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In this paper we prove an abstract version of Pietsch’s domination theorem which unify
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Pietsch-type dominations are totally free from algebraic conditions, such as linearity,
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1. Introduction

Pietsch’s domination theorem (PDT) is a cornerstone in the theory of absolutely summing linear operators. In this paper
we prove an abstract version of PDT which has a twofold purpose.

On the one hand, as expected, a Pietsch-type domination theorem turned out to be a basic result in the several (linear
and non-linear) theories which generalize and extend the linear theory of absolutely summing operators. The canoni-
cal approach is as follows: (i) a class of (linear or non-linear) mappings between (normed, metric) spaces is defined,
(ii) a Pietsch-type domination theorem is proved, (iii) when restricted to the class of linear operators the class defined
in (i) is proved to coincide with the ideal of absolutely p-summing linear operators and the theorem proved in (ii) recovers
the classical PDT, (iv) the new class is studied on its own and often compared with other related classes. Our point is that
these several PDTs are always proved using the same argument. In Section 2 we construct an abstract setting where this
canonical argument yields a unified version of PDT which comprises, as we show in Section 3, all the known (as far as we
know) domination theorems as particular cases.

The idea behind this first purpose is to avoid the repetition of the canonical argument whenever a new class is intro-
duced. Among the results that are unified by our main theorem (Theorem 2.2) we mention: the classic PDT for absolutely
summing linear operators [3, Theorem 2.12], the Farmer and Johnson domination theorem for Lipschitz summing mappings
between metric spaces [5, Theorem 1(2)], the Pietsch and Geiss domination theorem for dominated multilinear mappings
([12, Theorem 14], [6, Satz 3.2.3]), the Dimant domination theorem for strongly summing multilinear mappings and homoge-
neous polynomials [4, Proposition 1.2(ii) and Proposition 3.2(ii)], the domination theorem for α-subhomogeneous mappings
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[1, Theorem 2.4], the Martínez-Giménez and Sánchez-Pérez domination theorem for (D, p)-summing operators [7, Theo-
rem 3.11], etc.

On the other hand, we note that several of the known domination theorems rely on certain algebraic conditions of the
mappings in question, such as linear operators, multilinear mappings, homogeneous polynomials, etc. Our second purpose
is to show that the Pietsch-type domination does not depend on any algebraic condition. In fact, in Section 4 we introduce
the notion of absolutely summing arbitrary mapping just mimicking the linear definition and we apply our unified PDT
proved in Section 2 to show that, even for arbitrary mappings, being absolutely summing is equivalent to satisfy a PDT. In
summary, this second purpose is to show that Pietsch-type dominations are algebra-free.

2. The main result

Let X , Y and E be (arbitrary) sets, H be a family of mappings from X to Y , G be a Banach space and K be a compact
Hausdorff topological space. Let

R : K × E × G → [0,∞) and S : H × E × G → [0,∞)

be mappings so that:

• For each f ∈ H, there is x0 ∈ E such that

R(ϕ, x0,b) = S( f , x0,b) = 0

for every ϕ ∈ K and b ∈ G .
• The mapping

Rx,b : K → [0,∞), Rx,b(ϕ) = R(ϕ, x,b)

is continuous for every x ∈ E and b ∈ G .
• It holds that

R(ϕ, x, ηb) � ηR(ϕ, x,b) and ηS( f , x,b) � S( f , x, ηb)

for every ϕ ∈ K , x ∈ E , 0 � η � 1, b ∈ G and f ∈ H.

Definition 2.1. Let R and S be as above and 0 < p < ∞. A mapping f ∈ H is said to be R–S-abstract p-summing is there is
a constant C1 > 0 so that(

m∑
j=1

S( f , x j,b j)
p

) 1
p

� C1 sup
ϕ∈K

(
m∑

j=1

R(ϕ, x j,b j)
p

) 1
p

, (2.1)

for all x1, . . . , xm ∈ E , b1, . . . ,bm ∈ G and m ∈ N. The infimum of such constants C1 is denoted by πR S,p( f ).

It is not difficult to show that the infimum of the constants above is attained, i.e., πR S,p( f ) satisfies (2.1).

Theorem 2.2. Let R and S be as above, 0 < p < ∞ and f ∈ H. Then f is R–S-abstract p-summing if and only if there is a constant
C > 0 and a regular Borel probability measure μ on K such that

S( f , x,b) � C

( ∫
K

R(ϕ, x,b)p dμ(ϕ)

) 1
p

(2.2)

for all x ∈ E and b ∈ G. Moreover, the infimum of such constants C equals πR S,p( f ).

Proof. Assume the existence of such a measure μ. Then, given m ∈ N, x1, . . . , xm ∈ E and b1, . . . ,bm ∈ G ,
m∑

j=1

S( f , x j,b j)
p � C p

m∑
j=1

∫
K

R(ϕ, x j,b j)
p dμ(ϕ)

= C p
∫
K

m∑
j=1

R(ϕ, x j,b j)
p dμ(ϕ)

� C p sup
ϕ∈K

m∑
j=1

R(ϕ, x j,b j)
p .

Hence f is R–S-abstract p-summing with πR S,p( f ) � C .
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Conversely, suppose that f : E → F is R–S-abstract p-summing. Consider the Banach space C(K ) of continuous real-
valued functions on K . For every finite set M = {(x1,b1), . . . , (xk,bk)} ⊂ E × G , let

ΨM : K → R, ΨM(ϕ) =
∑

(x,b)∈M

(
S( f , x,b)p − πR S,p( f )p R(ϕ, x,b)p)

.

It is convenient to regard M as a finite sequence of elements of E × G rather than a finite set (that is, repetitions are
allowed). Since the functions Rx,b : K → [0,∞), Rx,b(ϕ) = R(ϕ, x,b), are continuous, it is plain that ΨM ∈ C(K ).

Let G be the set of all such ΨM and F be its convex hull. Let us show that for every Ψ ∈ F there is ϕΨ ∈ K such that
Ψ (ϕΨ ) � 0: given Ψ ∈ F , there are k ∈ N, λ1, . . . , λk ∈ [0,1], ∑k

j=1 λ j = 1, and ΨM1 , . . . ,ΨMk ∈ G so that Ψ = ∑k
j=1 λ jΨM j .

Define

MΨ =
k⋃

j=1

{(
x, λ

1
p

j b
); (x,b) ∈ M j

}
and choose ϕΨ ∈ K so that

sup
ϕ∈K

∑
(x,b)∈MΨ

R(ϕ, x,b)p =
∑

(x,b)∈MΨ

R(ϕΨ , x,b)p .

Notice that such a ϕΨ exists since K is compact and Rx,b is continuous. Then

Ψ (ϕΨ ) =
k∑

j=1

λ jΨM j (ϕΨ )

=
k∑

j=1

λ j

∑
(x,b)∈M j

(
S( f , x,b)p − πR S,p( f )p R(ϕΨ , x,b)p)

�
k∑

j=1

∑
(x,b)∈M j

((
S
(

f , x, λ
1
p

j b
))p − πR S,p( f )p R

(
ϕΨ , x, λ

1
p

j b
)p)

(1)=
∑

(x,w)∈MΨ

(
S( f , x, w)p − πR S,p( f )p R(ϕΨ , x, w)p)

= ΨMΨ (ϕΨ ).

We have been considering finite sequences instead of finite sets precisely for equality (1) to hold true. Using (2.1) we obtain
ΨMΨ (ϕΨ ) � 0 and therefore

Ψ (ϕΨ ) � 0. (2.3)

Let

P = {
f ∈ C(K ); f (ϕ) > 0 for all ϕ ∈ K

}
.

It is clear that P is non-void (every constant positive map belongs to P ), open and convex. From the definition of P
and (2.3) it follows that P ∩ F = ∅. So, by Hahn–Banach theorem there are μ1 ∈ C(K )∗ and L > 0 such that

μ1(g) � L < μ1(h) (2.4)

for all g ∈ F and h ∈ P .
If x0 ∈ E is such that R(ϕ, x0,b) = S( f , x0,b) = 0 for every ϕ ∈ K and b ∈ G , then

0 = S( f , x0,b)p − πR S,p( f )p R(ϕ, x0,b)p = Ψ{(x0,b)} ∈ F .

Hence 0 = μ1(0) � L. As the constant functions 1
k belong to P for all k ∈ N, it follows from (2.4) that 0 � L < μ1(

1
k ). Making

k → +∞ we get L = 0. Therefore (2.4) becomes

μ1(g) � 0 < μ1(h) (2.5)

for all g ∈ F and all h ∈ P .

Using the continuity of μ1, we conclude that μ1(h) � 0 whenever h � 0 and then we can consider μ1 a positive regular
Borel measure on K .
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Defining

μ := 1

μ1(K )
μ1

it is plain that μ is a regular probability measure on K , and from (2.5) we get∫
K

g(ϕ)dμ(ϕ) � 0

for all g ∈ F . In particular, for each x,b we have Ψ{(x,b)} ∈ F , and∫
K

Ψ{(x,b)}(ϕ)dμ(ϕ) � 0.

So ∫
K

(
S( f , x,b)p − πR S,p( f )p R(ϕ, x,b)p)

dμ(ϕ) � 0,

and then

S( f , x,b)p � πR S,p( f )p
∫
K

R(ϕ, x,b)p dμ(ϕ).

Taking p-roots the result follows. �
3. Recovering the known domination theorems

In this section we show how Theorem 2.2 can be easily invoked in order to obtain, as simple corollaries, all known
domination theorems (to the best of our knowledge) that have appeared in the several different generalizations of the
concept of absolutely p-summing linear operator. Given one of such classes of absolutely summing mappings, it is easy to
see that for convenient choices of X , Y , E , G , H, K , R and S , for a mapping to belong to the class is equivalent to be R–S
abstract summing mapping and that, in this case, the corresponding domination theorem that holds for this class is nothing
but Theorem 2.2. Whenever X is a Banach space, B X ′ denotes the closed unit ball of the dual X ′ of X endowed with the
weak* topology.

3.1. Pietsch’s domination theorem for absolutely p-summing linear operators

Let X and Y be Banach spaces. A linear operator T : X → Y is absolutely p-summing if (T (xn))∞n=1 is absolutely p-
summable in Y whenever (xn)∞n=1 is weakly p-summable in X . Consider E = X , x0 = 0, K = B X ′ and G = K (the scalar
field). Take H = L(X; Y ) the space of all linear operators from X into Y and define R and S by:

R : B X ′ × X × K → [0,∞), R(ϕ, x, λ) = |λ|∣∣ϕ(x)
∣∣,

S : L(X; Y ) × X × K → [0,∞), S(T , x, λ) = |λ|∥∥T (x)
∥∥.

With R and S so defined and any 0 < p < ∞, a linear operator T : X → Y is R–S abstract p-summing if and only if it is ab-
solutely p-summing and Theorem 2.2 becomes the classical and well-known Pietsch domination theorem [3, Theorem 2.12].

3.2. The domination theorem for Lipschitz p-summing mappings

Let X and Y be metric spaces. According to Farmer and Johnson [5], a mapping T : X → Y is Lipschitz p-summing if
there is a constant C such that, for all natural n, positive real numbers a1, . . . ,an and x1, . . . , xn , y1, . . . , yn ∈ X ,

n∑
i=1

aidY
(
T (xi), T (yi)

)p � C sup
f ∈B X#

n∑
i=1

ai
∣∣ f (xi) − f (yi)

∣∣p
,

where dY is the metric on Y and B X# is the unit ball of the Lipschitz dual X# of X , which is the space of all real valued
Lipschitz functions on X . Then T is Lipschitz p-summing if and only if it is R–S abstract p-summing where E = X × X × R,
x0 = (x, x,0) (where x is any point in X ), G = R, K = B X# , which is a compact Hausdorff space in the topology of pointwise
convergence on X , H is the set of all mappings from X to Y and R and S are defined as follows:
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R : B X# × (X × X × R) × R → [0,∞), R
(

f , (x, y,a), λ
) = |a|1/p|λ|∣∣ f (x) − f (y)

∣∣,
S : H × (X × X × R) × R → [0,∞), S

(
T , (x, y,a), λ

) = |a|1/p|λ|dY
(
T (x), T (y)

)
.

In this context Theorem 2.2 coincides with the domination theorem for Lipschitz p-summing mappings [5, Theo-
rem 1(2)].

3.3. The domination theorem for dominated multilinear mappings and polynomials

Dominated multilinear mappings were introduced by Pietsch [12] and dominated polynomials by Matos [8]. Let
X1, . . . , Xn , Y be Banach spaces. A continuous n-linear mapping T : X1 × · · · × Xn → Y is p-dominated if (T (x1

j , . . . , xn
j ))

∞
j=1

is p
n -summable in Y whenever (xk

j)
∞
j=1 is weakly p-summable in Xk , k = 1, . . . ,n. Consider X = E = X1 × · · · × Xn ,

H = L(n X1, . . . , Xn; Y ) the space of all n-linear mappings from X1 × · · · × Xn to Y , x0 = (0, . . . ,0), K = B X ′
1

× · · · × B X ′
n
,

G = K and R and S defined by:

R : (B X ′
1
× · · · × B X ′

n
) × (X1 × · · · × Xn) × K → [0,∞),

R
(
(ϕ1, . . . ,ϕn), (x1, . . . , xn), λ

) = |λ|∣∣ϕ1(x1) + · · · + ϕn(xn)
∣∣,

S : L(n X1, . . . , Xn; Y ) × (X1 × · · · × Xn) × K → [0,∞),

S
(
T , (x1, . . . , xn), λ

) = |λ|∥∥T (x1, . . . , xn)
∥∥1/n

.

Then, by [1, Theorem 3.2, (d) ⇔ ( f )], an n-linear mapping T : X1 × · · · × Xn → Y is p-dominated if and only if it
is R–S abstract p-summing. Moreover, in this setting Theorem 2.2 recovers the domination as it appears in [1, Theo-
rem 3.2(D)]. In this same reference one can learn how the latter domination theorem leads to the standard domination
theorem for dominated multilinear mappings that first appeared in [12, Theorem 14] (a direct proof can be found in
[6, Satz 3.2.3]).

The polynomial case is easier. Let X and Y be Banach spaces. A continuous n-homogeneous polynomial P : X → Y is
p-dominated if its associated symmetric n-linear mapping is p-dominated, or, equivalently, if there is a constant C such
that (

k∑
j=1

∥∥P (x j)
∥∥ p

n

) 1
p

� C sup
ϕ∈B X ′

(
k∑

j=1

∣∣ϕ(x j)
∣∣p

) 1
p

,

for every natural k and vectors x1, . . . , xk ∈ X . Then P is p-dominated if and only if it is R–S abstract p-summing, where
E = X , H is the space of all n-homogeneous polynomials from X to Y , K = B X ′ , x0 = 0, G = K and R and S are defined by

R(ϕ, x, λ) = |λ|∣∣ϕ(x)
∣∣, S(Q , x, λ) = |λ|∥∥Q (x)

∥∥ 1
n .

In this case, Theorem 2.2 recovers the standard domination theorem for dominated polynomials [8, Proposition 3.1].

3.4. The domination theorem for strongly p-summing multilinear mappings and homogeneous polynomials

Strongly p-summing mappings were introduced by Dimant [4]. Let X1, . . . , Xn , Y be Banach spaces. A continuous n-linear
mapping T : X1 × · · · × Xn → Y is strongly p-summing if there is a constant C such that

(
k∑

j=1

∥∥T
(
x1

j , . . . , xn
j

)∥∥p

) 1
p

� C sup
A∈B L(X1,...,Xn)

(
k∑

j=1

∣∣A
(
x1

j , . . . , xn
j

)∣∣p

) 1
p

,

for every natural k and vectors xm
j ∈ Xm , j = 1, . . . ,k, m = 1, . . . ,n, where L(X1, . . . , Xn) is the space of all continuous

n-linear forms on X1 × · · · × Xn . Then T is strongly p-summing if and only if it is R–S abstract p-summing considering
X = E = X1 × · · · × Xn , H = L(n X1, . . . , Xn; Y ) the space of all n-linear mappings from X1 × · · · × Xn to Y , x0 = (0, . . . ,0),
K = B(X1⊗̂π ···⊗̂π Xn)′ , G = K and R and S defined by:

R : B(X1⊗̂π ···⊗̂π Xn)′ × (X1 × · · · × Xn) × K → [0,∞),

R
(
ϕ, (x1, . . . , xn), λ

) = |λ|∣∣ϕ(x1 ⊗ · · · ⊗ xn)
∣∣,

S : L(n X1, . . . , Xn; Y ) × (X1 × · · · × Xn) × K → [0,∞),

S
(
T , (x1, . . . , xn), λ

) = |λ|∥∥T (x1, . . . , xn)
∥∥.

In that case, Theorem 2.2 recovers the corresponding domination theorem [4, Proposition 1.2(ii)].
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On the other hand, a continuous n-homogeneous polynomial P : X → Y is strongly p-summing if there is a constant C
such that(

k∑
j=1

∥∥P (x j)
∥∥p

) 1
p

� C sup
Q ∈B P (n X)

(
k∑

j=1

∣∣Q (x j)
∣∣p

) 1
p

,

for every natural k and vectors x1, . . . , xk ∈ X , where P (n X) is the space of all continuous scalar-valued n-homogeneous
polynomials on X . These polynomials are also particular cases of R–S abstract p-summing mappings. Just take E = X ,
H = P (n X; Y ) the space of all n-homogeneous polynomials from X to Y , x0 = 0, K = B(⊗̂s

n,π X)′ = B P (n X) , G = K and R and
S defined by:

R : B P (n X) × X × K → [0,∞),

R(Q , x, λ) = |λ|∣∣Q (x)
∣∣,

S : P (n X; Y ) × X × K → [0,∞),

S(P , x, λ) = |λ|∥∥P (x)
∥∥.

As expected, Theorem 2.2 also recovers the corresponding domination theorem for strongly p-summing n-homogeneous
polynomials [4, Theorem 3.2(ii)].

3.5. The domination theorem for p-semi-integral multilinear mappings

The class of p-semi-integral multilinear mappings was introduced in [2,11]. Let X1, . . . , Xn , Y be Banach spaces. A con-
tinuous n-linear mapping T : X1 × · · · × Xn → Y is p-semi-integral if there is a constant C such that(

k∑
j=1

∥∥T
(
x1

j , . . . , xn
j

)∥∥p

) 1
p

� C sup
ϕi∈B X ′

i
, i=1,...,n

(
k∑

j=1

∣∣ϕ1
(
x1

j

) · · ·ϕn
(
xn

j

)∣∣p

) 1
p

,

for every natural k and vectors xm
j ∈ Xm , j = 1, . . . ,k, m = 1, . . . ,n. Then T is p-semi-integral if and only if it is R–S abstract

p-summing considering E = X1 × · · · × Xn , H = L(n X1, . . . , Xn; Y ) the space of all n-linear mappings from X1 × · · · × Xn
to Y , x0 = (0, . . . ,0), K = B X ′

1
× · · · × B X ′

n
, G = K and R and S defined by:

R : (B X ′
1
× · · · × B X ′

n
) × (X1 × · · · × Xn) × K → [0,∞),

R
(
(ϕ1, . . . ,ϕn), (x1, . . . , xn), λ

) = |λ|∣∣ϕ1(x1) · · ·ϕn(xn)
∣∣,

S : L(n X1, . . . , Xn; Y ) × (X1 × · · · × Xn) × K → [0,∞),

S
(
T , (x1, . . . , xn), λ

) = |λ|∥∥T (x1, . . . , xn)
∥∥.

In that case, Theorem 2.2 recovers the corresponding domination theorem [2, Theorem 1].

3.6. The domination theorem for τ (p)-summing multilinear mappings

The class of τ (p)-summing multilinear mappings was introduced by X. Mujica [10]. Let X1, . . . , Xn , Y be Banach spaces.
A continuous n-linear mapping T : X1 × · · · × Xn → Y is τ (p)-summing if there is a constant C such that(

k∑
j=1

∣∣b j
(
T
(
x1

j , . . . , xn
j

))∣∣p

) 1
p

� C sup
ϕi∈B X ′

i
, i=1,...,n, y∈BY

(
k∑

j=1

∣∣ϕ1
(
x1

j

) · · ·ϕ j
(
xn

j

)
b j(y)

∣∣p

) 1
p

,

for every natural k, functionals b1, . . . ,bk ∈ Y ′ and vectors xm
j ∈ Xm , j = 1, . . . ,k, m = 1, . . . ,n. Then T is τ (p)-summing if

and only if it is R–S abstract p-summing considering E = X1 × · · · × Xn , H = L(n X1, . . . , Xn; Y ) the space of all n-linear
mappings from X1 × · · · × Xn to Y , x0 = (0, . . . ,0), K = B X ′

1
× · · · × B X ′

n
× BY ′′ , G = Y ′ and R and S defined by:

R : (B X ′
1
× · · · × B X ′

n
× BY ′′ ) × (X1 × · · · × Xn) × Y ′ → [0,∞),

R
(
(ϕ1, . . . ,ϕn,ϕ), (x1, . . . , xn),b

) = ∣∣ϕ1(x1) · · ·ϕn(xn)
∣∣∣∣ϕ(b)

∣∣,
S : L(n X1, . . . , Xn; Y ) × (X1 × · · · × Xn) × Y ′ → [0,∞),

S
(
T , (x1, . . . , xn),b

) = ∣∣〈b, T (x1, . . . , xn)
〉∣∣.

In that case, Theorem 2.2 recovers the corresponding domination theorem [10, Theorem 3.5].
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3.7. The domination theorem for subhomogeneous mappings

The class of α-subhomogeneous (p,q)-summing mappings was introduced in [1]. Let X and Y be Banach spaces. A map-
ping f : X → Y is α-subhomogeneous (p,q)-summing, α > 0, if ‖ f (λx)‖ � λα‖ f (x)‖ for every x ∈ X and 0 < λ < 1, and
( f (xn))∞n=1 is absolutely p-summable in Y whenever (xn)∞n=1 is weakly q-summable in X . Then f is α-subhomogeneous
(

p
α , p)-summing if and only if it is R–S abstract p-summing considering E = X ,

H = {
f : E → Y ; f is α-subhomogeneous and f (0) = 0

}
,

x0 = 0, K = B X ′ , G = K and R and S defined by:

R : B X ′ × E × K → [0,∞),

R(ϕ, x, η) = |η|∣∣ϕ(x)
∣∣,

S : H × E × K → [0,∞),

S( f , x, η) = |η|∥∥ f (x)
∥∥1/α

.

In that case, Theorem 2.2 recovers the corresponding domination theorem [1, Theorem 2.4].

3.8. The domination theorem for (D, p)-summing linear operators

The class of (D, p)-summing linear operators was introduced by F. Martínez-Giménez and E.A. Sánchez-Pérez [7]. Let Y
be a Banach space and X be a Banach function space compatible with the countably additive vector measure λ of the range
dual pair D = (λ,λ′). A linear operator T : X → Y is (D, p)-summing if there is a constant C such that

(
k∑

j=1

∥∥T ( f j)
∥∥p

) 1
p

� C sup
g∈BL1(λ′)

(
k∑

j=1

∣∣∣∣
〈 ∫

f i dλ,

∫
g dλ′

〉∣∣∣∣
p
) 1

p

,

for every natural k and functions f1, . . . , fk ∈ X . Then T is (D, p)-summing if and only if it is R–S abstract p-summing
considering E = X ,

H = L(E; Y )

the space of all linear mappings from E to Y , x0 = 0, K = BL1(λ′) , G = R and R and S defined by:

R : BL1(λ′) × E × R → [0,∞),

R(φ, f , η) = |η|∣∣( f , φ)
∣∣,

S : H × E × R → [0,∞),

S(T , f , η) = |η|∥∥T ( f )
∥∥.

In that case, Theorem 2.2 recovers the corresponding domination theorem [7, Theorem 3.11].

4. Absolutely summing arbitrary mappings

According to the usual definition of absolutely summing linear operators by means of inequalities, the following defini-
tion is quite natural:

Definition 4.1. Let E and F be Banach spaces. An arbitrary mapping f : E → F is absolutely p-summing at a ∈ E if there is a
C � 0 so that

m∑
j=1

∥∥ f (a + x j) − f (a)
∥∥p � C sup

ϕ∈B E′

m∑
j=1

∣∣ϕ(x j)
∣∣p

for every natural number m and every x1, . . . , xm ∈ E .

As [9, Theorem 3.5] makes clear, the above definition is actually an adaptation of [9, Definition 3.1].
We finish the paper applying Theorem 2.2 once more to show that, even in the absence of algebraic conditions, absolutely

p-summing mappings are exactly those which enjoy a Pietsch-type domination:
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Theorem 4.2. Let E and F be Banach spaces. An arbitrary mapping f : E → F is absolutely p-summing at a ∈ E if and only if there is
a constant C > 0 and a regular Borel probability measure μ on B E ′ such that

∥∥ f (a + x) − f (a)
∥∥ � C

( ∫
B E′

∣∣ϕ(x)
∣∣p

dμ(ϕ)

) 1
p

for all x ∈ E.

Proof. Using a clever argument from [5, p. 2] (also credited to M. Mendel and G. Schechtman), applied by Farmer and
Johnson in the context of Lipschitz summing mappings, one can see that f is absolutely p-summing at a if and only if there
is a C � 0 so that

m∑
j=1

|b j|
∥∥ f (a + x j) − f (a)

∥∥p � C sup
ϕ∈B E′

m∑
j=1

|b j|
∣∣ϕ(x j)

∣∣p
(4.1)

for every m ∈ N, x1, . . . , xm ∈ E and scalars b1, . . . ,bm. The idea of the argument is the following: by approximation, it is
enough to deal with rationals bi and, by cleaning denominators, we can resume to integers bi . Then, for bi (integer) and
x1, . . . , xm , we consider the new collection of vectors in which each xi is repeated bi times.

Putting X = E , Y = F ,

H = { f : E → F },
x0 = 0, K = B E ′ , G = K and R and S defined by:

R : B E ′ × E × K → [0,∞),

R(ϕ, x, λ) = |λ|∣∣ϕ(x)
∣∣,

S : H × E × K → [0,∞),

S( f , x, λ) = |λ|∥∥ f (a + x) − f (a)
∥∥,

in view of characterization (4.1) it follows that f is absolutely p-summing if and only if f is R–S abstract p-summing. So,
Theorem 2.2 completes the proof. �
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