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Let L = −� + |x|2 be a Hermite operator, where � is the Laplacian on R
d . In this paper,

we first characterize the Hardy spaces H1
L (R

d) associated with L by a new version of area
integral. Then, we use it to prove the boundedness of Riesz transforms R L

j , j = 1,2, . . .

for L on H1
L (R

d). Moreover, we characterize the Hardy space H1
L (R

d) by R L
j . This gives a

negative answer to a question asked by Thangavelu.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Hermite polynomial on the real line is defined by

Hk(x) = (−1)k dk

dxk

(
e−x2)

ex2
, k = 0,1,2, . . . .

Then, the Hermite function is defined by

hk(x) = (
π1/22kk!)−1/2

Hk(x)exp
(−x2/2

)
, k = 0,1, . . . .

In the d-dimensional Euclidean space R
d , the Hermite functions are defined as follows. For any multi-index α and x ∈ R

d ,
we define

hα(x) =
d∏

j=1

hα j (x j),

where α = (α1, . . . ,αd), αi ∈ {0,1, . . .}, x = (x1, . . . , xd). The system {hα} is a complete orthonormal basis for L2(Rd). They
are eigenfunctions of the d-dimensional Hermite operator

L = −� + |x|2.
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Moreover, we have

Lhα = (
2|α| + d

)
hα,

where |α| = α1 + · · · + αd . The operator L is positive and symmetric in L2(Rd). For more about Hermite functions one can
refer to [13].

The heat semigroup {T L
t }t�0 associated to L is defined by

T L
t f = e−tL f =

∞∑
n=0

e−t(2n+d)Pn f ,

where f ∈ L2(Rd) and

Pn f =
∑

|α|=n

< f , hα > hα.

It is well known that this semigroup is a strongly continuous semigroup of contractions on L2(Rd). The Poisson semi-
group {P L

t }t�0 associated to L is defined by

P L
t f = e−tL1/2

f =
∞∑

n=0

e−t(2n+d)1/2 Pn f , f ∈ L2(
R

d).
The Poisson semigroup is also a strongly continuous semigroup of contractions on L2(Rd). By the principle of subordination,
we have

P L
t f (x) = t√

4π

∞∫
0

s−3/2 exp
(−t2/4s

)
T L

s f (x)ds. (1)

Since

L = −1

2

[
(∇ + x) · (∇ − x) + (∇ − x) · (∇ + x)

]
,

we can define the following version of Riesz transforms RL
j , j = 1,2, . . . ,d

RL
j =

(
∂

∂x j
+ x j

)
L−1/2.

The definition was first suggested by Thangavelu in [12]. If f ∈ L2(Rd), then

RL
j f =

∑
α

(
2α j

2|α| + d

)1/2

〈 f ,hα〉hα−e j =
∞∑

n=0

∑
|α|=n

(
2α j

2|α| + d

)1/2

〈 f ,hα〉hα−e j , (2)

where e j are the coordinate vectors in R
d .

The kernel RL
j (x, y) of RL

j is defined by

RL
j (x, y) = 1

Γ (1/2)

(
∂

∂x j
+ x j

) ∞∫
0

Gt(x, y)t−1/2 dt = 1

Γ (1/2)

∞∫
0

(
∂

∂x j
+ x j

)
Gt(x, y)t−1/2 dt, (3)

where

G L
t (x, y) = (2π sinh 2t)−d/2 exp

(
−1

2
|x − y|2 coth 2t − x · y tanh t

)
.

Stempak and Torrea proved that (cf. [11])

Proposition 1. The Riesz operators RL
j , initially defined on L2(Rd) by (2), are Calderón–Zygmund operators associated with the kernels

RL
j (x, y), given by (3), which satisfy

∣∣RL
j (x, y)

∣∣ � C
d
,
|x − y|
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and ∣∣∇x RL
j (x, y)

∣∣ + ∣∣∇y RL
j (x, y)

∣∣ � C

|x − y|d+1
.

In [13], the author proves that the Riesz transforms RL
j are bounded on h1(Rd), where h1(Rd) is the local Hardy space

defined by Goldberg in [7]. Thangavelu also asks whether we can characterize h1(Rd) by RL
j , i.e., whether the equality

h1(
R

d) = {
f ∈ L1(

R
d): RL

j f ∈ L1(
R

d), j = 1,2, . . . ,n
}

is true.
In this paper, we will consider the boundedness of RL

j on Hardy spaces H1
L (R

d), d � 3, where H1
L (R

d) is the Hardy space

associated to L (cf. [4]). Moreover, we will characterize H1
L (R

d) by RL
j . This gives a negative answer to the question asked

by Thangavelu.
Throughout the article, we will use A and C to denote the positive constants, which are independent of main parameters

and may be different at each occurrence. By B1 ∼ B2, we mean that there exists a constant C > 1 such that 1
C � B1

B2
� C .

We define the Hardy space H1
L (R

d), d � 3, associated to L as follows

H1
L

(
R

d) = {
f ∈ L1(

R
d): ML f ∈ L1(

R
d)},

where ML f (x) = supt>0 |T L
t f (x)|.

Let

ρ(x) = 1

1 + |x| , (4)

and B(x, r) be a ball in R
d with the center at x and radius r, we say a function a(x) is an H1,q

L -atom associate to a ball
B(x0, r) for the space H1

L (R
d), if

(1) supp a ⊂ B(x0, r),
(2) ‖a‖L∞ � |B(x0, r)|−1,
(3) if r < ρ(x0), then

∫
a(x)dx = 0.

The atomic quasi-norm in H1
L (R

d) is defined by

‖ f ‖L-atom = inf
{∑

|c j|
}
,

where the infimum is taken over all decompositions f = ∑
c ja j , where a j are H1

L -atoms.
In [4], the authors proved the following result.

Proposition 2. The norms ‖ f ‖H1
L

and ‖ f ‖L-atom are equivalent, that is, there exists a constant C > 0 such that

C−1‖ f ‖H1
L
� ‖ f ‖L-atom � C‖ f ‖H1

L
.

We define the following Lusin area integral

AL f (x) =
( ∞∫

0

∫
|x−y|<t

∣∣DL
t f (y)

∣∣2 dy dt

td+1

)1/2

,

where DL
t f (x) = t(∂t P L

t f )(x).
Then, we can prove (cf. [8])

Proposition 3. A function f ∈ H1
L (R

d) if and only if its area integral AL f ∈ L1(Rd) and f ∈ L1(Rd). Moreover,

‖ f ‖H1
L
∼ ‖AL f ‖L1 + ‖ f ‖L1 .



562 J. Huang / J. Math. Anal. Appl. 385 (2012) 559–571
In this paper, we will consider a general version of Lusin area integral

SL f (x) =
( ∞∫

0

∫
|x−y|<t

t2
∣∣∇L P L

t f (y)
∣∣2 dy dt

td+1

)1/2

,

where ∇L = (∂t , δ1, . . . , δd) and δi = ∂
∂xi

+ xi , i = 1,2, . . . ,d.
The main results of this paper are the following theorems.

Theorem 1. A function f ∈ H1
L (R

d) if and only if its area integral SL f ∈ L1(Rd) and f ∈ L1(Rd). Moreover,

‖ f ‖H1
L
∼ ‖SL f ‖L1 + ‖ f ‖L1 .

Theorem 2. The operators RL
j are bounded on H1

L (R
d) for all j = 1,2, . . . ,d, i.e., there exists a constant C > 0 such that∥∥RL

j f
∥∥

H1
L
� C‖ f ‖H1

L
.

The paper is organized as follows. In Section 2, we give some basic facts about the heat-diffusion semigroup and the
Poisson semigroup associate to L. In Section 3, we prove Theorem 1. The proof of Theorem 2 will be given in Section 4.

2. Preliminaries

In this section, we give some basic facts about the heat-diffusion semigroup and the Poisson semigroup associate to L.
Let G L

t (x, y) be the heat kernel of {T L
t }. Then by the Feynman–Kac formula, we get

G L
t (x, y) � Wt(x − y),

where

Wt(x) = (4πt)−d/2 exp
(−|x|2/(4t)

)
is the usual Gauss–Weierstrass kernel on R

d .
The proof of the following proposition can be found in [5].

Proposition 4. (a) For every N, there is a constant CN > 0 such that

0 � G L
t (x, y) � CNt− d

2 e−(5t)−1|x−y|2
(

1 +
√

t

ρ(x)
+

√
t

ρ(y)

)−N

. (5)

(b) There exist 0 < δ < 1 and C > 0 such that for every N > 0, there is a constant CN > 0 so that, for all |h| � √
t,

∣∣G L
t (x + h, y) − G L

t (x, y)
∣∣ � CN

( |h|√
t

)δ

t− d
2 e−At−1|x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

. (6)

Remark 1. By part (a) of Proposition 4, it is easy to see that we can replace the condition |h| � √
t by |h| � |x−y|

2 in part (b)
of Proposition 4.

By the subordination formula, we get

f (t, x) = t√
4π

∫
Rd

∞∫
0

G L
s (x, y)s−3/2e−t2/4s ds f (y)dy =

∫
Rd

P L
t (x, y) f (y)dy,

where

P L
t (x, y) = t√

4π

∞∫
0

G L
s (x, y)s−3/2e−t2/4s ds

is the Poisson kernel associated to L.
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By the subordination formula and Proposition 4, we can prove

Proposition 5. (a) For every N, there is a constant CN > 0 such that

0 � P L
t (x, y) � CN

t

(t2 + A|x − y|2)(d+1)/2

(
1 + t

ρ(x)
+ t

ρ(y)

)−N

. (7)

(b) Let 0 < δ < 1 and |h| < |x−y|
2 . Then for any N > 0, there exist constants C > 0, CN > 0, such that

∣∣P L
t (x + h, y) − P L

t (x, y)
∣∣ � CN

( |h|√
t

)δ t

(t2 + A|x − y|2)(d+1)/2

(
1 + t

ρ(x)
+ t

ρ(y)

)−N

. (8)

Let DL
t (x, y) = t∂t P L

t (x, y), by Proposition 5, we can prove

Proposition 6. Let DL
t (x, y) be the integral kernel of the operator DL

t . Then there exist constants C , 0 < δ′ < δ, such that for every N,
there is a constant CN , so that

(a) |DL
t (x, y)| � CN

t
(t2+C |x−y|2)(d+1)/2 (1 + t

ρ(x) + t
ρ(y)

)−N ;

(b) |DL
t (x + h, y) − DL

t (x, y)| � CN (
|h|
t )δ

′ t
(t2+C |x−y|2)(d+1)/2 (1 + t

ρ(x) + t
ρ(y)

)−N , for all |h| � t;

(c) | ∫
Rd DL

t (x, y)dy| � CN
(t/ρ(x))δ

′

(1+t/ρ(x))N .

We have the following property about ρ(x) (cf. [10, Lemma 1.4]).

Proposition 7. There exist C,k0 > 0 such that

1

C

(
1 + |x − y|

ρ(x)

)−k0

� ρ(y)

ρ(x)
� C

(
1 + |x − y|

ρ(x)

) k0
k0+1

.

In particular, ρ(y) ∼ ρ(x) if |x − y| < Cρ(x).

3. An area integral characterization of H 1
L(RRRd)

In this section, we give an area integral characterization of H1
L (R

d). We will divide it into several steps and our proof is
motivated by [1].

3.1. From Hardy spaces to maximal Hardy spaces

For f ∈ L1
loc(R

d) and |y|−d−1 f (y) ∈ L1(Rd), we define

f ∗
L (x) = sup

{(t,y)∈R+×Rd: |x−y|<t}

∣∣P L
t f (y)

∣∣.
If f ∈ L1(Rd) and f ∗

L ∈ L1(Rd). We will say f ∈ H1
max,L(R

d). Define

‖ f ‖H1
max,L(R

d) = ∥∥ f ∗
L

∥∥
L1(Rd)

.

Lemma 1. Let f be a locally integrable function on R
d, then we have

‖ f ‖H1
max,L

� C‖ f ‖H1
L
.

Proof. Let f ∈ H1
L (R

d). Then by Proposition 1, f can be decomposed into H1,∞
L -atoms. Let a(x) be an H1,∞

L -atom, we will
prove

‖a‖H1
max,L

� C, (9)

where C is a positive constant and independent of a.
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Assume supp a ⊂ B(y0, r). We will consider two cases.
Case 1: r < ρ(y0), a(x) satisfies the moment condition. Then, we can prove (9) in a standard fashion (cf. [1] or [6]).
Case 2: r � ρ(y0), a(x) doesn’t satisfy the moment condition. We have

P L
t a(x) =

∫
B

P L
t (x, y)a(y)dy

and ∫
Rd

∣∣a∗
L(x)

∣∣dx =
∫
B∗

∣∣a∗
L(x)

∣∣dx +
∫

(B∗)c

∣∣a∗
L(x)

∣∣dx = I1 + I2,

where B∗ = B(y0,2r). For I1, we have

I1 �
∣∣B∗∣∣ 1

2

(∫
Rd

∣∣M(a)(x)
∣∣2

dx

)1/2

� C |B| 1
2 |B|− 1

2 = C, (10)

where M is the Hardy–Littlewood maximal function.
For I2, we will first prove that

a∗
L(x) � C |B| 1

d |x − y0|−d−1 (11)

for any x such that |x − y0| > 2r. When |x − y0| > 2r, |x − y| < t and |y0 − z| < r, we have

t + |y − z| � t + |x − y0| − |x − y| − |y0 − z| � |x − y0| − r � |x − y0|
2

.

By Proposition 7, we know ρ(z) � Cr for any z ∈ B(y0, r). Therefore, by Proposition 5∣∣∣∣ ∫
B

P L
t (y, z)a(z)dz

∣∣∣∣ � C

∫
B

t

(t2 + A|y − z|2)(d+1)/2

(
ρ(z)

t

)∣∣a(z)
∣∣dz

� Cr

∫
B

1

(t + |y − z|)d+1

∣∣a(z)
∣∣dz

� C |B| 1
d |x − y0|−d−1. (12)

Taking supremum in {(y, t) ∈ R
d × (0,∞): |x − y| < t}, we get (11). Then

I2 =
∫

(B∗)c

∣∣a∗
L(x)

∣∣dx � C |B| 1
d

∫
(B∗)c

1

|x − y0|(d+1)
dx � C |B| 1

d |B|− 1
d = C .

This completes the proof of Lemma 1. �
3.2. From maximal functions to area integral functions

We first prove the following version of Caccioppoli inequality associated to L, which is very important for our proof
(cf. [9]).

Lemma 2. Assume u ∈ L2
loc(B((x0, t0),4r)) and is a weak solution of −�u + ∂2

t u + |x|2u = 0 in the ball B((x0, t0),4r), then we have∫
B((x0,t0),r)

(∣∣∂t u(x, t)
∣∣2 +

d∑
i=1

∣∣δiu(x, t)
∣∣2

)
dx dt � C

r2

∫
B((x0,t0),2r)

∣∣u(x, t)
∣∣2

dx dt.

Proof. Let η ∈ C∞
0 (B((x0, t0),2r)) and satisfy 0 � η � 1, η(y, t) = 1 for (y, t) ∈ B((x0, t0), r) and |∂tη|2 + ∑d

i=1 |∂xi η|2 � C
r2 .

By

∣∣∂t u(x, t)
∣∣2 +

d∑∣∣δiu(x, t)
∣∣2 � C

(∣∣∂t u(x, t)
∣∣2 +

d∑∣∣∂iu(x, t)
∣∣2 + |x|2∣∣u(x, t)

∣∣2

)
,

i=1 i=1
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we get ∫
B((x0,t0),r)

(∣∣∂t u(x, t)
∣∣2 +

d∑
i=1

∣∣δiu(x, t)
∣∣2

)
dx dt � C

∫
B((x0,t0),r)

(∣∣∂t u(x, t)
∣∣2 +

d∑
i=1

∣∣∂iu(x, t)
∣∣2 + |x|2∣∣u(x, t)

∣∣2

)
dx dt

= C

∫
B((x0,t0),r)

(∣∣∇u(x, t)
∣∣2 + |x|2∣∣u(x, t)

∣∣2)
dx dt,

where |∇u(x, t)|2 = |∇u(x, t)|2 + |∂t u(x, t)|2.
In the following, we will prove∫

B((x0,t0),r)

(∣∣∇u
∣∣2 + |x|2∣∣u(x, t)

∣∣2)
dx dt � C

r2

∫
B((x0,t0),2r)

∣∣u(x, t)
∣∣2

dx dt. (13)

For simplicity, we use B(2r) to denote B((x0, t0),2r).

0 =
∫

B(2r)

∇u(x, t) · ∇(
uη2)(x, t) + |x|2u

(
uη2)(x, t)dx dt

=
∫

B(2r)

∇u(x, t) · (η2∇u(x, t) + 2ηu∇η(x, t)
)

dx dt +
∫

B(2r)

|x|2∣∣u2η2
∣∣(x, t)dx dt

=
∫

B(2r)

η(x, t)∇u(x, t) · (η∇u(x, t) + 2u∇η(x, t)
)

dx dt +
∫

B(2r)

|x|2∣∣u2η2
∣∣(x, t)dx dt

=
∫

B(2r)

(∇(uη)(x, t) − u∇η(x, t)
) · (∇(uη)(x, t) − u∇η(x, t) + 2u∇η(x, t)

)
dx dt +

∫
B(2r)

|x|2∣∣u2η2
∣∣(x, t)dx dt

=
∫

B(2r)

∣∣∇(uη)(x, t)
∣∣2

dx dt −
∫

B(2r)

∣∣u(x, t)
∣∣2∣∣∇η(x, t)

∣∣2
dx dt +

∫
B(2r)

|x|2∣∣u2η2
∣∣(x, t)dx dt.

Therefore,∫
B(r)

∣∣∇u(x, t)
∣∣2 + |x|2∣∣u(x, t)

∣∣2
dx dt �

∫
B(2r)

∣∣∇(uη)(x, t)
∣∣2 + |x|2∣∣u2η2

∣∣(x, t)dx dt

=
∫

B(2r)

∣∣u(x, t)
∣∣2∣∣∇η(x, t)

∣∣2
dx dt � C

r2

∫
B(2r)

∣∣u(x, t)
∣∣2

dx dt.

This gives the proof of (13) and then Lemma 2 is proved. �
Let

SL,α f (x) =
( ∫

Γα(x)

t2
∣∣∇L P L

t f (y)
∣∣2 dy dt

td+1

)1/2

and

Sε,R
L,α f (x) =

( ∫
Γ

ε,R
α (x)

t2
∣∣∇L P L

t f (y)
∣∣2 dy dt

td+1

)1/2

,

where Γα(x) = {(y, t) ∈ R
d × R

+: |y − x| < αt} and Γ
ε,R
α (x) = {(y, t) ∈ R

d × (ε, R): |y − x| < αt}.
By Lemma 2, we can prove the following lemma (cf. [1]).

Lemma 3. If α < 1, then, for f ∈ L2(Rd), we have

Sε,R
L,α f (x) � Cα

(
1 + ∣∣ ln(R/ε)

∣∣)1/2
f ∗

L (x)

for some Cα > 0 that is independent of f .
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Let

S̃ε,R
α f (x) =

( 2∫
1

∫
Γ aε.aR

α/a (x)

t1−d
∣∣∇L P L

t f (y)
∣∣2

dy dt da

)1/2

.

It is easy to see that

S2ε,R
α/2 f (x) � S̃ε,R

α f (x) � Sε,2R
2α f (x). (14)

Moreover, we have

Lemma 4. There exists C > 0 such that, for all 0 < γ < 1, λ > 0, 0 < ε < R < ∞ and f ∈ H1
max,L ∩ L2(Rd), we have∣∣{x ∈ R

d: S̃ε,R
1/20 f (x) > 2λ, f ∗

L (x) � γ λ
}∣∣ � Cγ 2

∣∣{x ∈ R
d: S̃ε,R

1/2 f (x) > λ
}∣∣.

Proof. Let ε , R and λ be fixed. Then for f ∈ H p
max,L ∩ L2(Rd), define O = {x ∈ R

d: S̃ε,R
1/2 f (x) > λ}. We assume that O �= R

d ,
otherwise, there is nothing prove. Let O = ⋃

k Q k be a Whitney decomposition of O by dyadic cubes, so that, for all k,
2Q k ⊂ O ⊂ R

d , but 4Q k intersects O c . Since{
x ∈ R

d: S̃ε,R
1/20 f (x) > 2λ

} ⊂ {
x ∈ R

d: S̃ε,R
1/2 f (x) > λ

}
,

it is sufficient to prove∣∣{x ∈ Q k: S̃ε,R
1/20 f (x) > 2λ, f ∗

L (x) � γ λ
}∣∣ � Cγ 2|Q k|. (15)

Fixing k and let l be the side length of Q k . If x ∈ Q k , we have

S̃sup {10l,ε},R
1/20 f (x) � λ.

In fact, choose xk ∈ 4Q k and xk /∈ O . If |x − y| < t
20 and t � sup {10l, ε}, then we have

|xk − y| < |x − y| + |x − xk| < t

20
+ 4l <

t

2
.

Therefore,

S̃sup {10l,ε},R
1/20 f (x) � S̃sup {10l,ε},R

1/2 f (xk) � λ.

If ε � 10l, then {x ∈ Q k: S̃ε,R
1/20 f (x) > 2λ} = φ. So (15) holds.

If ε < 10l, then

S̃ε,R
1/20 f (x) � S̃ε,10l

1/20 f (x) + S̃10l,R
1/20 f (x).

Therefore, we only need to prove∣∣{x ∈ Q k: S̃ε,10l
1/20 f (x) > λ, f ∗

L (x) � γ λ
}∣∣ � Cγ 2|Q k|. (16)

For simplicity, we denote

g(x) = S̃ε,10l
1/20 f (x), and F = {

x ∈ R
d: f ∗

L (x) � γ λ
}
.

As (x, t) → ut(x) = P L
t f (x) is a continuous function, we know F is a closed subset of R

d . Then, (16) follows from∣∣{x ∈ Q k: g(x) > λ
}∣∣ � 1

λ2

∫
Q k

∣∣g(x)
∣∣2

dx,

and ∫
Q

∣∣g(x)
∣∣2

dx � Cγ 2λ2|Q k|. (17)
k
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If 5l � ε , then by Lemma 3, we obtain∫
Q k

∣∣g(x)
∣∣2

dx � C

∫
Q k

f ∗
L (x)2 dx � Cγ 2λ2|Q k|.

If ε < 5l, then

∫
Q k

∣∣g(x)
∣∣2

dx � C

2∫
1

∫
ξa

t
∣∣∇L P L

t f (y)
∣∣2

dy dt da,

where ξa = {(y, t) ∈ R
d × (aε,10al): aψ(y) < t} and ψ(y) = 20d(y, Q k ∩ F ).

It is obvious that ξa = {(y,at): (y, t) ∈ ξ1}. Let E = {y: (y, t) ∈ ξ1}. Then E is an open subset of R
d . For any connected

component G of E , we let La = {(y, t) ∈ ξa: y ∈ G}. It is sufficient to prove that

2∫
1

∫
La

t
∣∣∇Lut(y)

∣∣2
dy dt da � cλ2γ 2|G|. (18)

In fact, if we can prove (18), by summing over all the connected components of E , then we get

2∫
1

∫
ξa

t
∣∣∇Lut(y)

∣∣2
dy dt da � cλ2γ 2|E|.

If y ∈ E , then there is a point (y, t) ∈ ξ1. Therefore, there exists x ∈ Q k such that |x− y| < t
20 . As t < 10l, we have |x− y| < l

2 ,
hence E ⊂ 2Q k , which shows that (18) holds.

In the following, we prove (18). We fix a connected component G of E , consider a ∈ (1,2) and note that La is connected
and has a Lipschitz boundary. By

−(−� + |x|2)ut(x) + ∂2
t ut(x) = 0

in the weak sense on R
d × (0,∞), we get∣∣∇Lut(x)

∣∣2 = 1

2

(
�u2

t (x) + ∂2
t u2

t (x)
)
.

Therefore∣∣∇Lut(x)
∣∣2 � 1

2
�u2

t (x) + 1

2
∂2

t u2
t (x).

Then by the Green formula, we have∫
La

t
∣∣∇Lut(y)

∣∣2
dy dt � 1

2

∫
La

t�u2
t (y) + t∂2

t u2
t (y)dy dt

=
∫

∂La

tut(y)∇ut(y) · Na(y, t)dσa(y, t) + 1

2

∫
∂La

u2
t (y)Na(y, t) · (0, . . . ,0,1)dσa(y, t), (19)

where Na(y, t) is the unit normal vector outward La and dσa(y, t) is the surface measure over ∂La .
In the following, we show that y ∈ 2Q k ⊂ R

d and (y, t) ∈ ξ1 for (y, t) ∈ La . In fact, by the definition of La and note that
F is a closed subset of R

d , we know there exists x ∈ Q k ∩ F such that |x− y| � t
20a . Since t < 10la, we have |x− y| < l

2 , then

we prove that y ∈ 2Q k . By |x − y| � t
20a < t , we get (y, t) ∈ ξ1. Therefore, La remains far from the boundary of R

d × (0,∞),

so that we do not care about the boundary values of ut(y) and |ut(y)| � γ λ on La .
By (19), we can obtain∫

La

t
∣∣∇ut(y)

∣∣2
dy dt � C

∫
∂La

t
∣∣ut(y)

∣∣∣∣∇ut(y)
∣∣dσa(y, t) +

∫
∂La

∣∣ut(y)
∣∣2

dσa(y, t).
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Since |ut(y)| � γ λ on ∂La , we have

2∫
1

∫
∂La

∣∣ut(y)
∣∣2

dσa(y, t)da � γ 2λ2

2∫
1

∫
∂La

dσa(y, t)da.

We will show that

2∫
1

∫
∂La

dσa(y, t)da � C |G|. (20)

We have

2∫
1

∫
∂La

dσa(y, t)da � C

∫
G

dz ds

s
,

where G is the union of the sets ∂La for 1 < a < 2, then

G = {
(z, s): z ∈ G and ε < s < 2ε or ψ(z) < s < 2ψ(z) or 10l < s < 20l

}
.

Therefore

2∫
1

∫
∂La

dσa(y, t)da � C

∫
G

dz ds

s
� C |G|.

It remains to prove

2∫
1

∫
∂La

t
∣∣ut(y)

∣∣∣∣∇ut(y)
∣∣dσa(y, t)da � Cγ 2λ2|G|. (21)

Let G be the same set as above, then

2∫
1

∫
∂La

t
∣∣ut(y)

∣∣∣∣∇ut(y)
∣∣dσa(y, t)da � Cγ λ

∫
G

∣∣∇ut(y)
∣∣dy dt.

Let B j = B((x j, t j),
εt j
20 ) be a covering of G with bounded overlap. Noting that (x, t) ∈ B j implies t ∼ t j ∼ r j , the radius of B j .

Then by Hölder’s inequality and Caccioppoli’s inequality, we get∫
G

∣∣∇ut(y)
∣∣dy dt � C

∑
j

∫
B j

∣∣∇ut(y)
∣∣dy dt

� C
∑

j

|B j|1/2
(∫

B j

∣∣∇ut(y)
∣∣2

dy dt

)1/2

� C
∑

j

|B j|1/2r−1
j

( ∫
2B j

∣∣ut(y)
∣∣2

dy dt

)1/2

� Cγ λ
∑

j

|B j|r−1
j � Cγ λ

∫
G̃

dz ds

s
,

where G̃ is a set like G but slightly enlarged: it is contained in the set of points (z, s) with z ∈ G and ε/2 < s < 4ε or
ψ(z)/2 < s < 4ψ(z) or 5l < s < 40l.

This proves that (21) holds and Lemma 4 is proved. �
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The proof of the following lemma can be found in [2].

Lemma 5. For α,β > 0 and 0 < ε < R < ∞, we have∥∥Sε,R
α

∥∥
L1(Rd)

∼ ∥∥Sε,R
β

∥∥
L1(Rd)

,

where the implicit constants do not dependent on ε , R, f .

Now, we can prove

Lemma 6. Let f be a locally integrable function on R
d such that ‖̃Sε,R

1/20 f ‖L1(Rd) < ∞. Then we have

‖SL f ‖L1(Rd) � C
∥∥ f ∗

L

∥∥
L1(Rd)

.

Proof. Firstly, let f ∈ H1
max,L ∩ L2(Rd). By Lemma 4, we get∥∥̃Sε,R

1/20 f
∥∥

L1(Rd)
� Cγ −1

∥∥ f ∗
L

∥∥
L1(Rd)

+ Cγ 2
∥∥̃Sε,R

1/2 f
∥∥

L1(Rd)
. (22)

By Lemma 5 and (14), we know∥∥Sε,R
1 f

∥∥
L1(Rd)

� C
∥∥Sε,R

1/40 f
∥∥

L1(Rd)
� C

∥∥̃Sε,R
1/20 f

∥∥
L1(Rd)

.

Then by Lemma 3,∥∥̃Sε,R
1/2 f

∥∥
L1(Rd)

� C
∥∥Sε/2,2R

1 f
∥∥

L1(Rd)

� C
∥∥Sε/2,ε

1 f
∥∥

L1(Rd)
+ ∥∥Sε,R

1 f
∥∥

L1(Rd)
+ ∥∥S R,2R

1 f
∥∥

L1(Rd)

� C
∥∥Sε,R

1 f
∥∥

L1(Rd)
+ C

∥∥ f ∗
L

∥∥
L1(Rd)

� C
∥∥̃Sε,R

1/20 f
∥∥

L1(Rd)
+ C

∥∥ f ∗
L

∥∥
L1(Rd)

.

We can choose a proper γ in (22) to get Lemma 6.
Now we relax the assumption f ∈ L2(Rd). By f ∗

L ∈ L1(Rd), we get P L
s f ∈ L1(Rd) for any s > 0. Moreover, for any s > 0

and x, we have∣∣P L
s f (x)

∣∣ � f ∗
L (y), y ∈ B(x, s).

Therefore, by Proposition 5, we can get

P L
s f (x) � 1

|B(x, s)|
∫

B(x,s)

f ∗
L (y)dy � c

sd

∫
Rd

f ∗
L (y)dy.

This gives P L
s f ∈ L∞(Rd) for any s > 0. Then, we can get P L

s f ∈ L2(Rd) for any s > 0. The proof of the above gives

‖SL fs‖L1(Rd) � C
∥∥( f s)

∗
L

∥∥
L1(Rd)

,

where f s = P L
s f . As

( f s)
∗
L(x) = sup

|x−y|<t

∣∣P L
t fs(y)

∣∣ = sup
|x−y|<t

∣∣P L
t+s f (y)

∣∣ � sup
|x−y|<t+s

∣∣P L
t+s f (y)

∣∣ = f ∗
L (x),

we have

‖SL fs‖L1(Rd) � C
∥∥ f ∗

L

∥∥
L1(Rd)

.

Let s → 0, by monotone theorem, we get

‖SL f ‖L1(Rd) � C
∥∥ f ∗

L

∥∥
L1(Rd)

.

This gives the proof of Lemma 6. �
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3.3. From area integral functions to Hardy spaces

By ‖AL f ‖L1(Rd) � ‖SL f ‖L1(Rd) and Proposition 3, we know

Lemma 7. If f ∈ L1(Rd) and SL f ∈ L1(Rd), then f ∈ H1
L (R

d). Moreover, we have

‖ f ‖H1
L (Rd) � C‖SL‖L1(Rd) + ‖ f ‖L1 .

Proof of Theorem 1. Theorem 1 follows from Lemmas 1, 6 and 7. �
4. Boundedness of R L

j on H 1
L(RRRd)

In this section, we prove that the operators RL
j , j = 1,2, . . . are bounded on H1

L (R
d).

We first prove the following lemma.

Lemma 8. If f ∈ L2(Rd), then

DL+2
t

(
RL

j f
) = −tδ je

−tL1/2
f

for all j = 1,2, . . . ,d.

Proof. By Lemma 4.2 in [11], we have

e−t(L+2)1/2(
RL

j f
)
(x) =

∞∑
n=0

e−t(2n+d)1/2 ∑
|α|=n

(
2αi

2|α| + d

)1/2

〈 f ,hα〉hα−e j (x).

Therefore

∂te−t(L+2)1/2(
RL

j f
)
(x) = −

∞∑
n=0

e−t(2n+d)1/2 ∑
|α|=n

(2αi)
1/2〈 f ,hα〉hα−e j (x). (23)

Similarly, by

e−tL1/2
f (x) =

∞∑
n=0

e−t(2n+d)1/2 ∑
|α|=n

〈 f ,hα〉hα(x)

and (3), we get

δ je
−tL1/2

f (x) =
∞∑

n=0

e−t(2n+d)1/2 ∑
|α|=n

(2αi)
1/2〈 f ,hα〉hα−e j (x). (24)

Lemma 8 follows from (23) and (24). �
In order to get our result, we need the following lemma.

Lemma 9. If f ∈ L1(Rd), then f ∈ H1
L (R

d) if and only if f ∈ H1
L+2(R

d).

Proof. When f ∈ H1
L (R

d), then ML f ∈ L1(Rd). Therefore, f ∈ H1
L+2(R

d) follows from ML+2 f � ML f .

When f ∈ H1
L+2(R

d), by Proposition 2

f (x) =
∞∑

i=1

λiai(x),

where ai(x), i = 1,2, . . . are H1
L+2-atoms. It is easy to prove

ρ(x) ∼ ρ
(
x, |x|2 + 2

)
. (25)

Then, by Proposition 6, we can prove that there exists a constant C > 0 such that (cf. Lemma 6 in [3])∥∥AL(ai)
∥∥ � C .
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Therefore

‖ f ‖H1
L
� ‖ f ‖H1

L+2
. (26)

Then Lemma 9 is proved. �
Now, we can prove the main result of this paper.

Proof of Theorem 2. As H1
L (R

d) ∩ L2(Rd) is dense in H1
L (R

d) (see [8]), we can assume f ∈ H1
L (R

d) ∩ L2(Rd). By Lemma 9, it
is sufficient to prove RL

j f ∈ H1
L+2(R

d). Following from Proposition 3, Theorem 1 and Lemma 8,∥∥RL
j f

∥∥
H1

L+2(Rd)
� C

∥∥AL+2 RL
j f

∥∥
L1(Rd)

= C

∥∥∥∥∥
( ∞∫

0

∫
|x−y|<t

∣∣DL+2
t

(
RL

j f
)
(y)

∣∣2 dy dt

td+1

)1/2∥∥∥∥∥
L1(Rd)

= C

∥∥∥∥∥
( ∞∫

0

∫
|x−y|<t

∣∣tδ je
−tL1/2

f (y)
∣∣2 dy dt

td+1

)1/2∥∥∥∥∥
L1(Rd)

� C‖SL f ‖L1(Rd) � C‖ f ‖H1
L (Rd).

This completes the proof of Theorem 2. �
By Theorem 2, we can prove

Corollary 1. For f ∈ L1(Rd), f ∈ H1
L (R

d) if and only if RL
j f ∈ L1(Rd), j = 1,2, . . . ,d i.e.,

H1
L

(
R

d) = {
f ∈ L1(

R
d): RL

j f ∈ L1(
R

d), j = 1,2, . . . ,d
}
.

Moreover, we have

‖ f ‖H1
L (Rd) ∼ ‖ f ‖L1(Rd) +

d∑
j=1

∥∥RL
j f

∥∥
L1(Rd)

.

Proof. By Theorem 2, we know RL
j f ∈ L1(Rd), j = 1,2, . . . ,d for f ∈ H1

L (R
d).

For the reverse, by RL
j f ∈ L1(Rd) and x j f ∈ L1(Rd), j = 1,2, . . . ,d (cf. Lemma 0.9 in [10]), we get ∂ j L− 1

2 f ∈ L1(Rd),
j = 1,2, . . . ,d. Then Corollary 1 follows from Theorem 2 in [4]. �
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