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Abstract

By using generalized Borsuk theorem in coincidence degree theory, some criteria to guarantee the exis-
tence of ω-periodic solutions for a class of p-Laplacian system are derived.
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1. Introduction

Throughout this paper, 1 < p < ∞ is a fixed real number. The conjugate exponent of p is
denoted by q , i.e., 1

p
+ 1

q
= 1. Let φp : Rn → Rn be the mapping defined by

φp(u) = φp(u1, . . . , un) := (|u1|p−2u1, . . . , |un|p−2un

)T
.

Then φp is a homeomorphism of Rn with the inverse φq .
In this paper, we will consider the existence of periodic solutions of the following system:(

φp

(
u′(t)

))′ + d

dt
gradF

(
u(t)

) + gradG
(
u(t)

) = e(t), (1.1)
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where F ∈ C2(Rn,R), G ∈ C1(Rn,R), e ∈ C(R,Rn), e(t + ω) ≡ e(t) for all t ∈ R, ω > 0 is
fixed.

In recent years, the existence of periodic solutions of (1.1) for p = 2 has been extensively
studied (see [1–7]). In [5], by using Krasnoselskii’s fixed point theorem, Ding proved the follow-
ing result.

Theorem A. (See [5].) Suppose that there exist constants c0 > 0, a0 > 0, a1 > 0, b0 � 0, b1 � 0,
and α > 1, such that

(a) yT ∂2F(x)

∂x2 y � c0|y|22, ∀x, y ∈ Rn,

(b) G(x) � 0 and G(x) � a0|x|α2 − b0, ∀x ∈ Rn,
(c) xT gradG(x) � a1G(x) − b1, ∀x ∈ Rn.

Then (1.1) has at least one ω-periodic solution for p = 2.

Many results were also given by using topological degree theory; see, for example, [1–4,6,7]
and the references therein. Some researchers discussed the existence of periodic solutions to
scalar p-Laplacian differential equations in [8–11,13,14]. But the existence of periodic solutions
of (1.1) for p 	= 2 and n > 1, as far as we know, has rarely been studied. For general differen-
tial systems of p-Laplacian type, M.R. Zhang [12] has considered the Dirichlet boundary value
problems

−(
φp

(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, t ∈ [0,ω], u(0) = u(ω) = 0. (1.2)

R. Manásevich and J. Mawhin [13] have discussed the periodic boundary value problems(
φ
(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, t ∈ [0,ω], u(0) = u(ω), u′(0) = u′(ω), (1.3)

where the function φ : Rn → Rn satisfies some monotonicity conditions which ensure that φ is
an homeomorphism onto Rn. They have also given some applications for φ = φp in [13]. On
basis of application of Schauder’s fixed point theorem, Mawhin [14] generalized the Hartman–
Knobloch results on the periodic boundary value problem in [15,16] to perturbations of the vector
p-Laplacian ordinary operator of the form(

ψp(u′)
)′ = f (t, u), (1.4)

where ψp : Rn → Rn is defined by ψp(u) = |u|p−2u.
The purpose of this paper is to establish some criteria to guarantee the existence of ω-periodic

solutions for (1.1) by using coincidence degree theory. The methods used to estimated a priori
bound of periodic solutions are different from the corresponding ones in [1–7]. Furthermore, the
significance of this paper is that Theorems 3.2 and 3.3 do not impose any other condition on the
function F(x) besides F is twice continuously differentiable. When p = 2, the results in this
paper are also different from those in [1–7].

In what follows, we will use 〈·,·〉 to denote the Euclidean inner product in Rn, | · |p denotes
the lp-norm in Rn, i.e.,

|x|p =
(

n∑
|xi |p

)1/p

.

i=1
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The norm in Rn×n is defined by

‖A‖p = sup
|x|p=1, x∈Rn

|Ax|p.

The corresponding Lp-norm in Lp([0,ω],Rn) is defined by

‖x‖p =
(

n∑
i=1

ω∫
0

∣∣xi(t)
∣∣p dt

)1/p

.

The L∞-norm in L∞([0,ω],Rn) is

‖x‖∞ = max
1�i�n

‖xi‖∞,

where ‖xi‖∞ = supt∈[0,ω] |xi(t)| (i = 1, . . . , n).

2. Preliminaries

Let X and Z be real normed vector spaces, L : DomL ⊂ X → Z be a linear mapping, and
N :X → Z be a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dim kerL = codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping
of index zero and there exist continuous projections P :X → X and Q :Z → Z such that ImP =
kerL, ImL = kerQ = Im(I − Q), it follows that L|DomL∩kerP : (I − P)X → ImL is invertible.
We denote the inverse of that mapping by KP . If Ω is an open bounded subset of X, the mapping
N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact.

In the proof of our results on existence of periodic solutions below, we will use the following
generalized Borsuk theorem in coincidence degree of Gaines and Mawhin [17, p. 31].

Lemma 2.1. Let L be a Fredholm mapping of index zero. Ω is an open bounded subset of X and
Ω is symmetric with respect to the origin and contains it. Let Ñ : Ω̄ × [0,1] → Z be L-compact
and such that

(a) Ñ(−x,0) = −Ñ(x,0), ∀x ∈ Ω̄ ,
(b) Lx 	= Ñ(x,λ), ∀x ∈ DomL ∩ ∂Ω .

Then for every λ ∈ [0,1], equation

Lx = Ñ(x,λ)

has at least one solution in Ω .

Let W = W 1, p([0,ω],Rn) be the Sobolev space.

Lemma 2.2. (See [12].) Suppose u ∈ W and u(0) = u(ω) = 0, then

‖u‖p � ω

πp

‖u′‖p,

where

πp = 2

(p−1)1/p∫
0

ds

(1 − sp

p−1 )1/p
= 2π(p − 1)1/p

p sin(π
p
)

.
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In order to use coincidence degree theory to study the existence of ω-periodic solutions for
(1.1), we rewrite (1.1) in the following form:{

x′(t) = φq(y(t)),

y′(t) = − d
dt

gradF(x(t)) − gradG(x(t)) + e(t).
(2.1)

If z(t) = (xT(t), yT(t))T is an ω-periodic solution of (2.1), then x(t) must be an ω-periodic
solution of (1.1). Thus, the problem of finding an ω-periodic solution for (1.1) reduces to finding
one for (2.1).

Let Cω = {x ∈ C(R,Rn): x(t + ω) ≡ x(t)} with norm ‖x‖∞ = max1�i�n ‖xi‖∞, X =
Z = {z = (xT(·), yT(·))T ∈ C(R,R2n): z(t + ω) ≡ z(t)} with norm ‖z‖ = max{‖x‖∞,‖y‖∞}.
Clearly, X and Z are Banach spaces. Meanwhile, let

L : DomL ⊂ X → Z, (Lz)(t) = z′(t) =
(

x′(t)
y′(t)

)
,

N :X → Z, (Nz)(t) =
(

φq(y(t))

− d
dt

gradF(x(t)) − gradG(x(t)) + e(t)

)
:= H(z, t).

It is easy to see that kerL = R2n, ImL = {z ∈ Z:
∫ ω

0 z(s) ds = 0}. So L is a Fredholm operator
with index zero. Let P :X → kerL and Q :Z → ImQ be defined by

Pu = 1

ω

ω∫
0

u(s) ds, u ∈ X; Qv = 1

ω

ω∫
0

v(s) ds, v ∈ Z,

and let KP denote the inverse of L|kerP∩DomL. Obviously, kerL = ImQ = R2n and

(KP z)(t) =
t∫

0

z(s) ds − 1

ω

ω∫
0

t∫
0

z(s) ds dt. (2.2)

From (2.2), one can easily see that N is L-compact on Ω̄ , where Ω is an open bounded subset
of X.

3. Existence of periodic solutions

Theorem 3.1. Suppose that there exist constants a > 0, b > 0, c � 0 and α > 1, such that

(i) yT ∂2F(x)

∂x2 y � a|y|22 or yT ∂2F(x)

∂x2 y � −a|y|22, ∀x, y ∈ Rn,

(ii) 〈x,gradG(x)〉 � b|x|αα − c, ∀x ∈ Rn.

Then (1.1) has at least one ω-periodic solution for 1 < p � 2.

Proof. For any λ ∈ [0,1], let

Ñ(z, λ)(t) = 1 + λ

2
H(z, t) − 1 − λ

2
H(−z, t).

Consider the following parameter equation:

(Lz)(t) = Ñ(z, λ)(t). (3.1)
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Let z(t) = ( x(t)

y(t)

)
be a possible ω-periodic solution of (3.1) for some λ ∈ [0,1]. One can see

x = x(t) is an ω-periodic solution of the following system:(
φp

(
x′(t)

))′ + 1 + λ

2

d

dt
gradF

(
x(t)

) − 1 − λ

2

d

dt
gradF

(−x(t)
)

+ 1 + λ

2
gradG

(
x(t)

) − 1 − λ

2
gradG

(−x(t)
) = λe(t). (3.2)

Noticing that x(t) is an ω-periodic solution, we have

−‖x′‖p
p =

ω∫
0

〈
x,

(
φp(x′)

)′〉
dt, (3.3)

and

ω∫
0

〈
x(t),

d

dt
gradF

(
x(t)

)〉
dt = 〈

x(t),gradF
(
x(t)

)〉∣∣ω
0 −

ω∫
0

〈
gradF

(
x(t)

)
, x′(t)

〉
dt

= −F
(
x(t)

)∣∣ω
0 = 0. (3.4)

From (ii), by (3.3) and (3.4), we can use (3.2) to obtain

−‖x′‖p
p + b‖x‖α

α − cω � λ

ω∫
0

〈
x(t), e(t)

〉
dt � ‖e‖β‖x‖α, (3.5)

where 1
α

+ 1
β

= 1.
On the other hand,

ω∫
0

〈
x′(t),

(
φp

(
x′(t)

))′〉
dt =

ω∫
0

〈
φq

(
y(t)

)
, y′(t)

〉
dt = 0.

From (3.2), we have

ω∫
0

〈
x′(t), 1 + λ

2

d

dt
gradF

(
x(t)

) − 1 − λ

2

d

dt
gradF

(−x(t)
)〉

dt = λ

ω∫
0

〈
x′, e(t)

〉
dt.

By (i), one can get

a‖x′‖2
2 � ‖e‖2‖x′‖2.

So, we have

‖x′‖2 � ‖e‖2

a
:= R1. (3.6)

It is obvious that there exist c1 > 0 and c2 > 0 such that

c1|x|2 � |x|p � c2|x|2, x ∈ Rn.

Thus,
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‖x′‖p
p =

ω∫
0

∣∣x′(t)
∣∣p
p

dt � c
p

2

ω∫
0

∣∣x′(t)
∣∣p
2 dt � c

p

2

( ω∫
0

∣∣x′(t)
∣∣2
2 dt

)p/2

ω(2−p)/2

� (c2R1)
pω(2−p)/2 := R2, (3.7)

where 1 < p � 2.
From (3.5), we can see

b‖x‖α
α − ‖e‖β‖x‖α − cω � R2,

from which it follows that there exists a positive number R3 such that

‖x‖α � R3. (3.8)

From (3.8), there exists t0 ∈ [0,ω), such that |x(t0)|α � R3ω
−1/α , so

∣∣xi(t)
∣∣ =

∣∣∣∣∣xi(t0) +
t∫

t0

x′
i (s) ds

∣∣∣∣∣ � R3ω
−1/α + √

ω

( ω∫
0

(
x′
i (s)

)2
ds

)1/2

� R3ω
−1/α + √

ωR1 := R4.

Therefore ‖x‖∞ � R4 and |x(t)|p � n1/pR4.

Since F ∈ C2(Rn,R), G ∈ C1(Rn,R), there exist R5 and R6 such that ‖ ∂2F(x)

∂x2 ‖p � R5,

|gradG(x)|p � R6 for |x|p � n1/pR4. From (3.2), we have

ω∫
0

∣∣(φp(x′)
)′∣∣

p
dt � R5

ω∫
0

|x′|p dt + R6ω +
ω∫

0

∣∣e(t)∣∣
p

dt

� R5ω
1/q‖x′‖p + R6ω +

ω∫
0

∣∣e(t)∣∣
p

dt

� R5ω
1/qR

1/p

2 + R6ω +
ω∫

0

∣∣e(t)∣∣
p

dt := R7. (3.9)

Clearly, for each i = 1, . . . , n, there exists ti ∈ (0,ω), such that x′
i (ti) = 0. Thus, for any

t ∈ [0,ω], we have

∣∣yi(t)
∣∣ = ∣∣φp

(
x′
i (t)

)∣∣ = ∣∣φp

(
x′
i (t)

) − φp

(
x′
i (ti )

)∣∣ =
∣∣∣∣∣

t∫
ti

(
φp

(
x′
i (s)

))′
ds

∣∣∣∣∣ � R7.

Therefore ‖y‖∞ � R7.
Choose a number R8 > max(R4,R7), let Ω = {z ∈ X: ‖z‖ < R8}, then Lz 	= Ñ(z, λ) for any

z ∈ DomL ∩ ∂Ω , λ ∈ [0,1]. It is easy to see Ñ is L-compact on Ω̄ × [0,1], Lz = Ñ(z,1) is
(2.1) and Ñ(−z,0) = −Ñ(z,0). From Lemma 2.1, (2.1) has at least one ω-periodic solution
z̃(t) = ( x̃(t)

ỹ(t)

)
, x̃(t) is an ω-periodic solution of (1.1). �

Remark 3.1. We see that the conditions in Theorem A are also valid to (1.1) for 1 < p < 2.
When p = 2, the conditions in Theorem 3.1 are weaker than those in Theorem A.
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Theorem 3.2. Suppose that there exist constants b � 0, c � 0 and d > 0, such that

(I) 〈x,gradG(x)〉 � b|x|pp + c, ∀x ∈ Rn,

(II) ∀i ∈ {1, . . . , n}, either xi[ ∂G(x)
∂xi

− ēi] > 0 or xi[ ∂G(x)
∂xi

− ēi] < 0 for |xi | > d , where ēi =
1
ω

∫ ω

0 ei(t) dt . Then (1.1) has at least one ω-periodic solution for b < (
πp

ω
)p .

Proof. We also consider Eqs. (3.1). Let z(t) = ( x(t)

y(t)

)
be a possible ω-periodic solution of (3.1),

from (I) and (3.2), we have

−‖x′‖p
p + b‖x‖p

p + cω � λ

ω∫
0

〈
x(t), e(t)

〉
dt � −‖e‖q‖x‖p,

i.e.,

‖x′‖p
p � b‖x‖p

p + ‖e‖q‖x‖p + cω. (3.10)

Integrating both sides of (3.2) over [0,ω], we get

1 + λ

2

ω∫
0

[
∂G(x(t))

∂xi

− ēi

]
dt − 1 − λ

2

ω∫
0

[
∂G(−x(t))

∂xi

− ēi

]
dt = 0, i = 1, . . . , n.

So there exist t̃i ∈ [0,ω] such that

1 + λ

2

[
∂G(x(t̃i ))

∂xi

− ēi

]
− 1 − λ

2

[
∂G(−x(t̃i ))

∂xi

− ēi

]
dt = 0, i = 1, . . . , n.

From (II), one can see |xi(t̃i )| � d . Let χi(t) = xi(t + t̃i ) − xi(t̃i ), χ(t) = (χ1(t), . . . , χn(t))
T,

then χ(0) = χ(ω) = 0, by Lemma 2.2, one can obtain

‖χ‖p � ω

πp

‖χ ′‖p. (3.11)

Noticing the periodicity of x(t), we have

‖xi‖p
p =

ω∫
0

∣∣xi(t)
∣∣p dt =

ω∫
0

∣∣xi(t + t̃i )
∣∣p dt �

ω∫
0

(∣∣χi(t)
∣∣ + d

)p
dt �

(‖χi‖p + ω1/p d
)p

.

So from Minkovski’s inequality, we have

‖x‖p =
(

n∑
i=1

‖xi‖p
p

)1/p

�
(

n∑
i=1

(‖χi‖p + ω1/pd
)p

)1/p

� ‖χ‖p + (nω)1/pd � ω

πp

‖χ ′‖p + (nω)1/pd = ω

πp

‖x′‖p + (nω)1/pd. (3.12)

In view of (3.10), we get

‖x′‖p
p � b

(
ω

πp

‖x′‖p + (nω)1/pd

)p

+ ‖e‖q

(
ω

πp

‖x′‖p + (nω)1/pd

)
+ cω. (3.13)

Since b( ω
πp

)p < 1, from (3.13), there exists a constant R9 > 0, such that

‖x′‖p � R9. (3.14)
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Therefore,

‖x‖p � ω

πp

R9 + (nω)1/pd := R10. (3.15)

From (3.14) and (3.15), we know that the rest of the proof of the theorem is similar to that of
Theorem 3.1. �
Theorem 3.3. Suppose that there exist constants b > 0, c � 0 and α > 1, such that〈

x,gradG(x)
〉
� −b|x|αα + c, ∀x ∈ Rn.

Then (1.1) has at least one ω-periodic solution.

Proof. Consider the parameter equation (3.1), suppose that z(t) = ( x(t)

y(t)

)
is a possible ω-periodic

solution of (3.1). From the condition of this theorem and (3.2), we have

−‖x′‖p
p − b‖x‖α

α + cω � λ

ω∫
0

〈
x(t), e(t)

〉
dt � −‖e‖β‖x‖α,

i.e.,

0 � ‖x′‖p
p � −b‖x‖α

α + ‖e‖β‖x‖α + cω, (3.16)

where 1
α

+ 1
β

= 1.
It follows that there exist two constants R11 > 0 and R12 > 0 such that

‖x‖α � R11, ‖x′‖p � R12. (3.17)

From the proof of Theorem 3.1, we know that (1.1) has at least one ω-periodic solution. �
As applications, we list the following examples.

Example 3.1. Consider the following system:(
φp

(
u′(t)

))′ + d

dt
gradF

(
u(t)

) + gradG
(
u(t)

) =
(

1 + sin(2t)

2 − cos(2t)

)
, (3.18)

where F ∈ C2(R2,R), G ∈ C1(R2,R).
Let

x = (x1, x2)
T,

F (x1, x2) = x2
1 + x2

2 − x1x2

2
−

√
1 + x2

1 ,

G(x1, x2) = x4
1 + x3

1 − 1

4
x2

1x2
2 + x4

2 ,

then

yT ∂2F(x)

∂x2
y � 3 − √

2

2
|y|22, y = (y1, y2)

T,
〈
x,gradG(x)

〉
� 1

2
|x|44 − 3, x ∈ R2.

By Theorem 3.1, (3.18) has at least one π -periodic solution when 1 < p � 2.
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Example 3.2. We also consider (3.18). Let p = 4, ω = π , G(x1, x2) = 1
8x4

1 − 1
2x2

2 , then

〈
x,gradG(x)

〉
� 1

2
|x|44 + 1

2
,

(
π4

ω

)4

= 3

4
,

lim|x1|→∞x1

(
∂G(x)

∂x1
− ē1

)
= lim|x1|→∞x1

(
1

2
x3

1 − 1

)
= +∞,

lim|x2|→∞x2

(
∂G(x)

∂x2
− ē2

)
= lim|x2|→∞

(−x2
2 − 2x2

) = −∞,

so there exists d > 0, such that x1(
∂G(x)
∂x1

− ē1) > 0 for |x1| > d , x2(
∂G(x)
∂x2

− ē2) < 0 for |x2| > d .

By Theorem 3.2, (3.18) has at least one π -periodic solution for any F ∈ C2(R2,R).
If we set G(x1, x2) = −x4

1 − x3
1 + 1

4x2
1x2

2 − x4
2 , then 〈x,gradG(x)〉 � − 1

2 |x|44 + 3, from The-
orem 3.3, one can see that (3.18) has at least one π -periodic solution for any F ∈ C2(R2,R) and
p > 1.
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