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We consider a Schrödinger differential expression P = �M + V on a complete Riemannian
manifold (M, g) with metric g, where �M is the scalar Laplacian on M and V is a real-
valued locally integrable function on M . We study two self-adjoint realizations of P in
L2(M) and show their equality. This is an extension of a result of S. Agmon.
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1. Introduction and the main result

1.1. The setting

Let (M, g) be a C∞-Riemannian manifold without boundary, with metric g = (g jk) and dim M = n. We will assume
that M is connected and oriented. By dν we will denote the Riemannian volume element of M . In any local coordinates
x1, . . . , xn , we have dν = √

det(g jk)dx1 dx2 . . .dxn .
By L2(M) we denote the space of complex-valued square integrable functions on M with the inner product

(u, v) =
∫
M

(uv̄)dν. (1)

We will denote the norm in L2(M) by ‖ · ‖.
In what follows, by C∞(M) we denote the space of smooth functions on M , by C∞

c (M)—the space of smooth compactly
supported functions on M , by Ω1(M)—the space of smooth 1-forms on M , and by Z+—the set of positive integers.

By d : C∞(M) → Ω1(M) we denote the standard differential, and by d∗ : Ω1(M) → C∞(M) we denote the formal adjoint
of d with respect to the inner product (1). By �M := d∗d we will denote the scalar Laplacian on M .

We consider a Schrödinger-type differential expression

P = �M + V , (2)

where V ∈ L1
loc(M) is a real-valued function.

Defining V+ := max(V ,0) and V− := max(−V ,0), we can write V = V+ − V− .

E-mail address: omilatov@unf.edu.
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.12.040

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:omilatov@unf.edu
http://dx.doi.org/10.1016/j.jmaa.2008.12.040


126 O. Milatovic / J. Math. Anal. Appl. 354 (2009) 125–133
Assumption (A). Assume that V ∈ L1
loc(M). Additionally, assume that there exist constants 0 � a < 1 and b � 0 such that

∫
M

V−|u|2 dν � a

∫
M

|du|2 dν + b‖u‖2, for all u ∈ C∞
c (M). (3)

1.2. Sobolev space W 1,2(M)

By W 1,2(M) we will denote the completion of the space C∞
c (M) with respect to the norm ‖ · ‖1 defined by the scalar

product

(u, v)1 := (u, v) + (du,dv), u, v ∈ C∞
c (M). (4)

Remark 1. It is well known that for a complete Riemannian manifold (M, g), we have W 1,2(M) = {u ∈ L2: du ∈ L2(Λ1T ∗M)}.

We will consider two realizations of the expression P in L2(M).

1.3. Operator T

Let V be as in Assumption (A). Define an operator T in L2(M) by the formula T u = P u, with the domain

Dom(T ) = {
u ∈ W 1,2(M): |V |1/2u ∈ L2(M) and P u ∈ L2(M)

}
.

1.4. Operator S

Let V be as in Assumption (A). Define an operator S in L2(M) by the formula Su = P u, with the domain

Dom(S) = {
u ∈ L2(M) ∩ W 1,2

loc (M): V u ∈ L1
loc(M) and P u ∈ L2(M)

}
.

We now state the main result.

Theorem 2. Assume that (M, g) is a C∞-Riemannian manifold without boundary. Assume that M is connected, oriented and complete.
Assume that V satisfies Assumption (A). Then the operator T is self-adjoint in L2(M). Furthermore, the following equality holds: T = S.

Remark 3. Theorem 2 extends the result of S. Agmon (see [2, Theorem 1.2]) concerning the Schrödinger differential expres-
sion P = −�+ V , where � is the standard Laplacian on R

n and V is as in the hypotheses of Theorem 2. The self-adjointness
of the realization S of P , where P = −� + V is an operator in L2(Rn) and S is as in Section 1.4 with M = R

n , follows from
the result of Kato [6]. In the context of a manifold of bounded geometry, the paper [9] proved the self-adjointness of the
realization T of P , where T and P are as in Section 1.3 and V is as in Assumption (A) above. In the same bounded ge-
ometry context, the paper [11] proved the self-adjointness of the realization S of P , where S and P are as in Section 1.4,
and V ∈ L1

loc(M) with V � −C (here C > 0 is a constant). The works [9] and [11] used Kato inequality technique, leading to
a certain distributional inequality which is well understood only on a manifold of bounded geometry; see [3, Appendix B].
By adopting Agmon’s wighted L2 estimates [2, Section 4] to our setting, we were able to study realizations T and S on an
arbitrary complete Riemannian manifold. Moreover, this approach enabled us to include V− in the study of the realization
S of P in L2(M), which is not present in [11].

Remark 4. If (M, g) is a manifold of bounded geometry, Assumption (A) holds if V− ∈ L p(M), where p = n/2 for n � 3,
p > 1 for n = 2, and p = 1 for n = 1; see [9, Remark 2.1].

2. Weighted L2-estimate

In this section, we will prove an L2-estimate for solutions of the differential equation used in the proof of Theorem 2.
Throughout this section, we assume that all hypotheses of Theorem 2 are satisfied.

Weak solution. Let P be as in (2), let f ∈ L1
loc(M) be a complex valued function, and let λ ∈ C. A (complex valued) function

u is called a weak solution of the equation

(P − λ)u = f (5)

if u ∈ W 1,2
(M), V u ∈ L1 (M) and
loc loc
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∫
M

〈du,dφ̄〉dν +
∫
M

(V − λ)uφ̄ dν =
∫
M

f φ̄ dν, for all φ ∈ C∞
c (M), (6)

where 〈·,·〉 is the pointwise inner product in Λ1T ∗
x M .

The following proposition provides a key weighted L2-estimate.

Proposition 5. Assume that (M, g) is a complete Riemannian manifold. Let λ ∈ R and let c(x) be a positive continuous function on M.
Assume that∫

M

(|dφ|2 + (V − λ)|φ|2)dν �
∫
M

c(x)|φ|2 dν, for all φ ∈ C∞
c (M). (7)

Let f ∈ L2
loc(M) and assume that u is a weak solution of (5). Additionally, assume that u ∈ L2(M).

Let h(x) be a non-negative Lipschitz function on M such that

∣∣dh(x)
∣∣2 � c(x), a.e. on M, (8)

where | · | denotes the length of the cotangent vector dh(x) ∈ T ∗
x M.

Then the following inequality holds:∫
M

(
c(x) − ∣∣dh(x)

∣∣2)
e2h(x)|u|2 dν �

∫
M

(
c(x) − ∣∣dh(x)

∣∣2)−1
e2h(x)| f |2 dν. (9)

The proof adopts the technique of Agmon [2] and Agmon [1, Chapters 1 and 3] to our setting with the help of cut off
functions described in Section 2.1 below. We will first prove a few preliminary lemmas.

We will assume that the right-hand side of (9) is finite. (Otherwise, there is nothing to prove.) By the definition of �M
and since V and λ are real by hypotheses, without loss of generality, we may (and we will) assume that f and u are real
valued.

Let ε > 0, let u be as in hypotheses of Proposition 5, and define

uε := u

1 + εu2
. (10)

Clearly, uε ∈ L∞(M) ∩ W 1,2
loc (M).

Lemma 6. Let ψ be a real valued compactly supported Lipschitz function on M. Let u be as in hypothesis of Proposition 5, and let uε

be as in (10). Then∫
M

〈
du,d

(
ψ2uε

)〉
dν +

∫
M

(V − λ)uψ2uε dν =
∫
M

f ψ2uε dν. (11)

Proof. By definition of the weak solution, we have u ∈ W 1,2
loc (M), V u ∈ L1

loc(M) and u satisfies Eq. (6).

Since ψ be a compactly supported Lipschitz function on M and since uε ∈ L∞(M) ∩ W 1,2
loc (M), it follows that ψ2uε ∈

W 1,2
comp(M) ∩ L∞(M).
By using a partition of unity we may assume that ψ is supported in a coordinate neighborhood U on M . Hence,

we can use Friedrichs mollifiers. Let ρ > 0 and let (ψ2uε)
ρ := Jρ(ψ2uε), where Jρ denotes Friedrichs mollifying op-

erator as in [3, Section 5.12]. We have (ψ2uε)
ρ ∈ C∞

c (M), and (ψ2uε)
ρ → ψ2uε in W 1,2(M), as ρ → 0+; see, for in-

stance, [3, Lemma 5.13].
Thus, (6) holds with φ = (ψ2uε)

ρ :∫
M

〈
du,d

((
ψ2uε

)ρ)〉
dν +

∫
M

(V − λ)u
(
ψ2uε

)ρ
dν =

∫
M

f
(
ψ2uε

)ρ
dν. (12)

Moreover, we have∫
M

〈
du,d

(
ψ2uε

)ρ 〉
dν →

∫
M

〈
du,d

(
ψ2uε

)〉
dν, as ρ → 0+, (13)

and since f ∈ L2
loc(M), we have

∫
f
(
ψ2uε

)ρ
dν →

∫
f ψ2uε dν. (14)
M M
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We now consider the term∫
M

(V − λ)u
(
ψ2uε

)ρ
dν.

Since ψ2uε ∈ L∞(M) is compactly supported, by properties of Friedrichs mollifiers (see, for example, the proof of [4, Theo-
rem 1.2.1]) it follows that

(1) there exists a compact set K containing the supports of ψ2uε and (ψ2uε)
ρ for all 0 < ρ < 1, and

(2) the following inequality holds for all ρ > 0:
∥∥(

ψ2uε

)ρ∥∥
L∞ �

∥∥ψ2uε

∥∥
L∞ . (15)

Since (ψ2uε)
ρ → ψ2uε in L2(M) as ρ → 0+, after passing to a subsequence we have

(
ψ2uε

)ρ → ψ2uε a.e. on M, as ρ → 0 + . (16)

By (15) we have a.e. on M:
∣∣(V (x) − λ

)
u(x)

(
ψ2uε

)ρ
(x)

∣∣ �
∣∣(V (x) − λ

)
u(x)

∣∣∥∥ψ2uε

∥∥
L∞ . (17)

Since, by definition of the weak solution, (V − λ)u ∈ L1
loc(M), it follows that (V − λ)u ∈ L1(K ).

By (16), (17) and since (V − λ)u ∈ L1(K ), using dominated convergence theorem, we have∫
M

(V − λ)u
(
ψ2uε

)ρ
dν →

∫
M

(V − λ)u
(
ψ2uε

)
dν, as ρ → 0 + . (18)

From (12)–(14) and (18) we get (11), and the lemma is proven. �
Lemma 7. Let c be as in hypotheses of Proposition 5 and let u and ψ be as in hypotheses of Lemma 6. Then∫

M

(
c(x)(uψ)2 − |dψ |2u2)dν �

∫
M

f uψ2 dν. (19)

Proof. Since ψ is compactly supported, by using a partition of unity we may assume that ψ is supported on a coordinate
neighborhood U on M . Note that in (19) the function u is relevant only on a neighborhood of support of ψ . Hence, we may
assume that u is supported in the same coordinate neighborhood U .

Now by definition of uε it follows that

uε → u in W 1,2
loc (U ), as ε → 0 + . (20)

Since the hypotheses of Lemma 6 are satisfied, we can use (11). We will begin by rewriting (11) as follows:∫
M

〈
d(uε),d

(
ψ2uε

)〉
dν +

∫
M

(V − λ)ψ2(uε)
2 dν =

∫
M

f ψ2uε dν + Iε, (21)

where

Iε :=
∫
M

〈
d(uε − u),d

(
ψ2uε

)〉
dν +

∫
M

(V+ − V− − λ)(uε − u)uεψ
2 dν

�
∫

supp ψ

〈
d(uε − u),d

(
ψ2uε

)〉
dν +

∫
supp ψ

(V− + λ)(u − uε)uεψ
2 dν.

In the last inequality we used the hypothesis V+ � 0 and the definition of uε .
Using Cauchy–Schwarz inequality, we have

∫
supp ψ

〈
d(uε − u),d

(
ψ2uε

)〉
dν �

( ∫
suppψ

∣∣d(uε − u)
∣∣2

dν

)1/2

·
( ∫

supp ψ

∣∣d(
ψ2uε

)∣∣2
dν

)1/2

. (22)

By (20) and since supp ψ is compact, it follows that, as ε → 0+, the first term in the product on the right-hand side of (22)
converges to 0, while the second term in the product remains bounded.

Using Cauchy–Schwarz inequality, we also have
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∫
supp ψ

(V− + λ)(u − uε)uεψ
2 dν �

( ∫
supp ψ

V−|u − uε |2 dν

)1/2

·
( ∫

supp ψ

V−
(
uεψ

2)2
dν

)1/2

+ |λ|
( ∫

supp ψ

∣∣(u − uε)
∣∣2

dν

)1/2

·
( ∫

suppψ

(
uεψ

2)2
dν

)1/2

. (23)

By (20) and since supp ψ is compact, it follows that, as ε → 0+, the first term in second product on the right-hand side
of (23) converges to 0, while the second term in the second product remains bounded.

Using an approximation argument as in the proof of Lemma 6, from Assumption (A) we get
∫

supp ψ

V−|u − uε |2 dν � a

∫
supp ψ

∣∣d(u − uε)
∣∣2

dν + b

∫
suppψ

|u − uε |2 dν. (24)

By (20) it follows that the right-hand side of (24) converges to 0 as ε → 0+.
Likewise, by Assumption (A) we have

∫
supp ψ

V−
(
uεψ

2)2
dν � a

∫
supp ψ

∣∣d(
uεψ

2)∣∣2
dν + b

∫
supp ψ

(
uεψ

2)2
dν. (25)

It follows that, as ε → 0+, the left-hand side of (25) remains bounded.
Using (22)–(25) and the remarks after those estimates, we get

lim sup
ε→0+

Iε � 0. (26)

Using Leibniz rule, we have the following equality:

〈
duε,d

(
ψ2uε

)〉 = ∣∣d(ψuε)
∣∣2 − (uε)

2|dψ |2, (27)

where 〈·,·〉 is the inner product in Λ1T ∗
x M and | · | is the length of the cotangent vector in T ∗

x M .
Using (27) we can rewrite (21) as follows:

∫
M

(∣∣d(ψuε)
∣∣2 + (V − λ)ψ2(uε)

2 − (uε)
2|dψ |2)dν =

∫
M

f ψ2uε dν + Iε . (28)

Using the hypothesis (7) and the same approximation argument as in the proof of Lemma 6 we get
∫
M

(∣∣d(ψuε)
∣∣2 + (V − λ)|ψuε |2

)
dν �

∫
M

c(x)(ψuε)
2 dν. (29)

From (28) and (29) we get
∫
M

(
c(x)(ψuε)

2 − (uε)
2|dψ |2)dν �

∫
M

f ψ2uε dν + Iε . (30)

We now let ε → 0+ in (30). Using (26), hypotheses on f , ψ , c, and (20), we obtain (19). This concludes the proof of the
lemma. �

In the sequel, we will use a sequence of cut off functions due to Karcher [5]. (The construction of this sequence is also
explained in Shubin [12].)

2.1. Cut off functions

Let (M, g) be a complete Riemannian manifold. Then there exists a sequence of functions φ j : M → R, j = 1,2, . . . such
that

(a) φ j ∈ C∞
c (M).

(b) 0 � φ j(x) � 1, x ∈ M , j = 1,2, . . . .

(c) For every compact set K ⊂ M , there exists j0 such that φ j = 1 on K , for j � j0.
(d) ε j := supx∈M |dφ j| → 0, as j → ∞.
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Proof of Proposition 5. Let h be as in hypotheses of the proposition, let N ∈ Z+ , and define

hN(x) :=
{

( N−1
N )h(x), if h(x) � N,

N − 1, if h(x) > N.

Clearly, hN is as non-negative bounded Lipschitz function on M . By the well-known Rademacher’s theorem hN (x) is differ-
entiable almost everywhere. By the definition of hN and by the hypothesis (8) it follows that

∣∣dhN(x)
∣∣2 �

(
N − 1

N

)2∣∣dh(x)
∣∣2

<

(
N − 1

N

)2

c(x). (31)

Let φ j be as in Section 2.1, and define ψ j,N (x) := φ j(x)ehN (x) .
Using Leibniz rule, the inequality 2ab � a2/β + βb2, where β > 0, and the estimate (31), we get

|dψ j,N |2 = (
φ2

j |dhN |2 + 2φ j〈dφ j,dhN 〉 + |dφ j|2
)
e2hN �

(
φ2

j |dhN |2(1 + N−1) + (1 + N)|dφ j |2
)
e2hN

� (ψ j,N )2|dh|2 + (1 + N)|dφ j |2e2hN . (32)

Using (19) with ψ = ψ j,N , the estimate (32), and Cauchy–Schwarz inequality, we get
∫
M

(uψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)

dν �
∫
M

f uψ2
j,N dν + (1 + N)

∫
M

u2|dφ j |2e2hN dν

�
(∫

M

(uψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)

dν

)1/2(∫
M

( f ψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)−1

dν

)1/2

+ (1 + N)

∫
M

u2|dφ j|2e2hN dν. (33)

The leftmost side and rightmost side in (33) give an inequality of the form A � A1/2 B1/2 + C , where A, B and C are
positive numbers. Using an elementary calculation, we have the following inequality: A � B + 2C .

Therefore,∫
M

(uψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)

dν �
∫
M

( f ψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)−1

dν + 2(1 + N)

∫
M

u2|dφ j |2e2hN dν. (34)

Using the conditions u ∈ L2(M) and hN ∈ L∞(M) and the property (d) of Section 2.1, it follows that∫
M

u2|dφ j |2e2hN dν → 0, as j → ∞. (35)

By definition of hN it follows that hN � h; hence,∫
M

f 2(c − |dh|2)−1
e2hN dν �

∫
M

f 2(c − |dh|2)−1
e2h dν < ∞. (36)

Let j → ∞ on the right-hand side of (34). Using (35), (36) and the dominated convergence theorem, the right-hand side
of (34) converges to∫

M

f 2(c(x) − ∣∣dh(x)
∣∣2)−1

e2hN dν.

Therefore,

lim sup
j→∞

∫
M

(uψ j,N )2(c(x) − ∣∣dh(x)
∣∣2)

dν �
∫
M

f 2(c(x) − ∣∣dh(x)
∣∣2)−1

e2hN dν. (37)

Using the definition of ψ j,N and Fatou’s lemma on the left-hand side of (37), we obtain
∫
M

u2(c(x) − ∣∣dh(x)
∣∣2)

e2hN dν �
∫
M

f 2(c(x) − ∣∣dh(x)
∣∣2)−1

e2hN dν. (38)

We now let N → ∞ in (38). Using (36) and a dominated convergence and Fatou’s lemma argument, we get (9). This
concludes the proof of the proposition. �
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3. Proof of Theorem 2

We will first define appropriate quadratic forms.

3.1. Quadratic forms

In what follows, all quadratic forms are considered in the Hilbert space L2(M).
By h0 we denote the quadratic form

h0(u) =
∫

|du|2 dν (39)

with the domain D(h0) = W 1,2(M) ⊂ L2(M). Clearly, h0 is a non-negative, densely defined and closed form.
By h1 we denote the quadratic form

h1(u) =
∫
M

V+|u|2 dν (40)

with the domain

D(h1) =
{

u ∈ L2(M):
∫

V+|u|2 dν < +∞
}
. (41)

Clearly, h1 is a non-negative, densely defined (since C∞
c (M) ⊂ D(h0)), and closed form (see [7, Example VI.1.15]).

By h2 we denote the quadratic form

h2(u) = −
∫
M

V−|u|2 dν (42)

with the domain

D(h2) =
{

u ∈ L2(M):
∫
M

V−|u|2 dν < +∞
}
. (43)

Clearly, h2 is a densely defined form. Moreover, h2 is symmetric (but not semi-bounded below).

Lemma 8. Let h0 and h1 be as in Section 3.1. Then the following properties hold:

(1) the form h0 + h1 is non-negative and closed;
(2) C∞

c (M) is a form core of h0 + h1 .

Proof. Since h0 and h1 are non-negative and closed, it follows by [7, Theorem VI.1.31] that h0 + h1 is non-negative and
closed, and (i) is proven. For the proof of property (ii), see, for instance, [8, Lemma 2.1] or [10, Lemma 2.2]. �
Lemma 9. Let h0 , h1 and h2 be as in Section 3.1. Then the following properties hold:

(1) the form h := (h0 + h1) + h2 is densely-defined, semi-bounded below and closed;
(2) C∞

c (M) is a form core of h.

Proof. By Assumption (A) and by property (ii) of Lemma 8 above, it follows that h2 is h0-bounded with relative bound
b < 1. Since h1 is non-negative, it follows that h2 is (h0 + h1)-bounded with relative bound b < 1. Since h0 + h1 is a closed,
non-negative form, by [7, Theorem VI.1.33], it follows that h = (h0 + h1) + h2 is a closed semi-bounded below form. Since
C∞

c (M) ⊂ D(h0) ∩ D(h1) ⊂ D(h2), it follows that h is densely defined. This proves (i). The property (ii) holds since h2 is
(h0 + h1)-bounded with relative bound b < 1 and since C∞

c (M) is a form core of h0 + h1. The lemma is proven. �
Lemma 10. Let 0 � F ∈ L1

loc(M). Assume that u ∈ L2(M) satisfies F |u|2 ∈ L1(M). Then F u ∈ L1
loc(M).

Proof. Since F ∈ L1
loc(M), the lemma follows directly from the inequality

|F u| = F |u| � F |u|2 + F . �
Corollary 11. If u ∈ D(h), then V u ∈ L1 (M).
loc
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Proof. Let u ∈ D(h) = D(h0) ∩ D(h1). By Lemma 10 it follows that V+u ∈ L1
loc(M). Since D(h) ⊂ D(h2), by Lemma 10 we have

V−u ∈ L1
loc(M). Thus V u ∈ L1

loc(M), and the corollary is proven. �
In what follows, h(·,·) will denote the corresponding sesquilinear form obtained from h via polarization identity.

3.2. Self-adjoint operator H associated to h

Since h is densely defined, closed and semi-bounded below form in L2(M), by [7, Theorem VI.2.1] there exists a semi-
bounded below self-adjoint operator H in L2(M) such that

(i) Dom(H) ⊂ D(h) and

h(u, v) = (Hu, v) for all u ∈ Dom(H), and v ∈ D(h).

(ii) Dom(H) is a core of h.
(iii) If u ∈ D(h), w ∈ L2(M) and h(u, v) = (w, v) holds for every v belonging to a core of h, then u ∈ Dom(H) and Hu = w .

The semi-bounded below self-adjoint operator H is uniquely determined by the condition (i).

Lemma 12. Let T be as in Section 1.3 and let H be as in Section 3.2. Then the following operator relation holds: H ⊂ T .

Proof. We will show that for all u ∈ Dom(H), we have Hu = P u. Let u ∈ Dom(H). By property (i) of operator H we have
u ∈ D(h); hence, by Corollary 11 we get V u ∈ L1

loc(M). Then, for any v ∈ C∞
c (M), we have

(Hu, v) = h(u, v) = (du,dv) + (V u, v), (44)

where (·,·) denotes the L2-inner product.
The first equality in (44) holds by property (i) of operator H , and the second equality holds by definition of h.
Hence, using integration by parts in the first term on the right-hand side of the second equality in (44) (see, for exam-

ple, [3, Lemma 8.8]), we get

(u,d∗dv) =
∫
M

(Hu − V u)v̄ dν, for all v ∈ C∞
c (M). (45)

Since V u ∈ L1
loc(M) and Hu ∈ L2(M), it follows that (Hu − V u) ∈ L1

loc(M), and (45) implies �M u = Hu − V u (as distributions
on M). Therefore, �M u + V u = Hu, and this shows that Hu = P u for all u ∈ Dom(H).

Now by definition of T it follows that Dom(H) ⊂ Dom(T ) and Hu = T u for all u ∈ Dom(H). Therefore H ⊂ T , and the
lemma is proven. �
Lemma 13. Let T be as in Section 1.3 and let H be as in Section 3.2. Then the following operator relation holds: H = T .

Proof. By Lemma 12 we have H ⊂ T , so it is enough to show that Dom(T ) ⊂ Dom(H).
Let u ∈ Dom(T ). By definition of Dom(T ), we have u ∈ D(h0) ⊂ D(h2) and u ∈ D(h1). Hence, u ∈ D(h). Furthermore, for

all v ∈ C∞
c (M) we have

h(u, v) = h0(u, v) + h1(u, v) + h2(u, v) = (u,�M v) +
∫
M

V uv̄ dν = (P u, v).

The last equality holds since P u = T u ∈ L2(M). By Lemma 9 we know that C∞
c (M) is a form core of h. Thus, from prop-

erty (iii) of Section 3.2 we have u ∈ Dom(H) with Hu = P u. This concludes the proof of the lemma. �
Proof of Theorem 2. In Lemma 13 we showed that H = T . Therefore, T is a self-adjoint operator in L2(M). To prove the
theorem, we need to show that T = S . By definitions of S and T and by Corollary 11 it follows that T ⊂ S . Thus, it remains
to show that Dom(S) ⊂ Dom(T ). Since T = H , it is enough to show that Dom(S) ⊂ Dom(H).

By Section 3.2 the operator H is self-adjoint and semi-bounded below. By adding the form α‖u‖2 to the form h, where
u ∈ L2(M) and α is a sufficiently large constant, we may assume that H is a strictly positive self-adjoint operator. Then H−1

is a bounded linear operator in L2(M); see [7, Section V.3.10].
Let u ∈ Dom(S), and define

w := u − H−1(Su).

Since H−1(Su) ∈ Dom(H) and Dom(H) ⊂ Dom(S), we get w ∈ Dom(S).
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Since H = T and by definition of T , it follows that

P H−1(Su) = T H−1(Su) = H H−1(Su) = Su.

Hence, since u ∈ Dom(S), by definition of S we get P w = P u − Su = Su − Su = 0.
Since w ∈ Dom(S), it follows that w ∈ L2(M) ∩ L2

loc(M) and V w ∈ L1
loc(M). Moreover, P w = 0. We now use Proposition 5

with λ = 0, f (x) ≡ 0, c(x) = β , where β is a positive constant, and h(x) ≡ 0. The estimate (9) gives us w = 0. This shows
that u = H−1(Su). Hence, u ∈ Dom(H), and the theorem is proven. �
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