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Abstract

By using generalized Borsuk theorem in coincidence degree theory, some criteria to guarantee the exis-
tence of w-periodic solutions for a class of p-Laplacian system are derived.
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1. Introduction

Throughout this paper, 1 < p < oo is a fixed real number. The conjugate exponent of p is
denoted by ¢, i.e., % + é =1.Let ¢, :R" — R" be the mapping defined by

. -2 -2 \T
¢p(u):¢p(ulv--~vun)~:(|ul|p ut, ..., |unl? un)~

Then ¢, is a homeomorphism of R" with the inverse ¢, .
In this paper, we will consider the existence of periodic solutions of the following system:

, d
(¢p(u'(®)) + o grad F(u(1)) + grad G (u(1)) = e(1), (1.1)

¥ Corresponding author.
E-mail address: pengzhanghao@tom.com (S. Peng).
1 Supported by the National Natural Sciences Foundation of the People’s Republic of China under Grant 60572073.

0022-247X/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.01.060



S. Peng, Z. Xu/ J. Math. Anal. Appl. 325 (2007) 166—174 167

where F € C?(R",R), G € C'(R",R), e e CR,R"), e(t + w) =e(t) forall t eR, w > 0 is
fixed.

In recent years, the existence of periodic solutions of (1.1) for p =2 has been extensively
studied (see [1-7]). In [5], by using Krasnoselskii’s fixed point theorem, Ding proved the follow-
ing result.

Theorem A. (See [5].) Suppose that there exist constants co > 0, ap > 0, a; >0, by = 0, b1 >0,
and o > 1, such that

(@) yTLEQ > coly2, Vx, y e R,

(b) G(x) =2 0and G(x) = ag|x|5 — bo, YVx € R,

(c) xTgrad G(x) > a;G(x) — by, Vx e R".

Then (1.1) has at least one w-periodic solution for p = 2.

Many results were also given by using topological degree theory; see, for example, [1-4,6,7]
and the references therein. Some researchers discussed the existence of periodic solutions to
scalar p-Laplacian differential equations in [8—11,13,14]. But the existence of periodic solutions
of (1.1) for p # 2 and n > 1, as far as we know, has rarely been studied. For general differen-
tial systems of p-Laplacian type, M.R. Zhang [12] has considered the Dirichlet boundary value
problems

—(qﬁ,,(u’(t)))/:f(t,u(t),u/(t)), t € [0, w], u(0) =u(w)=0. (1.2)
R. Manasevich and J. Mawhin [13] have discussed the periodic boundary value problems
((])(u/(t))), = f(t, u(t), u'(t)), t €0, w], u0) =u(w), ' (0)=u'(w), (1.3)

where the function ¢ : R" — R" satisfies some monotonicity conditions which ensure that ¢ is
an homeomorphism onto R". They have also given some applications for ¢ = ¢, in [13]. On
basis of application of Schauder’s fixed point theorem, Mawhin [14] generalized the Hartman—
Knobloch results on the periodic boundary value problem in [15,16] to perturbations of the vector
p-Laplacian ordinary operator of the form

(Yp)) = ft,u), (1.4)

where ¥, :R" — R" is defined by ¥, (1) = lu|P~2u.

The purpose of this paper is to establish some criteria to guarantee the existence of w-periodic
solutions for (1.1) by using coincidence degree theory. The methods used to estimated a priori
bound of periodic solutions are different from the corresponding ones in [1-7]. Furthermore, the
significance of this paper is that Theorems 3.2 and 3.3 do not impose any other condition on the
function F(x) besides F is twice continuously differentiable. When p = 2, the results in this
paper are also different from those in [1-7].

In what follows, we will use (,-) to denote the Euclidean inner product in R”", | - |, denotes
the [”-norm in R”, i.e.,

n 1/p
x|y = (Dx,-v’) :
i=1
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The norm in R"*" is defined by
Al = sup  |Ax]p.

[x[p=1, xeR"

The corresponding L?-norm in L? ([0, ], R") is defined by

n @ 1/p
llxllp = (Z/|xi(1)|1’dt> .
i=1Y

The L°°-norm in L*° ([0, w], R") is

[x¥lloo = max [lx;|co,
<

<ikn

where || X;[lco = SUp;[o,0) [Xi (D] (= 1,...,n).
2. Preliminaries

Let X and Z be real normed vector spaces, L :DomL C X — Z be a linear mapping, and
N:X — Z be a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dimker L = codimIm L < +o00 and Im L is closed in Z. If L is a Fredholm mapping
of index zero and there exist continuous projections P: X — X and Q : Z — Z such that Im P =
ker L, Im L =ker Q =Im(/ — Q), it follows that L|pom znkerP : (I — P)X — Im L is invertible.
We denote the inverse of that mapping by K p. If §2 is an open bounded subset of X, the mapping
N will be called L-compact on £2 if QN (£2) is bounded and Kp (I — Q)N : 2 — X is compact.

In the proof of our results on existence of periodic solutions below, we will use the following
generalized Borsuk theorem in coincidence degree of Gaines and Mawhin [17, p. 31].

Lemma 2.1. Let L be a Fredholm mapping of index zero. 2 is an open bounded subset of X and
$2 is symmetric with respect to the origin and contains it. Let N : 2 x [0, 1] — Z be L-compact
and such that

(@) N(—x,0)=—N(x,0), Vx € 2,
(b) Lx #N(x,1), Vx e DomL Nas2.

Then for every X € [0, 1], equation
Lx=N(x,%)

has at least one solution in §2.
Let W = W P([0, w], R") be the Sobolev space.

Lemma 2.2. (See [12].) Suppose u € W and u(0) = u(w) =0, then
w
< - ! )
lullp - lu'llp
where

ds _2x(p—-DYP
a- [;‘_i’])l/p ~ psin(g)
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In order to use coincidence degree theory to study the existence of w-periodic solutions for
(1.1), we rewrite (1.1) in the following form:

x'() =g (y(®)),

, d 2.1
V() = —7; grad F(x(¢)) — grad G (x(t)) + e(?).

If z(r) = (xT(t), yT(r))T is an w-periodic solution of (2.1), then x(r) must be an w-periodic
solution of (1.1). Thus, the problem of finding an w-periodic solution for (1.1) reduces to finding
one for (2.1).

Let C, = {x € CR,R"): x(t + w) = x(¢)} with norm [|x[lec = maxi<ign 1Xilloo, X =
Z=1{z=a"(),yT ()T € CR,R*): z(t + ) = z(1)} with norm ||z|| = max{[|x[lco, [l¥lloc}-
Clearly, X and Z are Banach spaces. Meanwhile, let

. I x'(1)
L:DomLCX— Z,(L)(t) =7 (t) = (y/(t)> ,
¢q (y(1)) )
—% grad F(x(t)) — grad G(x(t)) + e(¢)

It is easy to see that ker L = R, ImL={z€ Z: f(;u z(s)ds = 0}. So L is a Fredholm operator
with index zero. Let P: X — ker L and Q: Z — Im Q be defined by

w w

1 1
Puz—/u(s)ds, ueX: sz—/v(s)ds, veZ,
@ w

0 0

N:X— Z, (Nz)(t):( = H(z,1).

and let Kp denote the inverse of L|ker pnDom - Obviously, ker L =Im Q = R?" and

t

w t
(sz)(t):/z(s)ds— é//z(s)dsdt. (2.2)
00

0

From (2.2), one can easily see that N is L-compact on §2, where £2 is an open bounded subset
of X.

3. Existence of periodic solutions
Theorem 3.1. Suppose that there exist constants a > 0, b > 0, ¢ > 0 and « > 1, such that

. 3°F 3’F
@) yTEEy > alylf or yTEE)y < —alyld vx, yeR?,

(i1) (x,grad G(x)) = b|x|3 — ¢, Vx e R".
Then (1.1) has at least one w-periodic solution for 1 < p < 2.

Proof. For any X € [0, 1], let

~ 1+x 1—Ax
Nz, M) () = TH(Z, 1) — TH(_Z’ 1).

Consider the following parameter equation:

(L2)(t) = N(z, 2)(1). 3.1)



170 S. Peng, Z. Xu/ J. Math. Anal. Appl. 325 (2007) 166174

Let z(t) = (;C((;))) be a possible w-periodic solution of (3.1) for some A € [0, 1]. One can see

x = x(t) is an w-periodic solution of the following system:

, 1+4d 1—ad
(¢p(x (t))) + @ grad F (x(1)) — — grad F(—x (1))

+ 1+a gradG(x(t)) - * gradG(—x(t)) = Ae(t). (3.2)

Noticing that x(¢) is an w-periodic solution, we have

—[Ix"Ip = /(x, (p (") )dt, (3.3)
0
and
/ <x(t) < orad F(x(t))> = {rto) g F )}y ~ [lerad £ (x(0). 4 0)ds
0 0
=—F(x)]y =0 (3.4)
From (ii), by (3.3) and (3.4), we can use (3.2) to obtain
— X"l + blx[§ — co < )»/(X(t), e(®))dt <|lellgllx|la- (3.5)
0
where % + % =1.
On the other hand,
/(x’(t), (¢p(x'®)) )dt = /<¢q (y(®), y'(®))dt =
0 0

From (3.2), we have

w w
l+Ad 1—xd
/<x/(t), — grad F (x(1)) — @ grad F(— x(t))> /(x e(n))dt.
0 0
By (i), one can get
allx"13 < llell2llxll2.
So, we have

e
Iz < % — Ry, (3.6)

It is obvious that there exist ¢; > 0 and ¢, > 0 such that
cilxl2 < |x|p <e2lx2, xeR™

Thus,
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w w w p/2
2 _
lx'115 =/|x/(t)|ﬁdt <c§/|x/(z)|§dt gcg’(/yx/(t)|2dt> P2
0
< (621’?1)”60(2 P2 =Ry, (3.7)
where 1 < p < 2.
From (3.5), we can see

bllxllg — lleliglixlle — cow < Ra,
from which it follows that there exists a positive number R3 such that

Ixlle < R3. (3.8)

From (3.8), there exists 79 € [0, w), such that |x(7g)]|q < Ryw— 12 so
t
x; (1) —I—/xl{(s) ds

o 1/2
<R V4 JB( / (7 (S))st)
Io 0

< R3a)71/a + JoR] ;= Ry.
Therefore ||x|loo < R4 and |x()|, < n'/PRy.
Since F € C2(R",R), G € C!(R", R), there exist Rs and Rg such that ||a F W I, < Rs,
lgrad G (x)|, < Re for |x|, <n'/PRy. From (3.2), we have

[xi(0)] =

f|(¢,,(x/))/|pdt<Rsf|x/|,,dt+R6w+/|e(r)|pdt
0 0 0

w
< Rso0"||x'|| ) + Rew +/|e(l)|pdt

0
< Rso/9R)” + Row + /|e(t)|pdt =R (3.9)
Clearly, for each i = 1,...,n, there exists #; € (0, ), such that xlf(t,-) = 0. Thus, for any

t € [0, w], we have

t

[@ntie) as

4]

0] = [ (6100) | = I (6100) = (370 | = <R,

Therefore ||y]loo < R7.

Choose a number Rg > max(R4, R7), let 2 ={z € X: ||z|]| < Rg}, then Lz # N(z, A) for any
z€DomL Nas2, A €[0,1]. It is easy to see N is L- -compact on 2 x [0,1], Lz = N(z 1) is
(2.1) and ﬁ(—z, 0) = —N(z, 0). From Lemma 2.1, (2.1) has at least one w-periodic solution

Z(t) = (;((([t))), %(t) is an w-periodic solution of (1.1). O

Remark 3.1. We see that the conditions in Theorem A are also valid to (1.1) for 1 < p < 2.
When p =2, the conditions in Theorem 3.1 are weaker than those in Theorem A.
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Theorem 3.2. Suppose that there exist constants b > 0, ¢ > 0 and d > 0, such that

(M (x,grad G(x)) < blx|h +c, Vx eR",
(D) Vi € {1,...,n}, either x;[*5& — &1 > 0 or ;i[252 — &1 < 0 for |x;| > d, where & =

i fow ei(t)dt. Then (1.1) has at least one w-periodic solution for b < (%”)p.

Proof. We also consider Egs. (3.1). Let z(t) = (;f((tt)) ) be a possible w-periodic solution of (3.1),
from (I) and (3.2), we have

w
— x5 + bllxlp + cow > /\/(X(I), e®))dr = —|lelgllx|lp,
0

ie.,
x5 < bIxlh + llellgxlp + co. (3.10)

Integrating both sides of (3.2) over [0, w], we get

w w

RSy CTOTI PARELY | (E T PR
0 0

2 Bxi 2 ax,-

So there exist #; € [0, w] such that
1+A[0G(x (%) 1 —A[G(—x(1))
SAN PR o _
2 dx; l 2 ax;

From (II), one can see |x;(7;)| < d. Let x;(t) = x;(t + ;) — xi (@), x (1) = (x1(0), ..., xa ()T,
then x (0) = x (w) =0, by Lemma 2.2, one can obtain

w
Ixlly < —Ixllp- (3.11)
Tp

Noticing the periodicity of x(z), we have

éi:|dt=0, i=1,...,n.

w w w

lxi 115 = f|xi<t>|”dr = f|x,-(r +i)|7dt < /(|Xi(f)| +d)’dt < (llxillp + "7 a)”.
0 0 0
So from Minkovski’s inequality, we have

n 1/p n 1/p
Ixll, = (Z ||x,~||§> < (Z(||x,~||,, +w1/pd)1’>
i=1

i=1

w w
<lxllp + @) P7d < —|x'll, + 1) /Pd = —|Ix'|l, + (nw)'/?d. (3.12)
Tp Tp
In view of (3.10), we get
w p w
x| < b(n—nx’np + (nw)l/"d> + ||e||q<n—||x’||p + (nw)”ﬂd> + co. (3.13)
P p

Since b(%)ﬁ < 1, from (3.13), there exists a constant Rg > 0, such that

X"l , < Ro. (3.14)



S. Peng, Z. Xu/ J. Math. Anal. Appl. 325 (2007) 166—174 173

Therefore,

Ix]l, < ad Ry + (nw)'/?d := Ry. (3.15)
P=q
p

From (3.14) and (3.15), we know that the rest of the proof of the theorem is similar to that of
Theorem 3.1. O

Theorem 3.3. Suppose that there exist constants b > 0, ¢ > 0 and o > 1, such that
(x,grad G(x)) < —b|x|$ +¢c, VxeR".

Then (1.1) has at least one w-periodic solution.

Proof. Consider the parameter equation (3.1), suppose that z(t) = (;C((;)) ) is a possible w-periodic

solution of (3.1). From the condition of this theorem and (3.2), we have
w
—Ix"Ily = Blx[§ + co > )»/(X(t), e(n)dt = —|lellglxlla-
0

i.e.,
0 < XI5 < =blx|& + lleligllxlla + co, (3.16)

where é +1 -1,
It follows that there exist two constants Rj; > 0 and Ry2 > O such that

lxlle < Ri1, X1l < Rpz. (3.17)

From the proof of Theorem 3.1, we know that (1.1) has at least one w-periodic solution. 0O
As applications, we list the following examples.
Example 3.1. Consider the following system:

1 + sin(2¢) ) (3.18)

;o d
(¢p(u'®)) + — grad F (u(t)) + grad G (u(t)) = ( ,
dt 2 — cos(2t)

where F € C2(R%,R), G € C'(R?,R).
Let

x = (x1,x)7,
X1X
F(xl,xz)zx%+x§—%—,/l+x%,
1
G(x1,x2) = x{ +x; — fox§+x§,

then

132F(x) _3-2
y =
9x2 2

By Theorem 3.1, (3.18) has at least one m-periodic solution when 1 < p < 2.

1
v y=0n)" (x,gradG<x>>>§|x|i—3, x eR%
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Example 3.2. We also consider (3.18). Let p =4, w = 7, G(x1, x2) = gx} — 43, then
1 1 \* 3
,erad G(x)) < < |x[f + =, — ) =-,
(v, grad G(0)) < S lxly + 5 (w) 1
G 1
im (29 e ) = dim ox (23— 1) = 400,
[x1]—00 0x1 |x1]—00 2

G
lim x2< 5 *x) — Ez) = lim (—x% — 2x2) =—00,
X

[x2|—00 o) |x2]|— 00
. 3G (x) = IG (x) =
so there exists d > 0, such that xl(W —ey1) > 0for x| >d, xZ(W —ey) <0 for x| >d.

By Theorem 3.2, (3.18) has at least one 7-periodic solution for any F € C?(R?, R).

If we set G(x1, x2) = —x;‘ — x? + %x%x% — xg, then (x, grad G(x)) < —%|x|j + 3, from The-
orem 3.3, one can see that (3.18) has at least one 7 -periodic solution for any F € C 2(R2,R) and
p>1.
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