[pi — (1)) >0, VB €[Bo. 01, aer €0, T]. (18)
i=1
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Next we determine the tangent directions conestorat (8*, p*). As far as the mild
solutions are concerned, system (14) is equivalent to the following system:

ui(a, 1) := [5[pa(r.1) — pro(0)1dt + [y p1(a.s)ds
- fé faalz B1(s)m1(a, s)pi(a,s)dads
+ o Jo P 9)pa(z, 5) + 2a(z, 5) Pa(s)]dT ds =0,

uz(a,t) = [5p2(t.1) — p2o(v)ldz + [y p2(a.s)ds (19)
—fo faalz B2(s)ma(a, s)p2(a, s)dads

+ fo Jo p2(t, 9)[p2(T, 5) + Aa(t, ) Pr(s)]dT ds =0,
pi(a,T)=pi(a,T), i=12.

Define the operatof : X — C(0, T; L2(0, A; R?)),
[GB, p](a, 1) = (u1(a, 1), uz(a, 1), p1(a, T) — pi(a,T), pa(a, T) — p3(a, T)).
So,82, ={(B, p) € X: G(B, p) =0}, and
G'(B*, p")(B, p) = (vila, 1), va(a, 1), p1(a, T), p2(a, T)),

where

a t t a

vl(a,t)=/p1(f, t)dt+/pl(a,S)dS+//(Mlpl)(t,S)dtdS
0 0 00

t ar
—//ml(a,S)[ﬁI(S)pl(a,S)+ﬁ1(S)pI(a,S)]dads

0 a1

1 a
+//A1(r,s)[p;(z,s)P2(s)+p1(r,s)P2*(s)]drds, (20)
00

a t t

vz(a,t)=/p2(f, t)dt+/pz(a,S)dS+//(szz)(t,S)dtdS
0 0 00

t ap
—//mz(a,S)[ﬁS(S)pz(a,S)+ﬁ2(S)p§(a,S)]dads

0 a1
r a

+/f)\2(r,s)[p;(r,s)1)1(s)+p2(r,s)Pf(s)]drds. (21)
00

To show thatG’(8*, p*) is an onto mapping, we solve equatiGh(8*, p*)(8, p) =
(w1, w2, w3, wa), i.e.,
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Jo pr(x.0dT + [g pi(a,s)ds + [g fo (uapy)(z, 5)deds
—fé faafml(a,S)[ﬁI(S)pl(a,S) + B1(s)pi(a, s)ldads
+ fo Jo (. 9[pi(r. ) Pa(s) + pa(z, ) P3 (s)] dv ds = wa(a, 1),
Jo p2(x.0ydt + [ pala,s)ds + [p [ (n2p2)(r.s)dT ds (22)
—fé a“fmz(a,S)[ﬂf(S)pz(a,S) + Ba(s)p5(a, s)ldads
+fé Jo A2(z, )[p3(z, s) P1(s) + p2(z, s) P{(s)]dt ds = wa(a, 1),
pia,T) =ws(a), p2(a, T) = wa(a),
where(w1, w2, ws, wy) is prescribed.
Note that the linearized system of (1)(@t*, p*) is
W 4 O = —pia(a. 1) p1— hala. DIPE () 1+ Pa(t) pi.
B+ 2 = —pz(a. )p2 — d2(a, DLPF (1) p2 + Pr(1)p). 23)
pi(0,1) =fai2mi(a,t)[ﬂ{k(t)pf(a,t) + Bi () p; (a,1)]da,
pi(a,0=0, (a,1)eQ.
It is easily seen that each mild solution of (23) satisfies Eqs1(28) (22). So there is

at least one solution to (22) if the system (23) is controllable. In fact, there €gistg>)
such that the corresponding solution of the system (23) satisfies

pi(a, T) = wz(a) — y1(a, T), p2(a, T) =wa(a) — y2(a, T),
wherey; (a, t) is the solution to the following system:

Jo v yde + [y yia,s)ds + [o fo (n1yD)(t,s)dTds

— Jo Ju2ma(a, $)B;(s)ya(a, 5)dads

+fé Jo 21T, )pi (T, )I2(s) + yi(z, s) P3 ()] dt ds = wi(a, 1),
Jo va(t.tyde + [y ya(a,s)ds + [o [o (n2y2)(t,s)dT ds

—fé faalzmz(a,s)ﬁf(s)yz(a,s)dads

+f(§ f(?_)»z(f, $)p5(t, ) (s) + ya(r, s) P{(s)]dt ds = wa(a, t),
Ti(s) = fOA via,s)da, i=12.

Then it is not difficult to show thatB1, B2, p1 + 1, p2 + ¥2) solves system (22). Now the
tangent directions cong; consists of the kernel a&’(8*, p*).
Define the linear subspacesXfby
Ki1={(B.p) € X: vi(a,1)=0, i =12},
Ki2={(B.p) € X: pi(a,T)=0, i =1,2},
wherev; andv; are given by (20) and (21). Thety = K11 N K12, K5 = K71 + K.

For any f> € K5, f2= fi1+ fi2, fu € K3;, i = 1,2, there exists; (a) € L2(0, A),
i =1, 2, such that

2 A
f12(B. p) =Z/ai(a)pi(a, T)da. (24)

i=1 0
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According to Dubovitskii—-Milyutin’s theorem [10, Theorem 6.1], there exist functionals
foe Kg, fie Ky, fu € Kj;,i=1,2,notall zero, such that

fo+ fi+ fuu+ fio=0. (25)

For anyg € L*°(0, T), selectp such that the first two equations in (22) holds. Then
(B, p) € K11 and f11(8, p) = 0[10, Theorem 10.1], from which

f1(B, p) = —fo(B, p) — f12(B. p)
2 T A
oL aL
= Z{)\o//[ﬂi(t)a—(ﬁ*, p*.a, 1)+ pila,)—(B*, p*.a, r)] dadt
, Bi api
=1l "9 0
A
—/ai(a)pi(a, T)da}. (26)
0
Define the adjoint system

%1 4 31 — 11g1 — m1Bqr(0, 1) + A1q1 P} (1)
+hog= (B, p*.a, 0+ 3 (hap3q2)(a. 1) da,

aqz + 38? = p2q2 — m2B5q2(0, 1) + Aog2 P{ (t) 27
+)L03P2 (B, p*.a.1) + [5 Gapiqr)(a. 1) da,
qi(aa T) = (a),

qi(A,1)=0, (a,1)€Qr.
Then we can prove that

2 A
|:k0//P:(a t)—(ﬂ p*,a,t)dadt — /ai(a)Pi(a,T)da]
i=1

0

2 T A
—Z/qi(O, t)/mi(a,t)p;*(a,t)da~/3i(t)dt. (28)
=10 0

From (26) and (28),

2 T A
f1(B, p) = //[M@(ﬁ p*.a,t)—q; (0, t)mz(a,t)PE"(a,t)} da - Bi(t)dt.
i=1p 0 '

1

(29)
Consequently (18) leads us to
Y2, [Rod% (B, p*.a,1) = qi(0, ymi(a, ) p}(a, 1)]da
x[Bi — B (1)] =0, (30)
VB € [Bo. 8%, a.ere[0,T], i =12
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We claim that there is no possibility for boily anda(a) = (x1(a), a2(a)) being zero.
Otherwisefo =0, f12=0,gi(a,t) =0, f1 = 0 (Ref. [10]). Then from (25)f11 = 0. This
contradicts the fact thafy, f1, f11, f12 are not all identically zero.

On the other hand, iKo = ¢, then for any(8, p) € X,

2 07 aL . aL .,
Z//[ﬂi(t)—(ﬂ ,pha, )+ pita, ) —(B*, p ,a,t)}dadtzo. (31)
o i pi

Choosingho = 1 anda(a) = 0 in (28) yields

{ SN2 fy J pita, nEE B, p*oa 1) dad: @2
==Y fs ai0.0) J§ mita,0)p} (@, 0)da- Bi(r)dr.
Combining (31) with (32), we still get inequality (30).
Finally, if the adjoint system (27) has a nonzero solution such that
A
/qi(O, Hmj(a,t)pi(a,t)da=0, a.ere[0,T], i=12, (33)
0

then letip = 0, inequality (30) is also satisfied. iér any nonzero solution of (27), we
always have

A A

(/ql(O, t)ml(a,t)pf(a,t)da,/qz(O, t)mﬂa,t)p%(a,t)da) #£0, (34)

0 0

then the system (23) must be controllable; otherwise there exigis= L2(0, A; R?) such
that

s A
Z/ai(a)pi(a, t)da=0, «a(a)#0.
i=1 0

Choosinghg = 0 in (28), we obtain that
2 T
i=l'0/

holds for arbitrarys; (r) € [Bo, 8°1, which yields (33). This contradicts (34). Therefore the
system (23) is controllable.
In all cases, inequality (30) remains valid. We have proved

A
40, r)/m,»(a,op?(a,r)da~/3,-(r)dr=o
0

Theorem 3. If (B8*, p*) is a solution to the probler(il3)—(14) then there existsor > 0,
ar(a) € L%(0, A; R?), not all zero, such that

B*(1)- H(B*, p*) = max{ - H(B*, p*): B €[fo, %}, a.erelOT],
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where- denotes the scalar product iR?,
A

oL
H(;B*v P*) = </|:ql(07 t)ml(avt)pz(ast) _)"Oa_ﬂl(ﬁ*i p*iavt)} dav
0
A
/I:qZ(Ovt)mZ(avt)pz(ast)_A'O_(ﬁ 7p 7a7t)}da 3
J 9p2

qi,i =1, 2, is the solution of the adjoint systg@17) corresponding to.o = Aor, @ = o;T.

Now return to the infinite time problem (12). We suppose
ror + |ar(@. )| 20 7.5 <M, a€a €0, Al (35)

whereM > 0 is a constant. Choosky — oo such thatior, — As. FOr any fixedr > 0
andTy large enough, by means of characteristic line, we derive out that
q1ry 0.0 = [ expi— [*[palp — 1. p) + 2a(p — 1. p) P5 (0)1 dp)

x [m1(s —t,$)B1 (5)q1ry (0, 5)

- fOA()"Zp;quN)(a7 S) da — )"OTN %(18*7 p*7 s — ta S)] dS,
q21y (0,1) = f,TN exp(— [;'[n2(p — 1. p) + A2(p — 1, p) P (p)]dp}

x [ma(s —t,$)B3(s)q2ry (0, 5)

- foA(klpIqer)(a, s)da — Aoty %(ﬁ*, p*.s —1,9)]ds.
Note thatff u1(p —t, p)dp = +oo whens >t + A. So the integration intervi, Ty] in

(36) can be replaced Hy, t + A]. From (35) it follows that|qz, (a, )l L2 11 a:82) < M.
Thus there is a subsequence of time (also denotddh}) such that

(36)

qry(@,-) = goo(a,-) weaklyinL2(t,1 + A; R?). (37)
From (36) and (37), it is not difficult to prove that
q100(0.1) = [ expi— [ lualp — 1, p) + 21(p — 1. p) P5 () dp)
x [m1(s —t,5)B1(5)q100(0, 5)
— Jo' G2piga00) (@, s)da — hoo B (B*, p*, s — 1, 5)] ds,
q200(0.1) = [/ expi— [ 2o — 1, p) + h2lp — 1, p) P (p)] dp)
x [ma(s —t,5)B5(5)q200(0, 5)
— Jo O1Piqico) (@, s)da — hoo B (B*, p*, s — 1, 5)] ds,

which enables us to state

Theorem 4. Let (8*, p*) be a solution for the problerfi2), then there exist,, > 0and a
functiong : [0, co) — R2, not simultaneously zero, such that

B*(1)- H(B*, p*) =max{B - H(B*, p*): B €[Bo. %), a.erel0,o0l,
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where

A
oL
H(B*, p*) = (/[(M(Q Hmi(a,t)pi(a,t) —)»ooa—ﬁl(ﬂ*,lﬂ*,a,t)} da,
0
A

oL
/[QZ(O’ t)mZ(a’ t)p;(aa t) - )"OO_(ﬂ*7 p*7 a, t)} da ’
/ a2

q(a, t) is given by the following adjoint system
% + % = p1g1 — m1p1q1(0,1) + A1q1 P5 (1)
A
+ Aot (B*, p*.a,0) + 3 (2p3q2)(a, ) da,
% + % = p2q2 — m2p5q2(0, 1) + A2q2 Py (t)

+ ootk (%, p*,a,0) + [§ (Mpiqu)(a, 1) da,
gi(a,o00) =0,
gi(A,n=0, (a,1)eQr,i=12

5. Constrained end point problem

Problem (13)—(14) leads us to the following problem:

T A
minimize J (B8, p) =//L(ﬂ1(t),ﬂ2(t), pila,1), p2(a,t),a,t)dadt, (38)
00

whereT > 0 is fixed,8 € U and(8, p) is subject to the system (1) and

pit.TYEVi, Vi={peL?©,A) |p-p?|<e} i=12 (39)
in which p? ande are prescribed. The assumptionslo@nd the definition ofX and £2;
are as before.

Let

22={B.p)eX: pi(~T)eVi, i=12},
23={(B. p) € X: (B, p) satisfies (1).

Suppose thats*, p*) solves the problem (38)—(39). Clearly the cone of directions of
decrease and its dual cone are as in Section 4; so are the feasible directions @@ne for
and its dual. Sinc&2; is a closed convex set and {£it2) # ¢, any functionalf> in the dual
of the feasible directions cone f&, is supporting; that is,

f2(B. p) = f208%, p*), Vp(a,T)eVix V.
Obviously there exists € L2(0, A; R?) such that
A
fz(ﬁ,p)=/a(a)'p(a,T)da.

0
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Therefore [11, p. 300]
a(a) =io[p°@) — p*(@. T)]. Ho>0.

Then by a reasoning similar to that in Section 4, we arrive at

Theorem 5. If (8%, p*) is a solution to the probler{88)—(39) then there existo > 0 and
Ao = 0, not both zero, such that

B*(t) - H(B*. p*) =max{B - H(B*. p*): Blpo. 01}, aetel0,T],

A
JL

H(p* p*) = (/[(M(Q Hma(a,t)pia,t) — )»0%(,3*, p*.a, t)i| da,
0
A

* oL * %

/[QZ(OJ)MZ(GJ)PZ(GJ)—)»0—(,3 P ,a,t)i|da ,
/ 082

andg is the solution of the following adjoint system
81 4 001 = pagr — m1Biq(0, 1) + haq1P} (1)
A
+hoge (B*, p*.a,0) + [g (h2p3q2)(a, 1) da,
%2 392 = yiogy — maPiq2(0, 1) + hag2 Py (1)
A
+ o (B p*,a.0) + fo (Mpian)(a, 1) da,

gi(a, T) = kol p2(@) — p(a, T)1,
qi(A,1)=0, (a,t)eQr,i=12

6. Concluding remarks

Note that just for the sake of simplicity, the average fertility of female individyfals),
in the system (1) is chosen to be independent ofladeplacings; () with 8;(a, t) forms
no essential obstacles to the previous treatment.

On the other hand, the situations seem rather difficult to deal with for the symbiotic
system, we will investigate the problem in another work.

Finally one can easily check that the all results but the time-optimal problem in Ref. [11]
are contained by this work.
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