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1. Preliminaries and the main results

Let Γ ⊂ C be a closed rectifiable Jordan curve with the Lebesgue length measure |dτ | and let X(Γ ) be a rearrangement
invariant (r.i.) space over Γ, generated by a r.i. function norm ρ , with associate space X ′(Γ ). For each f ∈ X(Γ ) we define

‖ f ‖X(Γ ) := ρ
(| f |), f ∈ X(Γ ).

A r.i. space X(Γ ) equipped with norm ‖ · ‖X(Γ ) is a Banach space [4, Theorems 1.4 and 1.6, pp. 3, 5].
It is well known that

‖ f ‖X(Γ ) = sup

{∫
Γ

| f g||dτ |: g ∈ X ′(Γ ), ‖g‖X ′(Γ ) � 1

}
,

‖g‖X ′(Γ ) = sup

{∫
Γ

| f g||dτ |: f ∈ X(Γ ), ‖ f ‖X(Γ ) � 1

}
(1)

hold.
If f ∈ X(Γ ) and g ∈ X ′(Γ ), then f g is summable [4, Theorem 2.4, p. 9] and∫

Γ

| f g||dτ | � ‖ f ‖X(Γ )‖g‖X ′(Γ ). (2)

* Corresponding author.
E-mail addresses: mdaniyal@balikesir.edu.tr (D.M. Israfilov), rakgun@balikesir.edu.tr (R. Akgün).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.05.040

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:mdaniyal@balikesir.edu.tr
mailto:rakgun@balikesir.edu.tr
http://dx.doi.org/10.1016/j.jmaa.2008.05.040


490 D.M. Israfilov, R. Akgün / J. Math. Anal. Appl. 346 (2008) 489–500
A function ω : Γ → [0,∞] is referred to as a weight if ω is measurable and the preimage ω−1({0,∞}) has measure zero.
Following [20], we set

X(Γ,ω) := {
f measurable: f ω ∈ X(Γ )

}
,

which is equipped with the norm

‖ f ‖X(Γ,ω) := ‖ f ω‖X(Γ ).

A normed space X(Γ,ω) is called a weighted r.i. space.
For definitions and fundamental properties of general r.i. spaces we refer to [4].
If ω ∈ X(Γ ) and 1/ω ∈ X ′(Γ ), then X(Γ,ω) is a Banach function space and from the Hölder’s inequality we have

L∞(Γ ) ⊂ X(Γ,ω) ⊂ L1(Γ ).

By the Luxemburg representation theorem [4, Theorem 4.10, p. 62], there is a unique r.i. function norm ρ over Lebesgue
measure space ([0, |Γ |],m), where |Γ | is the Lebesgue length of Γ , such that ρ( f ) = ρ( f ∗) for all non-negative and
almost everywhere (a.e.) finite measurable functions f defined on Γ . Here f ∗ denotes the non-increasing rearrangement of
f [4, p. 39]. The r.i. space over ([0, |Γ |],m) generated by ρ is called the Luxemburg representation of X(Γ ) and is denoted
by X .

Let g be a non-negative, almost everywhere finite and measurable function on [0, |Γ |]. For each x > 0 we set

(Hx g)(t) :=
{

g(xt), xt ∈ [0, |Γ |],
0, xt /∈ [0, |Γ |], t ∈ [

0, |Γ |].
Then the operator H1/x is bounded on X [4, p. 165] with the operator norm

hX (x) := ‖H1/x‖B(X),

where B(X) is the Banach algebra of bounded linear operators on X .
The functions

αX := lim
x→0

log hX (x)

log x
, βX := lim

x→∞
log hX (x)

log x

are called lower and upper Boyd indices [5] of r.i. space X(Γ ). The indices αX , βX are called nontrivial if 0 < αX and βX < 1.
For z ∈ Γ and ε > 0, let Γ (z, ε) denotes the portion of Γ contained in the open disc of radius ε and centered at z, i.e.

Γ (z, ε) := {t ∈ Γ : |t − z| < ε}.
For fixed p ∈ (1,∞), we define q ∈ (1,∞) by p−1 + q−1 = 1. The set of all weights ω : Γ → [0,∞] satisfying Mucken-

houpt’s A p condition

sup
z∈Γ

sup
ε>0

(
1

ε

∫
Γ (z,ε)

ω(τ )p |dτ |
)1/p(

1

ε

∫
Γ (z,ε)

ω(τ )−q|dτ |
)1/q

< ∞

is denoted by A p(Γ ).
We denote by L p(Γ,ω) the set of all measurable functions f : Γ → C such that | f |ω ∈ L p(Γ ).
Let Γ be a closed rectifiable Jordan curve and let G := int Γ , G− := extΓ , D := {w ∈ C: |w| < 1}, T := ∂D, D

− := ext T.
Without loss of generality we may assume 0 ∈ G .

Let w = ϕ(z) and w = ϕ1(z) be the conformal mapping of G− and G onto D
− normalized by the conditions

ϕ(∞) = ∞, lim
z→∞ϕ(z)/z > 0,

and

ϕ1(0) = ∞, lim
z→0

zϕ1(z) > 0,

respectively. We denote by ψ and ψ1, the inverse of ϕ and ϕ1, respectively.
By E p(G) and E p(G−), 0 < p < ∞, we denote the Smirnov classes of analytic functions in G and G− , respectively. It is

well known that every function f ∈ E1(G) or f ∈ E1(G−) has a nontangential boundary values a.e. on Γ and if we use the
same notation for the nontangential boundary value of f , then f ∈ L1(Γ ).

Definition 1. Let ω be a weight on Γ and let E X (G,ω) := { f ∈ E1(G): f ∈ X(Γ,ω)}, E X (G−,ω) := { f ∈ E1(G−):
f ∈ X(Γ,ω)}, Ẽ X (G−,ω) := { f ∈ E X (G−,ω): f (∞) = 0}. The classes of functions E X (G,ω) and E X (G−,ω) will be called
weighted r.i. Smirnov spaces with respect to domains G and G− , respectively.
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Since the Luxemburg norm of Orlicz space is itself a r.i. function norm, every Orlicz space is a r.i. space and therefore
every weighted Smirnov–Orlicz space is a weighted r.i. Smirnov space.

Each function f ∈ E X (G,ω) or E X (G−,ω) has a nontangential boundary values a.e. on Γ .
Let f ∈ L1(Γ ). Then, the functions f + and f − defined by

f +(z) = 1

2π i

∫
Γ

f (ς)

ς − z
dς, z ∈ G, f −(z) = 1

2π i

∫
Γ

f (ς)

ς − z
dς, z ∈ G−,

are analytic in G and G− , respectively and f −(∞) = 0.
For g ∈ X(T,ω), we set

σh (g)(w) := 1

2h

h∫
−h

g
(

weit)dt, 0 < h < π, w ∈ T.

If αX and βX are nontrivial Boyd indices of the space X(T,ω) and ω ∈ A1/αX (T) ∩ A1/βX (T), then by [13] we have∥∥σh (g)
∥∥

X(T,ω)
� c1‖g‖X(T,ω),

and consequently σh (g) ∈ X(T,ω) for any g ∈ X(T,ω).

Definition 2. Let αX and βX be nontrivial and ω ∈ A1/αX (T) ∩ A1/βX (T). The function

Ωr
X,ω(g, δ) := sup

i=1,2,...,r
0<hi�δ

∥∥∥∥∥
r∏

i=1

(I − σhi
)g

∥∥∥∥∥
X(T,ω)

, δ > 0, r = 1,2, . . . ,

is called rth modulus of smoothness of g ∈ X(T,ω), where I is the identity operator.

In this definition we use as shift the mean value operator σh , because the usual shift g(·) → g(· + h) is, in general,
noninvariant in the weighted r.i. space. It can easily be verified that the function Ωr

X,ω(g, ·) is continuous, non-negative and
satisfy

lim
δ→0

Ωr
X,ω(g, δ) = 0, Ωr

X,ω(g + g1, ·) � Ωr
X,ω(g, ·) + Ωr

X,ω(g1, ·)

for g, g1 ∈ X(T,ω).
A smooth Jordan curve Γ will be called Dini-smooth, if the function θ(s), the angle between the tangent line and the

positive real axis expressed as a function of arclength s, has modulus of continuity Ω(θ, s) satisfying the Dini condition

δ∫
0

Ω(θ, s)

s
ds < ∞, δ > 0.

If Γ is Dini-smooth, then [30]

0 < c2 <
∣∣ψ ′(w)

∣∣ < c3 < ∞, |w| � 1,

0 < c4 <
∣∣ϕ′(z)

∣∣ < c5 < ∞, z ∈ G−, (3)

with some constants c2, c3, c4 and c5. Similar inequalities hold also for ψ ′
1 and ϕ′

1, in case of |w| = 1 and z ∈ Γ , respectively.
Let Γ be a Dini-smooth curve and ω be a weight on Γ . We associate with ω, the following two weights defined on T

by

ω0 := ω ◦ ψ, ω1 := ω ◦ ψ1,

and let f0 := f ◦ ψ , f1 := f ◦ ψ1 for f ∈ X(Γ,ω). Then from (3), we have f0 ∈ X(T,ω0) and f1 ∈ X(T,ω1) for f ∈ X(Γ,ω).
Using the nontangential boundary values of f +

0 and f +
1 on T, we define

Ωr
Γ,X,ω( f , δ) := Ωr

X,ω0

(
f +
0 , δ

)
, δ > 0, Ω̃r

Γ,X,ω( f , δ) := Ωr
X,ω1

(
f +
1 , δ

)
, δ > 0,

for r = 1,2,3, . . . .
We set

En( f )X,ω := inf ‖ f − P‖X(T,ω), Ẽn(g)X,ω := inf ‖g − R‖X(Γ,ω),

P∈Pn R∈Rn
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where f ∈ E X (D,ω), g ∈ E X (G−,ω), Pn is the set of algebraic polynomials of degree not greater than n and Rn is the set
of rational functions of the form

n∑
k=0

ak

zk
.

In this work we investigate the approximation problems in the spaces X(Γ,ω), E X (G,ω) and Ẽ X (G−,ω). First of all,
we prove one general direct theorem of approximation theory by rational functions in the weighted r.i. space X(Γ,ω).
Later we obtain the direct and inverse theorems of polynomial approximation in the spaces E X (G,ω) and Ẽ X (G−,ω). Using
these results we give a constructive descriptions of the generalized Lipschitz classes defined in the spaces E X (G,ω) and
Ẽ X (G−,ω). Note that our results are new also in the nonweighted cases.

These problems in the different subspaces of the r.i. space were investigated by several authors. The degree of polynomial
approximation in the spaces E p(G) and L p(Γ ) have been estimated in [2,3,7,14,15,24,29] under various restrictions on the
boundary Γ of G . The similar problems in weighted Smirnov and Lebesgue spaces were studied in [16] and [17]. The
appropriate inverse theorems and a constructive characterization of generalized Lipschitz class in the weighted Smirnov
spaces were obtained in [18]. Some inverse theorems in Smirnov–Orlicz spaces were proved by V.M. Kokilashvili in [23]. In
this space, some direct theorems of approximation theory by algebraic polynomials and by interpolating polynomials were
obtained in [1,12,19].

Let us emphasize that in this work the Faber polynomials, Faber–Laurent rational functions and also the method, given
by Dynkin in [9] and based on the boundedness of the Faber and Faber–Laurent operators were commonly used.

The main results of this work are the following.

Theorem 1. Let Γ be a Dini-smooth curve, αX , βX be the nontrivial indices and let ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ). If f ∈ X(Γ,ω), then
there is a constant c6 > 0 such that for any natural n,∥∥ f − Rn(·, f )

∥∥
X(Γ,ω)

� c6
{
Ωr

Γ,X,ω

(
f ,1/(n + 1)

) + Ω̃r
Γ,X,ω

(
f ,1/(n + 1)

)}
, r = 1,2,3, . . . ,

where Rn(·, f ) is the nth partial sum of the Faber–Laurent series of f .

Corollary 1. Let Γ be a Dini-smooth curve, αX , βX be the nontrivial indices and let ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ). If f ∈ E X (G,ω), then
there is a constant c7 > 0 such that for any natural n,∥∥ f − Pn(·, f )

∥∥
X(Γ,ω)

� c7Ω
r
Γ,X,ω

(
f ,1/(n + 1)

)
, r = 1,2,3, . . . ,

where Pn(·, f ) is the nth partial sum of the Faber series of f .

Corollary 2. Let Γ be a Dini-smooth curve, αX , βX be the nontrivial indices and let ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ). If f ∈ Ẽ X (G−,ω),
then there is a constant c8 > 0 such that for any natural n,∥∥ f − Rn(·, f )

∥∥
X(Γ,ω)

� c8Ω̃
r
Γ,X,ω

(
f ,1/(n + 1)

)
, r = 1,2,3, . . . ,

where Rn(·, f ) as in Theorem 1.

The following inverse theorem holds.

Theorem 2. Let Γ be a Dini-smooth curve and let X(T) be a reflexive r.i. space with the nontrivial indices αX and βX . If ω ∈
A1/αX (Γ ) ∩ A1/βX (Γ ), then for f ∈ E X (G,ω),

Ωr
Γ,X,ω( f ,1/n) � c9

n2r

{
E0( f , G)X,ω +

n∑
k=1

k2r−1Ek( f , G)X,ω

}
, r = 1,2,3, . . . ,

with a constant c9 > 0.

Corollary 3. Under the conditions of Theorem 2, if

En( f , G)X,ω =O
(
n−α

)
, α > 0, n = 1,2,3, . . . ,

then for f ∈ E X (G,ω) and r = 1,2,3, . . . ,

Ωr
Γ,X,ω( f , δ) =

⎧⎪⎨⎪⎩
O(δα), r > α/2;
O(δα |log 1

δ
|), r = α/2;

O(δ2r), r < α/2.
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Definition 3. For α > 0 and r := [α/2] + 1 we set

Lipα(X,ω) := {
f ∈ E X (G,ω): Ωr

Γ,X,ω( f , δ) =O
(
δα

)
, δ > 0

}
,

L̃ipα(X,ω) := {
f ∈ Ẽ X (G−,ω): Ω̃r

Γ,X,ω( f , δ) =O
(
δα

)
, δ > 0

}
.

Then, from Corollary 3 and Definition 3 we get the following.

Corollary 4. Under the conditions of Theorem 2, if

En( f , G)X,ω =O
(
n−α

)
, α > 0, n = 1,2,3, . . . ,

then f ∈ Lipα(X,ω).

By Corollaries 1 and 4 we have the constructive characterization of the classes Lipα(X,ω).

Corollary 5. Let α > 0 and let the conditions of Theorem 2 be fulfilled. Then the following conditions are equivalent.

(a) f ∈ Lipα(X,ω);
(b) En( f , G)X,ω =O(n−α), n = 1,2,3, . . . .

The inverse theorem for unbounded domains has the following form.

Theorem 3. Let Γ be a Dini-smooth curve and X(T) be a reflexive r.i. space with the nontrivial indices αX and βX . If ω ∈ A1/αX (Γ ) ∩
A1/βX (Γ ), then for f ∈ Ẽ X (G−,ω),

Ω̃r
Γ,X,ω( f ,1/n) � c10

n2r

{
Ẽ0( f )X,ω +

n∑
k=1

k2r−1Ẽk( f )X,ω

}
, r = 1,2,3, . . . ,

with a constant c10 > 0.

By the similar way to that of the E X (G,ω) we obtain the following corollaries.

Corollary 6. Under the conditions of Theorem 3, if

Ẽn( f )X,ω =O
(
n−α

)
, α > 0, n = 1,2,3, . . . ,

then for f ∈ Ẽ X (G−,ω) and r = 1,2,3, . . .:

Ω̃r
Γ,X,ω( f , δ) =

⎧⎪⎨⎪⎩
O(δα), r > α/2;
O(δα |log 1

δ
|), r = α/2;

O(δ2r), r < α/2.

Using Corollary 6 and Definition 3 we get the following.

Corollary 7. Under the conditions of Theorem 3, if

Ẽn( f )X,ω =O
(
n−α

)
, α > 0, n = 1,2,3, . . . ,

then f ∈ L̃ipα(X,ω).

By Corollaries 2 and 7 we have the following.

Corollary 8. Let α > 0 and the conditions of Theorem 3 be fulfilled. Then the following conditions are equivalent.

(a) f ∈ L̃ipα(X,ω);
(b) Ẽn( f )X,ω =O(n−α), n = 1,2,3, . . . .

In the sequel, we denote by c, c1, c2, . . . , positive constants (possibly different at different occurrences) that either are
absolute or depend on parameters not essential for the argument.
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2. Auxiliary results

Let Γ be a rectifiable Jordan curve, f ∈ L1(Γ ) and let

(SΓ f )(t) := lim
ε→0

1

2π i

∫
Γ \Γ (t,ε)

f (ς)

ς − t
dς, t ∈ Γ,

be Cauchy’s singular integral of f at the point t . The linear operator SΓ : f → SΓ f is called the Cauchy singular operator.
If one of the functions f + or f − has the nontangential limits a.e. on Γ, then SΓ f (z) exists a.e. on Γ and also the other

one has the nontangential limits a.e. on Γ . Conversely, if SΓ f (z) exists a.e. on Γ, then both functions f + and f − have the
nontangential limits a.e. on Γ . In both cases, the formulae

f +(z) = (SΓ f )(z) + f (z)/2, f −(z) = (SΓ f )(z) − f (z)/2, (4)

and hence

f = f + − f − (5)

holds a.e. on Γ (see, e.g., [11, p. 431]).

Lemma 1. If 0 < αX , βX < 1, ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ), then f + ∈ E X (G,ω) and f − ∈ Ẽ X (G−,ω) for every f ∈ X(Γ,ω).

Proof. Using [6, Theorem 2.31, p. 58] we have that there are numbers p,q ∈ (1,∞) satisfying 1 < p < 1/βX � 1/αX <

q < ∞, and ω ∈ A p(Γ ) ∩ Aq(Γ ). Then [25, Proposition 2.b.3, p. 132]

Lq(Γ ) ⊂ X(Γ ) ⊂ L p(Γ ),

where the inclusion maps being continuous. If f ∈ X(Γ,ω), then f ω ∈ X(Γ ), and hence f ω ∈ L p(Γ ). The last relation is
equivalent to the relation f ∈ L p(Γ,ω), which by [16], implies that

f + ∈ E1(G) and f − ∈ E1(G−).

Since the operator SΓ is bounded [21, Theorem 4.5] in X(Γ,ω), we obtain from (4)

f + ∈ X(Γ,ω) and f − ∈ X(Γ,ω). �
Lemma 2. (See [13].) If αX and βX are nontrivial and ω ∈ A1/αX (T) ∩ A1/βX (T), then there exists a constant c11 > 0 such that for
every natural number n,

‖g − Tn g‖X(T,ω) � c11Ω
r
X,ω

(
g,1/(n + 1)

)
, g ∈ E X (D,ω),

where r = 1,2,3, . . . and Tn g is nth partial sum of the Taylor series of g at the origin.

We know [28, pp. 52, 255] that

ψ ′(w)

ψ(w) − z
=

∞∑
k=0

Φk(z)

wk+1
, z ∈ G, w ∈ D

−,

and

ψ ′
1(w)

ψ1(w) − z
=

∞∑
k=1

Fk(1/z)

wk+1
, z ∈ G−, w ∈ D

−,

where Φk(z) and Fk(1/z) are the Faber polynomials of degree k with respect to z and 1/z for the continua G and C \ G , with
the integral representations [28, pp. 35, 255]

Φk(z) = 1

2π i

∫
|w|=R

wkψ ′(w)

ψ(w) − z
dw, z ∈ G, R > 1,

Fk(1/z) = 1

2π i

∫
|w|=1

wkψ ′
1(w)

ψ1(w) − z
dw, z ∈ G−,

and
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Φk(z) = ϕk(z) + 1

2π i

∫
Γ

ϕk(ς)

ς − z
dς, z ∈ G−, k = 0,1,2, . . . , (6)

Fk(1/z) = ϕk
1(z) − 1

2π i

∫
Γ

ϕk
1(ς)

ς − z
dς, z ∈ G \ {0}. (7)

We put

ak := ak( f ) := 1

2π i

∫
T

f0(w)

wk+1
dw, k = 0,1,2, . . . ,

ãk := ãk( f ) := 1

2π i

∫
T

f1(w)

wk+1
dw, k = 1,2, . . . ,

and correspond the series

∞∑
k=0

akΦk(z) +
∞∑

k=1

ãk Fk(1/z)

for the function f ∈ L1(Γ ), i.e.,

f (z) ∼
∞∑

k=0

akΦk(z) +
∞∑

k=1

ãk Fk(1/z).

This series is called the Faber–Laurent series of the function f and the coefficients ak and ãk are said to be the Faber–Laurent
coefficients of f .

Let P be the set of all polynomials (with no restrictions on the degree), and let P(D) be the set of traces of members
of P on D.

We define the operators T :P(D) → E X (G,ω) and T̃ :P(D) → Ẽ X (G−,ω) defined on P(D) as

T (P )(z) := 1

2π i

∫
T

P (w)ψ ′(w)

ψ(w) − z
dw, z ∈ G,

T̃ (P )(z) := 1

2π i

∫
T

P (w)ψ ′
1(w)

ψ1(w) − z
dw, z ∈ G−.

Then, it is readily seen that

T

(
n∑

k=0

bk wk

)
=

n∑
k=0

bkΦk(z) and T̃

(
n∑

k=0

dk wk

)
=

n∑
k=0

dk Fk(1/z).

If z′ ∈ G , then

T (P )(z′) = 1

2π i

∫
T

P (w)ψ ′(w)

ψ(w) − z′ dw = 1

2π i

∫
Γ

(P ◦ ϕ)(ς)

ς − z′ dς = (P ◦ ϕ)+(z′),

which, by (4) implies that

T (P )(z) = SΓ (P ◦ ϕ)(z) + (1/2)(P ◦ ϕ)(z)

a.e. on Γ .
Similarly, taking the nontangential limit z′′ → z ∈ Γ , outside Γ , in the relation

T̃ (P )
(
z′′) = 1

2π i

∫
Γ

P (ϕ1(ς))

ς − z′′ dς = [
(P ◦ ϕ1)

]−(
z′′), z′′ ∈ G−,

we get

T̃ (P )(z) = −(1/2)(P ◦ ϕ1)(z) + SΓ (P ◦ ϕ1)(z)

a.e. on Γ .
Since SΓ is bounded in X(Γ,ω), we have the following result.
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Lemma 3. Let Γ be a Dini-smooth curve and let the indices αX , βX be nontrivial. If ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ), then the linear
operators

T :P(D) → E X (G,ω), T̃ :P(D) → Ẽ X (G−,ω)

are bounded.

The set of trigonometric polynomials is dense [13] in X([−π,π ],ω), which implies density of the algebraic polyno-
mials in E X (D,ω). Consequently, from Lemma 3, using the Hahn–Banach theorem, we can extend the operators T and T̃
from P(D) to the spaces E X (D,ω0) and E X (D,ω1) as linear and bounded operators, respectively, and for the extensions
T : E X (D,ω0) → E X (G,ω) and T̃ : E X (D,ω1) → Ẽ X (G−,ω) we have the representations

T (g)(z) = 1

2π i

∫
T

g(w)ψ ′(w)

ψ(w) − z
dw, z ∈ G, g ∈ E X (D,ω0),

T̃ (g)(z) = 1

2π i

∫
T

g(w)ψ ′
1(w)

ψ1(w) − z
dw, z ∈ G−, g ∈ E X (D,ω1).

Lemma 4. If 0 < αX , βX < 1, ω ∈ A1/αX (T) ∩ A1/βX (T) and X(T) is a reflexive r.i. space, then for any f ∈ X(T,ω),∥∥Pr( f ) − f
∥∥

X(T,ω)
→ 0, as r → 1−,

where

Pr( f )(w) := 1

2π

2π∫
0

P (r, θ − t) f
(
eit)dt, w = reiθ , 0 < r < 1,

and P (r, θ − t) is the Poisson kernel.

Proof. Let p,q ∈ (1,∞) be the numbers such that

1 < p < 1/βX � 1/αX < q < ∞ and ω ∈ A p(T) ∩ Aq(T).

Then [26, Theorem 10] Pr is bounded in L p(T,ω) and Lq(T,ω). Consequently, the operator Wr := ωPrω
−1 I is bounded in

L p(T) and Lq(T). Now, the Boyd interpolation theorem [5] implies that Wr is bounded in X(T). Therefore∥∥Pr( f )
∥∥

X(T,ω)
� c12‖ f ‖X(T,ω). (8)

Since X(T) is reflexive we have that X(T,ω) is reflexive [22, Corollary 2.8] and therefore the set of continuous functions
on T is dense [20, Lemmas 1.2 and 1.3] in X(T,ω). Consequently, for a given f ∈ X(T,ω) and ε > 0 there is a continuous
function f ∗ such that∥∥ f − f ∗∥∥

X(T,ω)
< ε. (9)

On the other hand, since the Poisson integral of a continuous function converges to it uniformly on T [27, p. 239],
from (1), we have∥∥Pr

(
f ∗) − f ∗∥∥

X(T,ω)
= sup

‖g‖X ′ �1

∫
T

∣∣Pr
(

f ∗)(w) − f ∗(w)
∣∣∣∣g(w)

∣∣ω(w)|dw|

< ε sup
‖g‖X ′�1

∫
T

ω(w)
∣∣g(w)

∣∣|dw| = ε‖ω‖X(T), (10)

for 0 < 1 − r < δ(ε). Then, from (8), (9) and (10), we conclude that∥∥Pr( f ) − f
∥∥

X(T,ω)
�

∥∥Pr( f ) − Pr
(

f ∗)∥∥
X(T,ω)

+ ∥∥Pr
(

f ∗) − f ∗∥∥
X(T,ω)

+ ∥∥ f ∗ − f
∥∥

X(T,ω)

= ∥∥Pr
(

f − f ∗)∥∥
X(T,ω)

+ ∥∥Pr
(

f ∗) − f ∗∥∥
X(T,ω)

+ ∥∥ f ∗ − f
∥∥

X(T,ω)

� c13
∥∥ f ∗ − f

∥∥
X(T,ω)

+ ∥∥Pr
(

f ∗) − f ∗∥∥
X(T,ω)

<
{

c13 + ‖ω‖X(T)

}
ε.

Since ω ∈ A1/αX (T) ∩ A1/βX (T), we have that ω ∈ X(T). This completes the proof. �
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Theorem 4. Let Γ be a Dini-smooth curve and X(T) be a reflexive r.i. space with the nontrivial indices αX and βX . If ω ∈ A1/αX (Γ ) ∩
A1/βX (Γ ), then the operators

T : E X (D,ω0) → E X (G,ω) and T̃ : E X (DT̃ : E X (D,ω1) → Ẽ X (G−,ω)

are one-to-one and onto.

Proof. The proof we give only for the operator T . For the operator T̃ the proof goes similarly. Let g ∈ E X (D,ω0) with the
Taylor expansion

g(w) :=
∞∑

k=0

αk wk, w ∈ D.

If Γ is a Dini-smooth curve, then via (3), the conditions ω ∈ A1/αX (Γ ) ∩ A1/βX (Γ ), ω0 ∈ A1/αX (T) ∩ A1/βX (T) and ω1 ∈
A1/αX (T) ∩ A1/βX (T) are equivalent. Since ω0 ∈ A1/αX (T) ∩ A1/βX (T), there exist p,q ∈ (1,∞) such that 1 < p < 1/βX �
1/αX < q < ∞, ω0 ∈ A p(T) ∩ Aq(T) and Lq(T) ⊂ X(T) ⊂ L p(T).

Let gr(w) := g(rw), 0 < r < 1. Since g ∈ E1(D) is the Poisson integral of its boundary function [8, p. 41], we have

‖gr − g‖X(T,ω0) = ∥∥Pr(g) − g
∥∥

X(T,ω0)

and using Lemma 4, we get ‖gr − g‖X(T,ω0) → 0, as r → 1− .
Therefore, the boundedness of the operator T implies that∥∥T (gr) − T (g)

∥∥
X(Γ,ω)

→ 0, as r → 1−. (11)

Since
∑∞

k=0 αk wk is uniformly convergent for |w| = r < 1,
∑∞

k=0 αkrk wk is uniformly convergent on T, and hence

T (gr)(z′) = 1

2π i

∫
T

gr(w)ψ ′(w)

ψ(w) − z′ dw =
∞∑

m=0

αmrm 1

2π i

∫
T

wmψ ′(w)

ψ(w) − z′ dw =
∞∑

m=0

αmrmΦm(z′), z′ ∈ G.

From the last equality and Lemma 3 of [10, p. 43], we have

ak
(
T (gr)

) = 1

2π i

∫
T

T (gr)(ψ(w))

wk+1
dw = 1

2π i

∫
T

∑∞
m=0 αmrmΦm(ψ(w))

wk+1
dw =

∞∑
m=0

αmrm 1

2π i

∫
T

Φm(ψ(w))

wk+1
dw = αkrk

and therefore

ak
(
T (gr)

) → αk, as r → 1−. (12)

On the other hand, applying (3) and Hölder’s inequality (2), we obtain∣∣ak
(
T (gr)

) − ak
(
T (g)

)∣∣ =
∣∣∣∣ 1

2π i

∫
T

[T (gr) − T (g)](ψ(w))

wk+1
dw

∣∣∣∣
� 1

2π

∫
T

∣∣[T (gr) − T (g)
](

ψ(w)
)∣∣|dw| = 1

2π

∫
Γ

∣∣[T (gr) − T (g)
]
(z)

∣∣∣∣ϕ′(z)
∣∣|dz|

� c14

2π

∫
Γ

∣∣[T (gr) − T (g)
]
(z)

∣∣|dz| = c14

2π

∫
Γ

∣∣[T (gr) − T (g)
]
(z)

∣∣ω(z)ω−1(z)|dz|

� c14

2π

∥∥(
T (gr) − T (g)

)
ω(z)

∥∥
X(Γ )

∥∥ω−1(·)∥∥X ′(Γ )
� c15

2π

∥∥T (gr) − T (g)
∥∥

X(Γ,ω)
,

because ‖ω−1(·)‖X ′(Γ ) < ∞ by Theorem 2.1 of [21].
Using here the relation (11), we get

ak
(
T (gr)

) → ak
(
T (g)

)
, as r → 1−,

and then by (12), ak(T (g)) = αk for k = 0,1,2, . . . . If T (g) = 0, then αk = ak(T (g)) = 0, k = 0,1,2, . . . , and therefore g = 0.
This means that the operator T is one-to-one.

Now we take a function f ∈ E X (G,ω) and consider the function f0 = f ◦ ψ ∈ X(T,ω0). The Cauchy type integral

1

2π i

∫
f0(τ )

τ − w
dτ
T
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represents analytic functions f +
0 and f −

0 in D and D
− , respectively. Since ω0 ∈ A1/αX (T) ∩ A1/βX (T), by Lemma 1, we have

f +
0 ∈ E X (D,ω0) and f −

0 ∈ Ẽ X
(
D

−,ω0
)
,

and moreover

f0(w) = f +
0 (w) − f −

0 (w) (13)

a.e. on T. Since f −
0 ∈ E1(D−) and f −

0 (∞) = 0, we have

ak = 1

2π i

∫
T

f0(w)

wk+1
dw = 1

2π i

∫
T

f +
0 (w)

wk+1
dw − 1

2π i

∫
T

f −
0 (w)

wk+1
dw = 1

2π i

∫
T

f +
0 (w)

wk+1
dw,

which proves that the coefficients ak , k = 0,1,2, . . . , also become the Taylor coefficients of the function f +
0 at the origin,

i.e.,

f +
0 (w) =

∞∑
k=0

ak wk, w ∈ D,

and also

T
(

f +
0

)
�

∞∑
k=0

akΦk.

Hence the functions T ( f +
0 ) and f have the same Faber coefficients ak , k = 0,1,2, . . . , and therefore T ( f +

0 ) = f . This proves
that the operator T is onto. �
3. Proofs of main results

Proof of Theorem 1. We prove that the rational function

Rn(z, f ) :=
n∑

k=0

akΦk(z) +
n∑

k=1

ãk Fk(1/z)

satisfies the required inequality of Theorem 1. This inequality is true if we can show that∥∥∥∥∥ f −(z) +
n∑

k=1

ãk Fk(1/z)

∥∥∥∥∥
X(Γ,ω)

� c16Ω̃
r
Γ,X,ω

(
f ,1/(n + 1)

)
(14)

and ∥∥∥∥∥ f +(z) −
n∑

k=0

akΦk(z)

∥∥∥∥∥
X(Γ,ω)

� c17Ω
r
Γ,X,ω

(
f ,1/(n + 1)

)
, (15)

because f (z) = f +(z) − f −(z) a.e. on Γ .
First we prove (14). Let f ∈ X(Γ,ω). Then f1 ∈ X(T,ω1), f0 ∈ X(T,ω0). According to (13)

f (ς) = f +
0

(
ϕ(ς)

) − f −
0

(
ϕ(ς)

)
(16)

a.e. on Γ . On the other hand, from Lemma 1, we find that

f1(w) = f +
1 (w) − f −

1 (w),

which implies the inequality

f (ς) = f +
1

(
ϕ1(ς)

) − f −
1

(
ϕ1(ς)

)
(17)

a.e. on Γ .
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Let z′ ∈ G \ {0}. Using (7) and (17), we have

n∑
k=1

ãk Fk(1/z′) =
n∑

k=1

ãkϕ
k
1(z′) − 1

2π i

∫
Γ

∑n
k=1 ãkϕ

k
1(ς)

ς − z′ dς

=
n∑

k=1

ãkϕ
k
1(z′) − 1

2π i

∫
Γ

∑n
k=1(ãkϕ

k
1(ς) − f +

1 (ϕ1(ς)))

ς − z′ dς − 1

2π i

∫
Γ

f −
1 (ϕ1(ς))

ς − z′ dς − 1

2π i

∫
Γ

f (ς)

ς − z′ dς

=
n∑

k=1

ãkϕ
k
1(z′) − 1

2π i

∫
Γ

∑n
k=1(ãkϕ

k
1(ς) − f +

1 (ϕ1(ς)))

ς − z′ dς − f −
1

(
ϕ1(z′)

) − f −(z′).

Hence, taking the nontangential limit z′ → z ∈ Γ , inside Γ , we obtain

n∑
k=1

ãk Fk(1/z) =
n∑

k=1

ãkϕ
k
1(z) − 1

2

(
n∑

k=1

ãkϕ
k
1(z) − f +

1

(
ϕ1(z)

)) − SΓ

[
n∑

k=1

ãkϕ
k
1 − (

f +
1 ◦ ϕ1

)] − f −
1

(
ϕ1(z)

) − f +(z)

a.e. on Γ .
Using (5), (17), Minkowski’s inequality and the boundedness of SΓ , we get∥∥∥∥∥ f −(z) +

n∑
k=1

ãk Fk(1/z′)
∥∥∥∥∥

X(Γ,ω)

=
∥∥∥∥∥1

2

(
n∑

k=1

ãkϕ
k
1(z) − f +

1

(
ϕ1(z)

)) − SΓ

[
n∑

k=1

ãkϕ
k
1 − (

f +
1 ◦ ϕ1

)]
(z)

∥∥∥∥∥
X(Γ,ω)

� c18

∥∥∥∥∥
n∑

k=1

ãkϕ
k
1(z) − f +

1

(
ϕ1(z)

)∥∥∥∥∥
X(Γ,ω)

� c19

∥∥∥∥∥ f +
1 (w) −

n∑
k=1

ãk wk

∥∥∥∥∥
X(T,ω1)

.

On the other hand, from the proof of Theorem 4 we know that the Faber–Laurent coefficients ãk of the function f and the
Taylor coefficients of the function f +

1 at the origin are the same. Then taking Lemma 2 into account, we conclude that∥∥∥∥∥ f − +
n∑

k=1

ãk Fk(1/z)

∥∥∥∥∥
X(Γ,ω)

� c20Ω
r
X,ω1

(
f +
1 ,1/(n + 1)

) = c20Ω̃
r
Γ,X,ω

(
f ,1/(n + 1)

)
,

and (14) is proved.
The proof of relation (15) goes similarly; we use the relations (6) and (16) instead of (7) and (17), respectively. Hence

(5), (14) and (15) complete the proof. �
Proof of Theorem 2. Let f ∈ E X (G,ω). Then we have T ( f +

0 ) = f . Since by Theorem 4 the operator T : E X (D,ω0) →
E X (G,ω) is linear, bounded, one-to-one and onto, the operator T −1 : E X (G,ω) → E X (D,ω0) is also linear and bounded.
We take p∗

n ∈Pn as the best approximating algebraic polynomial to f in E X (G,ω), i.e.,

En( f , G)X,ω = ∥∥ f − p∗
n

∥∥
X(Γ,ω)

.

Then T −1(p∗
n) ∈Pn(D) and therefore

En
(

f +
0

)
X,ω0

�
∥∥ f +

0 − T −1(p∗
n

)∥∥
X(T,ω0)

= ∥∥T −1( f ) − T −1(p∗
n

)∥∥
X(T,ω0)

= ∥∥T −1( f − p∗
n

)∥∥
X(T,ω0)

�
∥∥T −1

∥∥∥∥ f − p∗
n

∥∥
X(Γ,ω)

= ∥∥T −1
∥∥En( f , G)X,ω, (18)

because the operator T −1 is bounded.
On the other hand, from [13] we have

Ωr
X,ω0

(
f +
0 ,1/n

)
� c24

n2r

{
E0

(
f +
0

)
X,ω0

+
n∑

k=1

k2r−1Ek
(

f +
0

)
X,ω0

}
, r = 1,2, . . . .

The last inequality and (18) imply that

Ωr
Γ,X,ω( f ,1/n) = Ωr

X,ω0

(
f +
0 ,1/n

)
� c25

n2r

{
E0

(
f +
0

)
X,ω0

+
n∑

k=1

k2r−1Ek
(

f +
0

)
X,ω0

}

� c26‖T −1‖
n2r

{
E0( f , G)X,ω +

n∑
k2r−1Ek( f , G)X,ω

}
, r = 1,2, . . . . �
k=1
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Proof of Theorem 3. Let f ∈ Ẽ X (G−,ω). Then T̃ ( f +
1 ) = f . By Theorem 4 the operator T̃ −1 : Ẽ X (G−,ω) → E X (D,ω1) is

linear and bounded. Let r∗
n ∈Rn be a function such that

Ẽn( f )X,ω = ∥∥ f − r∗
n

∥∥
X(Γ,ω)

.

Then T̃ −1(r∗
n) ∈Pn(D) and therefore

En
(

f +
1

)
X,ω1

�
∥∥ f +

1 − T̃ −1(r∗
n

)∥∥
X(T,ω1)

= ∥∥T̃ −1( f ) − T̃ −1(r∗
n

)∥∥
X(T,ω1)

= ∥∥T̃ −1( f − r∗
n

)∥∥
X(T,ω1)

�
∥∥T̃ −1

∥∥∥∥ f − r∗
n

∥∥
X(Γ,ω)

= ∥∥T̃ −1
∥∥Ẽn( f )X,ω. (19)

It can be deduced from [13] that

Ωr
X,ω1

(
f +
1 ,1/n

)
� c27

n2r

{
E0

(
f +
1

)
X,ω1

+
n∑

k=1

k2r−1Ek
(

f +
1

)
X,ω1

}
, r = 1,2, . . . .

From the last inequality and (19) we conclude that

Ω̃r
Γ,X,ω( f ,1/n) = Ωr

X,ω1

(
f +
1 ,1/n

)
� c28

n2r

{
E0

(
f +
1

)
X,ω1

+
n∑

k=1

k2r−1Ek
(

f +
1

)
X,ω1

}

� c29‖T̃ −1‖
n2r

{
Ẽ0( f )X,ω +

n∑
k=1

k2r−1Ẽk( f )X,ω

}
, r = 1,2, . . . . �
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