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1. Introduction

Most of physical processes are modelled by the following one-dimensional onservation laws
u+ f(u)y=0, xeR,teR", uekR" f(u) eR" (1.1)

when ignoring the small scale effects. At the next level of exactness, these small effects often make their appearance felt by
the presence of higher-order derivatives multiplied by small coefficients in the equations such as

u + fwy=¢(BW),,, (12)

where ¢ is the viscosity coefficient, and B(u) € R™*" is called viscosity matrix. Then the consistency of the models would
demand that solutions of the two sets of systems be “close” in some sense. It is of great importance to study the asymptotic
equivalence between the viscous systems and the corresponding inviscid hyperbolic system in the limit of small dissipation.
When viscosity matrix is positive definite, Bianchini and Bressan [1] considered the general solutions with the initial data
having small total variations, they proved the convergence of the solutions for the viscous systems (1.2) to those for the
associated hyperbolic systems (1.1) by establishing the uniform total variation estimates. Yet, the protypical example for
conservation laws is the gas dynamics. The ideal fluid associated with (1.1) in Lagrangian coordinates is described by the
following compressible Euler equations

Vi — Uy =0,

ug+px=0,

2

u

(e—i—;) + (pu)x=0, xe€R,t>0,
t
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which is one of the most important nonlinear strictly hyperbolic systems of conservation laws. If adding the effects of
the viscosity and thermal conductivity, corresponding to (1.2) the equations can be written as the following compressible
Navier-Stokes equations

vi—uy =0,
u
ue +px=u(—x> :
V /x (1.4)

u? Oy Ully
e+ — ) +(puwx=k|l—) +u|l— ), xR t>0.
2/, V/x vV /x

Here v, u, 6, p and e denote the specific volume, the velocity, the temperature, the pressure, and the internal energy,
respectively, and u, k are the viscosity and heat-conductivity coefficients, respectively. x is the Lagrangian coordinate, so
that x = constant corresponds to a particle path. Here the viscosity matrix is only semi-positive definite and thus less
dissipative, the method in [1] cannot be applied to the Navier-Stokes equations. This remains an important open problem.
However, there are also many significant works on special solutions. For the case that the Euler flow contains a single
shock, Hoff and Liu [4] studied the isentropic case, they established the limit process from the solutions of the compressible
Navier-Stokes equations to the single shock-wave solution of the corresponding compressible Euler system (so-called p-
system). They show that the solutions to the isentropic Navier-Stokes equations with shock data exist and converge to the
inviscid shocks as the viscosity vanishes, uniformly away from the shocks. Ignoring the initial layers, Goodman and Xin [2]
gave a very detailed description of the asymptotic behavior of solutions for the general viscous systems as the viscosity tends
to zero, via a method of matching asymptotics. This method can be applied to the Navier-Stokes equations (1.4), such as
[11,16,17]. Later Yu [19] revealed the rich structure of nonlinear wave interactions due to the presence of shocks and initial
layers by a detailed pointwise analysis. As far as rarefaction wave is concerned, Xin in [18] has obtained that the solutions
for the isentropic Navier-Stokes equations with weak centered rarefaction wave data exist for all time and converge to the
weak centered rarefaction wave solution of the corresponding Euler system, as the viscosity tends to zero, uniformly away
from the initial discontinuity. Moreover, in the case that either the initial layers are ignored or the rarefaction waves are
smooth, he also obtains a rate of convergence which is valid uniformly for all time. Later Jiang et al. [8] improve the first
part with weak centered rarefaction waves data and Zeng [20] improve the other results, respectively, in [18] to the full
compressible Navier-Stokes equations, provided that the viscosity and heat-conductivity coefficients are in the same order.
For composite wave, recently Huang et al. [7] study the case that the Riemann solution of the Euler system is a superposition
of two rarefaction waves and a contact discontinuity. They obtain the corresponding convergence rate. Furthermore, by a
spectral analysis and Evans function method, Kevin Zumbrun and his collaborators have obtained many important results
even for large amplitude and multi-dimensional case [14,13,12,21,3], etc. Since the case that the solutions to the Euler
system containing contact discontinuity is much more subtle, there are few results on this respect [10,7].

In this paper, we consider the case that the viscosity coefficient p is higher order than the heat-conductivity coefficient «
or the same order as k. We study the ideal polytropic gas, so that the pressure p and the internal energy e are related with
v and 6 by the following equations of state

p=p(v,0)=R0O/v, e=e(0)=R6O/(y — 1) + constant, (1.5)

where R > 0 is the gas constant and y > 1 is the adiabatic exponent.
For the Riemann problem to the corresponding Euler system (1.3) with the Riemann initial data

v_,u_,0_), ifx<0,
WX 0= ) tx< (16)
vy, ug,6y), ifx>0.
A contact discontinuity takes the form
- (v_,u_,0_), ifx<0,
V,U,@)x,t) = . (1.7)
(V+,u+,9+), le>0,
provided that
RO_ RO,
Uu_=1uy, _=—=—=Dp.. 1.8
+ p v v P+ (1.8)

As in [6], in the setting of the compressible Navier-Stokes equations (1.4), the corresponding wave to the contact discon-
tinuity becomes smooth and behaves as a diffusion wave due to the dissipation effect. We call this wave “viscous contact
wave.” We now construct the viscous contact wave (¥, i, §) as follows. Since the pressure of the profile (v, u, 0) is expected
to be almost constant, that is,

_ R
—_— = , 1.9
pP=—~P+ (1.9)
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which indicates that when ignoring the higher order term the energy equation (1.4)3 is

Ox
6 ux=x(—1,. 110
y_1t+P+x K<V>x (110)
Substituting (1.9) into (1.10) and using (1.4); yield a nonlinear diffusion equation
0, -1
Ot:aK<—x> , O(—o0,t)=6_, 0 (+o00,t) =64, a:M >0, (1.11)
0/, v R?

which admits a unique self-similar solution ©(x,t) = @ (&), & = X

due to [5,15]. Furthermore, ®(£) is a monotone

V14t
function, increasing if 6, > 6_ and decreasing if 6, <6_. Let § = |6+ — 6_|, then @ satisfies
L cox?
|(k(1+1)28L0] +16 — 64| < i8¢ ®  as x| = oo, I >1. (112)
With ©® so determined, we can define the contact wave profile (v, u, ) as follows:
_ R _ — Dk
V= —0, u=u_+u(ln@)x,
P+ YR
- — 1k —Duk
G=o- YD W=Dl 0),,. (113)
YRp+ YR
Then (v, i, §) satisfies
V=V, ui—U,0—-6|w=0(k"*)1+0)"/@P p>1, (1.14)
and
Ve — Uy =0,
i+ p —u(ﬂx>
R (115)
T __ Oy Ully -
e+ — ) +Wwphx=«|=) +u{—=| +Ri1.
2/ V /% vV /x
= RO
where e = 71 and
2
- ak“[(y =1 1
Ry = —+{ v (InO)yxr + = (N O)(INO)xx + (IN O)x(In @)x}
p 14 14
K[y —1
- “7{ Y 0O + (INO)(INO)x + (In O)ex(In @)x}
3 -2 _ﬁ
=0k (k(141)) “e 10 as|x| - oc. (1.16)

The main results of this paper are as follows:

Theorem 1.1. For any given (v_,u_, 6_), suppose that (v, u, 6 ) satisfies (1.8). Let (V, U, ®) be a contact discontinuity solution
of the form (1.7) with finite strength to the Euler system (1.3). Then, if the viscosity coefficient ( is higher order than « or the same
order as «, there exists constant ko > 0, such that for each « € (0, ko], there is a smooth solution (v, u*,6%) to (1.4) on R x RT,
still denoted by (v, u, ), with the same initial data as (v, i1, 8). Moreover, for any arbitrarily large T > 0 and small h > 0, it holds that

sup  |(v,u,0)(x, ) — (V, T, &)(x, 1)| < Ck, (117)
0<t<T, |x|=h

where C is a positive constant independent of k.

Remark 1.2. In this paper, we construct a new ansatz (see (1.13)), which gives better estimates for the error term R; than
the one which is in [10]. And thus we can obtain a higher convergence rate. Since we also consider the case that the
viscosity coefficient i can be higher order than the heat-conductivity «, the term %f l¥y (-, T)lldT may be zero as k tends
to zero (see (3.7)). Here, to control the term f @y, ¥y)(-, T)lIdT, we construct an explicit matrix S (see Section 4). From
(4.7) we know that if f I(#y, ¥y)(-, T)|IdT can be better controlled, the optimal convergence rate may be obtained. We
expect the explicit form of S will work on this respect. Yet it is regret that in this paper we have not done this, which will
be left for future.

Notation. In this paper, |a| = (3", aiz)% if a=(a;) is a vector in R" and |A| = (3__; Y_i; Al.zj)% if A= (Aij)nxn is a matrix.
We also use H'(I > 1) to denote the usual Sobolev space with the norm || - ||; and || - || = || - ||lo denotes the usual L2-norm.
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2. Reformulation of the problem

Due to the estimates (1.12) and (1.14), to prove the main theorem, it suffices to show that there exists an exact solution
to (1.4) in a neighborhood of the approximate solution U = (v, i, §), and that the asymptotic behavior of the solution to
(1.4) is given by U for small heat-conductivity «.

Suppose that U = (v, u, 6) is the exact solution to (1.4) with the initial data U (x, 0) = U(x, 0). We decompose the solution

as
¢:V—\_/, Iﬁ:l,l—ljl, CZH—O_ (21)
Then using the relation (1.15) for U, we obtain that
¢t_wx=0,
R¢—p u u
s (B2 (o).
% X v v/ 22)
R &+ puy — pil K(QX _> —HL(uux ﬁﬁx) R .
t X x = T = - - = - R,
y—1 v v/, v v/,
¢ (x,0) =1 (x,0) =¢(x,0) =0.
Using the following scalings,
X 1+t
y=2 r=1f (2.3)
K K
we transform (2.2) into
¢t—1/fy:0,
R —p u i
w,+(§—"“5) zﬁ(_y_%) ,
v y k\v y 2.4
_ 24
R __ Oy 0Oy W (uuy iy
§t+puy—puy:(*—f> +*<7—f — Ry,
y —1 v v/, Kk\vV v /]y
¢, 10 =¥, %) =y, 70) =0,
where 79 =1/k, R{ =«R; and
C 2 C 2
|a§,@|<(‘1l{%€_%, I>1; |R1|§C1K26_%. (2.5)

Set 71 = % Then we only need to show that for suitably small «, (2.4) has a unique “small” smooth solution on
R x [10, T1]. By the standard existence and uniqueness theory, and the continuous induction argument for hyperbolic-
parabolic equations [9], it suffices to close the following a priori estimate

N@) = |@.¥. 0D, <e. (2.6)

where ¢ is a positive small constant depending on T, the initial data and the strength of the contact discontinuity. This is a
consequence of a series of lemmas. We start with the lower order estimate.

3. Lower order estimate

Lemma 3.1. Suppose that the Cauchy problem (2.4) has a solution (¢, v, ) € C'([tg, T2] : H*(R")) for some 19 < T2 < T1. Then
there exist positive constants &1, k1 and c, which are independent of k and 1, such that if 0 < &€ < &1 and k < k1, we have

1
2 2 3
sup [ (¢, ¥, O, D) +/H;y<-,r>u dt <ck?. (3.1
TOSTLET A
Proof. Similar to [6], we have
1.5, (v R - (6 wvy &
- RVO| = —O0P| = —— 4+ =41 =0, 3.2
<2W+ Y (\7)+y—l <9>)I+Kv+v9+y+Q (3:2)

where
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&(s)=s—1—1Ins, (3.3)

t(0y by
}‘5(7‘7)’ G4

_ (V. . R 6 y 1
Q=p¢<%>uy—vprq) %)-F—(P(g) (P p)ily + 33/(__5)@
() (e ()

Q< (e + n)(%x/fﬁ + g“yz) + ¢y (10yy + 10y 12) (¢* + Y2 + ¢%) + k&% + C 'R, (3.6)

and

satisfying

where 7 > 0 is a constant to be determined later. Then (3.2)-(3.6) and (2.5) yield that

l“py L 2
[ (v (2
—//Q;dydr<c(8+n)//(%lﬁ;+§§>dydt+c,7/c//(¢z+¢2+{2)dydr
K—1//R%dydr. (3.7)

Using (2.5) and taking € and n to be sufficiently small, we obtain

H(¢>,1/f,;)(-,r)H2+/H;y<~,r>Uzdr <cx/|\(¢,w,c)(-,r)H2+cx%. (3.8)
T

To

And then we apply Gronwall’s inequality to deduce that
T
2 2 3
6. v.0c 0+ [loe o) o <adt. (39)
70

This finishes the proof of Lemma 3.1. O

4. Higher order estimates

Lemma 4.1. Suppose that the conditions in Lemma 3.1 are satisfied. Then

T

2 2 2 3
” @y, ¥y, &y) (-, T)” + /(” (Dy, ¥y, T)” + ||§yy('» T)” )dT SCKk2?, (4.1)
70
forall T € [1g, T2], where the constant c is independent of o and k.
Proof. Step 1. Rewrite (1.4) in the following symmetric form
AO(U)UT+A(U)Uy:B(U)Uyy+g(U,Uy), (4.2)

2
where g(U,Uy) = (0, £0(1),uy, (1),0, + %”%)f, and

—0py, 0 O 0 6p, O 0 0 0
A= 0o ¢ o | A(U>=<epv 0 p>, BU)=[0 &5 0
0 0 ;5 0 p O o o 1!
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Consequently, the system (1.15) is transformed into
A%0)U: + AU)Uy =B(0)Uyy +g(U,Uy) +F,
where F = (0,0, R1)". Now we define a new matrix A(U) as

5o (AnnU) Ap()
A(U)_<A21(U) 0 )

0 Opy

where A11(U) = <0pv 0

) and App(U) = (g) = Ay (U)L. Set W = U — U. (4.2)~(4.4) lead to

AN (UYW, + AW,y = BUYWyy + (U, Uy) + (AU) — AU))W,,

where

g(U,Uy) = {(A%0) — A%U)) U + (B(U) — B(0))Uyy} + (AD) — A(U))Uy + (g(U,Uy) — g(U,Ty)) — F

Differentiating (4.5) with respect to y, multiplying the resulting system by d,W and integrating on R, we obtain
/(AO(U)aywr,ayw)dy+/(A(U)a§w,ayw>dy=/(B(U)ajw,ayw>dy+/(ﬁl,ayW)dy.
Here (-,-) denotes the usual inner product on R3, and

H=A%U)dy, (A°(U)'g) + A°(U)[dy, A°(U) " B(U) W,y + AP ()3, {A°(U) " (A(U) — A(U)) W,y )
— A%U)[ady, A°(U) T AU) Wy,

(4.3)

(4.4)

(4.5)

(4.6)

where [-,-]- denotes the commutator. Next we will estimate the terms in (4.6) separately. First, using (1.13), (2.1), (2.5) and

the system (2.4), we have

1d 1
/(AO(U)ayW,,ayw>dy: ST (Ao, w,a,w)dy — 5/(a,AO(U)ayW,ayw)uly
1d
> 5E/(A(’(U)ayw,ayw)dy—c(s+/<)/(¢§+w§+<;y2y)a!y.

Similarly, Sobolev’s inequality and Young's inequality yield
~ 1 ~
—/(A(U)aﬁw,ayw)dyz 5/(ayA(U)ayw,ayw)dy
<c [(wy1+10,)1w,Pdy

gc(8+x%)f(¢f,+lﬂ§+§§)dy.

By a direct calculation, the third term is estimated as
3 Kno .3 1.3
f{B(U)ayW, dyW)dy :/(ZJaywayw + ;aygayg> dy
125 0 1 _ nw
< —/(;;wﬁﬁ ;:fy)dy+c/(|wy| + |uy|)(;|wy||wyy| " |zy||cyy|)dy

0 1
_f(%;w§y+;gyzy>dy+c(a+x%)/(%lﬁ§y+§§y+‘ﬂ§+§;)dy'

N

Finally,

f(fq,ayW)dy:/(AO(U)ay(AO(U)*lg),ayw)dy+/(AO(U)[ay,AO(U)”B(U)]WW,ayw>dy

+ /(AO(U)By{AO(U)’l (AU) — AW,y } — A%U)[dy, A°(U) T A(U) Wy, 3, W )dy.

We denote the terms on the right in order by I, II, Ill, which can be estimated separately below.

I:/(AO(U)ay(AO(U)’l)g, ayw)dy+/(ayg, yW)dy =11 + I.
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Using the estimates in (2.5) and Lemma 3.1, we have
I <C/(|Wy|+IUyI){IWyI+(IUr|+ [Uyyl + 10y )W+ |F[}|Wy|dy
1 1
<(e+k2 +n)/|Wy|2dy+c,7/<2/|W(~,r)|2dy+c1c7/|R1|2dy

g(a+x%+n)/(¢§+w§+¢§)dy+cn;<%,

provided that ||W (-, )| 1~ is bounded, where 7 is a small constant to be determined later.

I = f(ay{(AO(U) — A°()) Uy + (B(U) — B(U))Uyy + (AU) — A(U)) Uy}, 3, W)dy

+/(ay(g(u,uy)—g(U,Uy)),ayw)dy—/(ayﬁ,aywmy
3
5212]'.
j=1

By the definition of U and the estimates (2.5) and Lemma 3.1 again, we get

I <c/(|0f|+|Uyy|+|0y|)(|wy|+|Uy||W|)|Wy|dy+c/(|Ufy|+ 95U+ [2;0]) W |IWy|dy

<(K%+n)/|wy|2dy+c,7x2/|w2|dy

<ledn) @+ v+ dy+epct.

I, is estimated as follows:

o 253 553 oo o] (2) - () 25

<i|

(I (oYY 5 (L) & DNy (Y5 M
= 1) m-3G) w)w+ ((3) - (5) v e
<c/{|wy|2+|0y||wy| +|Uy|2|W|}|(%|wyy|+|<;yy|)dy

<(s+k? +n)/<¢§+w§+;y2+%w§y+g§y)dy+cnK2/|W|2dy

1 192 7
<(e+k2 +n)/<¢§+w§+;y2+;x/ijﬂyzy)dyﬂnxz.

Finally, Young’s inequality and the estimates in (2.5) yield that
7
I3 < CK/ |y W *dy +cie ! f |y R % dy < cx f(<z>§ g+ L])dy +ok?,
Consequently,
3 1 " ]
=Y Lj<(s+k? +n)/<¢>§ Uy e+ Uy +;y2y) dy + cpi 2.
j=1

And then

1=11+12<(s+x%+n)/<¢>§+¢§+{§+%w§y+§§y)dy+cnx%.

We continue to estimate the terms II and III.

1039
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= f(AO(U)ay(AO(U)*lB(U))Wyy, W, )dy

= / Eeay : YyYyy + 9y : Cybyy | dy
K v v
1 I
<cle +K2)/<1/f§ +&y oy +Cy2y) dy.
Differentiating directly shows that

Il = /(AO(U)ay(AO(U)‘l)(A(U) —AU))Wy, Wy)dy

+ /(ay{(A(U) — AWy} — A2, {(A°() AWU) Wy, Wy)dy
=1l + .
First, Sobolev’s inequality gives
I <c/(|wy|+|Uy|)|W||Wy|2dy<ce/|Wy|2,

provided that ||Wy(-, )i~ is bounded. Using integration by parts, we have

_ _ p _
1 = /{Wyay((P - P)fy) + fyay((P - P)wy)}dy - /{Gwy <¢y3ypv + Cyay<5)) + 3ypl/fy§y}dy
_ p _
= / Yydy(p — p)ydy — /{Ql/fy (¢y3ypv + §y3y<5>> + 3yl”/’y§y}dy
1
<C(8+K2)/(¢52,+1/f)2;+§5)dy.
Hence it follows that
m<c(e +K%)/(¢§+z//§+cy2)dy.
And then
~ 1 1% 7
H o,W)dy =I+1+1<(s+k2 22424 Syl 402 )dy +opi.
/( yW)dy =1+ 11+ (e+x +n)/(¢y+¢y+§y+xwyy+;yy y +Cpk
Collecting all the estimates we have obtained so far, after choosing € and « to be sufficiently small, we get
d 0 no 5 1., 1 2,42, 22 7
o [ AWy w oy W)dy + [ (o, + gy Jdy < (e +u7 +0) [ (95 + 5 +7)dy +cpie?.
Integrating this inequality with respect to T and using Lemma 3.1, we arrive that

ey 806 O+ [ (s + e D

70
1 f 2 5
<(e+kz +n)/|y(¢>y,wy)(-,r)u dt +cyk2. (4.7)
70

Step 2. In this step, we will estimate f:o 1Py, ¥y) (-, 7)||?dr. First, linearizing (4.2) at U, and then subtracting (4.3) from
the resulting system, one gets that

A°(U)W, + A(U)W,, = B(U)Wy, + H, (4.8)
where
H=A%O){A°WU) g, Uy) — A°(0)~'g(U, TUy) — (A% 'AU) — A%(D) " AD)) Wy
— (A°W)TTAW) = A%O)TTA)) Uy + (A°(U)TTBU) — A%(U) T B(D)) Wy,
+(A°W)'B(U) — A%U)'B(0))Uyy | — F. (4.9)
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0 —-p O B
We take S(U) = (V gR 29) and multiply (4.8) by W;S(U), and then integrate with respect to y on R to obtain
0

/(S(U)AO(U)WT, Wy)dy + /(S(U)A(U)Wy, Wy)dy

:/<5(0)B(0)wyy,Wy)dy+/(5(U)H,wy)dy. (4.10)

0 —6p 0
Since SA? = (9P 0 %) is skew-symmetric, the first term on the left of (4.10) can be written as

2R6
028 o

o 1(d - _ -
/<5(U)A°(U)W,,Wy>aly:5 E/(S(U)AO(U)W,Wy)dy—f((S(U)AO(U))IW,Wy)dy

+f<(S(U)AO(U))yW, w,)dy}

% % /(S(U)AO(U)W, Wy)dy — /((S(U)AO(U))TW, Wy)dy
—/((S([_J)AO(U))yW,AO(U)_lA(U)Wy>dy
+/((S(U)AO(U))yW,AO(U)—1B(U)Wyy)dy
+/((S(U)AO(U))yW,A°(U)‘1g(u,Uy))dy},

where the system (4.5) has been used. Substitute this into (4.10) to get

/(S(U)A(U)Wy, Wy)dy = —%dir f(S(U)AO(U)W, W,y )dy + %{/((S(U)AO(U))TW, Wy)dy
+/((S(U)AO(U))yW,AO(U)_lA(U)Wy)dy}
_ %f((S(U)AO(U))yW, AYU)TB(U)YW ) dy
_ %/((S(U)AO(U))J/W, AY(U)'g(U,Uy))dy

+/(5((1)B([1)Wyy,wy>dy+/(5(U)H,wy)dy. (411)

Next we estimate all of the terms above separately. First,
=3
_ p _ 3—y_ 2R _
/ (SHADHWy, W,)dy = f <7¢§ +0py; + y—_’;p%ycy - mpcyz dy
R 2
Using Young's inequality and Lemma 3.1, we have
/((S(U)AO(L_]))TW, Wy)dy + /((S(U)AO(U))yW, A U)TTAU)YWy)dy
<c [ (el + 10, iwiiwy1dy
< n/ |Wy|2dy+cn/</|W|2dy

5
Sn/IWy|2dy+c,7K7,

where 7 > 0 is a constant to be determined later. Due to the form of B, direct calculations and Young’s inequality lead to



1042 S. Ma/J. Math. Anal. Appl. 387 (2012) 1033-1043
1 _ _ _ o
—5/<(S(U)A0(U))yW,AO(U) lB(U)Wyy)dyJr/(S(U)B(U)Wyy,Wy)dy
- Iz 1%
<c | |UylIW] ;|1/fyy|+|§yy| dy +c Wy ;|¢yy|+|§yy| dy
"
<nf|Wy|2dy+cn/(;w§y+c§y>dy+u</|W|2dy
<n [ 1wy ldy+cp [ (Ev2, +¢2, ) dy +cxc
ST ylnay =Gy [\ Vyy TSy |4 :
It follows from the definition of g and H that
- f (S@A%D)), W, A°U)~'g(WU, Uy))dy
<C/|Uy||w|{(|0r|+|Uyy|+|Uy|)|W|+|Wy|2+|Uy||Wy|+|Uy|2|W|+R1}dy
<C(8+K)/|Wy|2dy+ac/|W|2dy+C/|R1|2dy
<c(s+/c)/|Wy|2dy+c;c%
and
f(sa‘J)H,wy>dy<c/{(|Wy|2+|Uy||wy|+|0y|2|W|)+ WIIW,y |+ [0, 1w
w _
+|W| ;|1ﬂyy|+|§yy| +1Uyy[IW ] Wy |dy
1 w
<cle+k2 +n)/|Wy|2dy+C8/(;wJ2,y+§§y>dy+c,7/</|W|2dy
<cle+x?+n) [ Wy 2dy+ce Ky2 12 Vdy +cpics
X T} y y K yy ny y n .
Collecting all the estimates we have obtained, by choosing €, k and 7 to be sufficiently small, we get

23
/(%qﬁi +éﬁw§) dy < —% /<S(U)A°<U)w, Wy)dy +c/(;y2 + %wjy + ;yzy) dy + cx 3.

Integrating this inequality with respect to t and using Cauchy-Schwatz inequality and Lemma 3.1, we may conclude that

//(¢§+1/f§)dydr gcf(¢§+x/f§+§y2)dy+c//(%w§y+;§y>dyar+a<% (4.12)
T0 To

Inserting (4.12) into (4.7) and then taking €,k and 7n to be sufficiently small, we can obtain the estimate (4.1), which
completes the proof of Lemma 4.1. For the second order derivatives, one has the following estimate. O

Lemma 4.2. Suppose that the conditions in Lemma 3.1 are satisfied. Then
T
[@36. 05w 650)¢. D) * + / (1036, 33w) ¢ O + 956 0)|*) de < e, (413)

To

for all T € [19, T2], where the constant c is independent of T and k.

The proof is similar to the proof of Lemma 4.1. Hence we omit it.
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5. Proof of Theorem 1.1
Combining the results of Lemma 3.1 and Lemmas 4.1-4.2 leads to

Proposition 5.1. There exist positive constants ko and C, which are independent of k such that if 0 < k < kg, then for any T > 0, the
Cauchy problem (2.4) has a unique solution (¢, V¥, ¢) € C! ([%, %] : H2(R")). Furthermore, the following inequality holds

14T
sup (@, . O D5 + / (1@y- v DT + 6y D7) dr < Cr2. (5.1)
%gt\% 1

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. For any T > 0, in view of (5.1), we have

| =9,u=,0 =), 0], < C[ @ 0, OO [ @y ¥y 20 <Cid, Vee (o, TI.

This, together with (1.12), yields (1.17).
Hence we have completed the proof of the Theorem 1.1. O

Acknowledgments

This research was partially done when I was visiting the Institute of Mathematical Sciences of The Chinese University of Hong Kong. The financial
support from the IMS and the help from the staffs are appreciated greatly. I also thank Dr. Wang Yi for the fruitful discussions. The author is supported by
Tianyuan Foundation (No. 11026093) and the National Natural Science Foundation of China (Nos. 11101162, 11071086).

References

[1] Stefano Bianchini, Alberto Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2) 161 (1) (2005) 223-342.
[2] Jonathan Goodman, Zhou-Ping Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal. 121 (3)
(1992) 235-265.
[3] Olivier Gues, Guy Métivier, Mark Williams, Kevin Zumbrun, Existence and stability of multidimensional shock fronts in the vanishing viscosity limit,
Arch. Ration. Mech. Anal. 175 (2) (2005) 151-244.
[4] David Hoff, Tai-Ping Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Indiana Univ. Math.
J. 38 (4) (1989) 861-915.
[5] Ling Hsiao, Tai-Ping Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math. Ser. B 14 (4) (1993) 465-480, a Chinese
summary appears in Chinese Ann. Math. Ser. A 14 (6) (1993) 740.
[6] Feimin Huang, Akitaka Matsumura, Zhouping Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration.
Mech. Anal. 179 (1) (2006) 55-77.
[7] Feimin Huang, Yi Wang, Tong Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact
discontinuity, Kinet. Relat. Models 3 (4) (2010) 685-728.
[8] Song Jiang, Ni. Guoxi, Wenjun Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible
heat-conducting fluids, SIAM ]. Math. Anal. 38 (2) (2006) 368-384 (electronic).
[9] Shuichi Kawashima, Systems of hyperbolic-parabolic composite type, with applications to the equations of magneto-hydrodynamics, Doctoral thesis,
Kyoto Univ., 1983.
[10] Ma Shixiang, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, ]. Differential Equations 248 (1)
(2010) 95-110.
[11] Ma Shixiang, The inviscid limit for an inflow problem of compressible viscous gas in presence of both shocks and boundary layers, J. Math. Anal.
Appl. 378 (2011) 268-288.
[12] Corrado Mascia, Kevin Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal. 172 (1)
(2004) 93-131.
[13] Corrado Mascia, Kevin Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems, SIAM ]. Math. Anal. 37 (3) (2005) 889-913
(electronic).
[14] Anders Szepessy, Kevin Zumbrun, Stability of rarefaction waves in viscous media, Arch. Ration. Mech. Anal. 133 (3) (1996) 249-298.
[15] CJ. van Duyn, L.A. Peletier, A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal. 1 (3) (1976/1977) 223-233.
[16] Wang Huiying, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl. 299 (2) (2004) 411-432.
[17] Yi Wang, Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock, Acta Math. Sci. Ser. B Engl.
Ed. 28 (4) (2008) 727-748.
[18] Zhou-Ping Xin, Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases, Comm.
Pure Appl. Math. 46 (5) (1993) 621-665.
[19] Yu Shih-Hsien, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws, Arch. Ration. Mech. Anal. 146 (4) (1999)
275-370.
[20] Huihui Zeng, Asymptotic behavior of solutions to fluid dynamical equations, Doctoral thesis, The Chinese University of Hong Kong.
[21] Kevin Zumbrun, Peter Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (3) (1998) 741-871.



	Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations
	1 Introduction
	2 Reformulation of the problem
	3 Lower order estimate
	4 Higher order estimates
	5 Proof of Theorem 1.1
	Acknowledgments
	References


