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a b s t r a c t

In Kowar (2012) [25] a diffusion model was developed and analyzed that obeys causality,
i.e. the speed of propagation of the concentration is finite. In this article we analyze
the respective causal backwards diffusion problem. The motivation for this paper is that
because real diffusion obeys causality, a causal diffusion model may contain smaller
modeling errors than the noncausal standard model and thus an increase of resolution
of inverse and ill-posed problems related to diffusion is possible. We derive an analytic
representation of the Green function of causal diffusion in the k − t-domain (wave
vector-time domain) that enables us to analyze the properties of the causal backwards
diffusion problem. In particular, it is proven that this inverse problem is ill-posed, but not
exponentially ill-posed. Furthermore, a theoretical and numerical comparison between
the standard diffusion model and the causal diffusion model is performed. The paper
is concluded with numerical simulations of the backwards diffusion problem via the
Landweber method that confirm our theoretical results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems related to diffusion belong to a very important field of applications. Such and similar problems
are studied in the articles [1–14] and books [15–24] to name but a few. Since these inverse problems are ill-posed,
data and qualitative modeling errors have a strong impact on the numerical solution. Hence if the diffusion model, the
direct problem, is qualitatively improved, then it is possible to increase the resolution of related inverse problems. Since
real diffusion has a finite diffusion speed, it is possible that the causal diffusion model developed in [25] has smaller
modeling errors than the noncausal standard diffusion model. (Of course this can be verified by experiment only.) In this
paper we focus on the analysis of the backwards diffusion problem corresponding to the causal diffusion model (direct
problem) presented in [25]. In order to describe the goal of this paper, we start with a short description of the direct
problem.

1.1. The direct problem

Let v denote the concentration of a substance diffusing with constant speed c and initial concentration u. We show that
the causal diffusion model developed in [25] has the following analytic representation1

v̂(k,m + s) = (2π)−N/2ΥN(|k|)mΥN(|k| s)û(k) (1)

E-mail address: richard.kowar@uibk.ac.at.
1 We will see that causal diffusion is determined by the speed of diffusion c , a time period τ and the space dimension N . Here we assume c = 1 and

τ = 1.
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for k ∈ RN (N ∈ N), m ∈ N0 and s ∈ (0, 1], where v̂ denotes the Fourier transform of v with respect to x ∈ RN and ΥN is
the solution of

Υ ′′

N (t) +
(N − 1)

t
Υ ′

N(t) + ΥN(t) = 0 t > 0, (2)

with initial conditions

ΥN(0+) = 1 and Υ ′

N(0+) = 0. (3)

For example, for N = 1, 2, 3 we have

Υ1(t) = cos(t), Υ2(t) = J0(t) and Υ3(t) = sinc(t), (4)

where J0 denotes the Bessel function of first kind and order zero (cf. [26]). Here Υ̌ (·, s) denotes the inverse Fourier transform
of Υ (| · | s).

1.2. The inverse problem

The respective backwards diffusion problem corresponds to the estimation of the initial concentration u = u(x) for given
concentration w = w(x) = v(x, T ) at time T . Mathematically this corresponds to the solution of the Fredholm integral
equation of the first kind

FT (u) = w for given data w,

where the forward operator is defined by FT (u) := v(·, T ) with v as in (1) and T > 0 denotes the data acquisition time. We
show (for appropriate spaces) that the forward operator is injective and that it is compact

(1) if N = 2 and T > 2 τ and
(2) if N ≥ 3 and T > τ ,

where N denotes the space dimension and t the time. In contrast to the standard diffusion model, the forward operator
FT is not compact for N = 1. Moreover, we show that the envelope of the Fourier transform of FT (u) does not decrease
exponentially fast. In this sense the inverse problem is not exponentially ill-posed.

1.3. Irreversibility and time reversal

Numerical simulations forN = 2 indicate that the backwards diffusion problem is practically solvable for data acquisition
time T < τ but not for T ≥ 3τ . This observation can be explained as follows: In [25, cf. Lemma 4 and Proposition 2] it is
shown that v solves a hyperbolic equation of second order on each time interval (nτ , (n + 1)τ ) for n ∈ N0 with ‘‘initial
conditions’’

v(·, n τ) = v(·, n τ+) and
∂v

∂t
(·, n τ+) = 0


≠

∂v

∂t
(·, n τ−)


.

But this means that – in contrast to the standard diffusion model (with exact data) – the technique of time reversal is not
applicable, because the following initial data for the time reversal (t ∈ [0, T ] → T − t)

∂v

∂t
(·, τ−),

∂v

∂t
(·, 2 τ−), . . . ,

∂v

∂t
(·,m τ−), . . .

cannot be acquired. If the data acquisition time satisfies T < τ , then the (single) missing second initial data causes ill-
posedness of the backwards diffusion problem, but if T ≈ mτ with large m ∈ N than the backwards diffusion problem is
unsolvable (even for zero noise). We consider this form of irreversibility of our diffusion model more physically reasonable
than that one of the standard diffusion model.

In particular, this shows that a time reversal method cannot be used to solve the causal backwards diffusion problem
studied in this paper. Therefore the numerical solution of the causal backwards diffusion problem is solved with an iterative
regularization method.

The paper is organized as follows. In Section 2 we present our causal model of diffusion and derive those properties
of diffusion that are needed for this paper. For the convenience of the reader we put the technical part in the Appendix.
Comparisons between the standard diffusion model and our causal diffusion model are performed in Section 3. The
theoretical and numerical aspects of the backwards diffusion problem are investigated in Sections 4 and 5. Numerical
simulations of the inverse problem via the Landweber method are presented at the end of Section 5. The paper is concluded
with a section of conclusion.
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2. Causal diffusion and its properties

We start with the motivation of our model. It is well-known that standard diffusion belongs to the following class of
problems: the concentration satisfies a scalar-valued evolution equation

∂v

∂t
− A v = 0 t > 0 with v|t=0 = u,

where A is a space convolution operator and the infinitesimal generator of a strongly continuous semigroup. In [25] it was
proven, that the Green function G of such an evolution equation does not satisfy causality condition

supp(G) ⊆ {(x, t) ∈ RN
× [0, ∞) | |x| ≤ c t} (5)

for any c > 0, i.e. for an initial concentration u(x) = δ(x) at time t = 0, the concentration is not zero outside the ball Bc t(0)
after the time period t . As a consequence, we concluded that the semigroup property holds only for a discrete set of time
instants {m τ | m ∈ N0}, where τ is sufficiently small (cf. Theorem 1). If τ is sufficiently small, then the causal diffusion and
the standard diffusion model will lead to similar results, in particular Fick’s law is approximately satisfied for our diffusion
model (compare Figs. 2 and 3 and cf. [25]). We emphasize that small modeling errors play no role for the direct problem,
but they are important for the resolution of related inverse problems.

We now define causal diffusion for the case of a constant speed c ∈ (0, ∞) and then summarize its basic properties.

Definition 1. Let c, τ ∈ (0, ∞), dσ(x′) denote the Lebesgue surface measure on RN and |SR(0)| denote the surface area of
the sphere SR(0). Diffusion with a constant speed c is defined by

vc,τ (x, t) =


SR(t)(x)

vc,τ

x′, τn(t)


|SR(t)(0)|

dσ(x′) with vc,τ |t=0 = u, (6)

where τn(t) := n(t)τ and

n(t) ∈ N0 such that t ∈ (n(t) τ , (n(t) + 1) τ ],

and R(t) := c (t − n(t) τ ). If u(x) = δ(x), then we call Gc,τ := vc,τ the Green function of diffusion. Here δ(x) denotes the
delta distribution on RN .

In the following theorem, we summarize some results derived in [25, cf. Lemma 2, Theorem 4, Propositions 1, 4, 2 and
Lemma 4].

Theorem 1. For c, τ > 0 let Gc,τ and vc,τ (x, t) be defined as in Definition 1 and u ∈ L1(RN).
(a) The forward operator

FT : L1(RN) → L1(RN), u → vc,τ (x, T ) (T > 0 fixed) (7)

is well-defined and we have ∥u∥L1 = ∥vc,τ∥L1 . The last property means that conservation law of mass holds.
(b) Let Sτ denote the space convolution operator

Sτ u := G(·, τ ) ∗x u for u ∈ L1(Rn).

Then we have

vc,τ (·, t) = Smτ Ss u for t = τm + s, s ∈ (0, τ ]. (8)

(c) The Green function satisfies causality condition (5).

Remark 1. The readermay object that the abovemodel of causal diffusion is not derived from first principles. The derivation
of our model from microscopic equations is intended to be carried out in the future.

In order to analyze the backwards diffusion problem corresponding to our diffusion model, we need the Fourier
representation of the Green function Gc,τ . In this paper f̂ (k) and F {f }(k) denote the Fourier transform of x ∈ RN

→ f (x).
Our definition of the Fourier transform and the respective Convolution Theorem are formulated at the beginning of the
Appendix.

Theorem 2. Let c, τ > 0,Gc,τ and ΥN be defined as in Definition 1 and (18) (cf. Appendix), respectively. Then

Ĝc,τ (k, s) =
ΥN(|k| c s)
(2π)N/2

for k ∈ RN , s ∈ (0, τ ] (9)

and µs(A) :=

A Gc,τ (x, s) dx defines a positive measure on the Borel sets. Moreover, (2), (4) and (20) (cf. Appendix) hold, and

the semigroup properties (8) is equivalent to

v̂c,τ (·, t) = (2π)−N/2 ΥN(| · | c τ)m ΥN(| · | c s)û. (10)
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Proof. We note that s ∈ (0, τ ] implies n(s) = 0 and R(s) = c τ . Moreover, we have
SR(x)

f (x′) d σ(x′) ≡


S1(0)

f (x + R y) RN−1 d σ(y),

|SR(0)| = |S1(0)| RN−1.

From these facts and Definition 1 with u(x) = δ(x), it follows that

Gc,τ (x, s) =


SR(s)(x)

δ(x′)

|SR(s)(0)|
dσ(x′) =


S1(0)

δ(x + R(s) y)
|S1(0)|

dσ(y).

µs(A) is a positive measure, since Gc,τ (x, s) is a positive distribution.
To determine the Fourier transformofGc,τ , we use the following series representation derived in Lemma2 (cf. Appendix):

(2π)N/2 F


S1(0)

δ(· + c s y)
|S1(0)|

dσ(y)


(k) =

∞
j=0

(−1)j · a2 j · (|k| c s)2 j

for s ∈ (0, τ ] with a0 = 1 and

a2 j =
1

(2 j)!
1 · 3 · 5 · · · (2 j − 1)

N · (N + 2) · (N + 4) · · · (N + 2 j − 2)
for j ∈ N.

In Theorem 9 it is shown that Υ1(t) = cos(t), Υ2(t) = J0(|k| c s) and (20) holds. Υ3(t) = sinc(t) can be concluded from
Theorem 9, too, or alternatively from

a2 j =
1

(2 j)!
1 · 3 · 5 · · · (2 j − 1)
3 · 5 · 7 · · · (2 j + 1)

=
1

(2 j + 1)!
.

The equivalence of the representation (10) and the semigroup properties (8) follows from Theorem 2 and the Convolution
Theorem.

Finally, the differential equation (2) follows from the series representation of Υ . This concludes the proof. �

3. Comparison of standard diffusion and causal diffusion

In this section, the standard diffusionmodel and our causal diffusionmodel are compared in the space–time domain.We
show that for an appropriate parameter set a discretization of the standard diffusion equation can yield a similar result as
the causal diffusion model introduced in Definition 1.

In the following we denote the Green function of standard diffusion by G∞,0, since we can associate c and τ the values
c = ∞ and τ = 0 (cf. Remark 2). Similarly we use the notation

v∞,0 := G∞,0 ∗x u for u ∈ L1(RN).

In order to keep the formulas and equations short, we focus on the two dimensional case. Consider the diffusion of an image
with size of pixel (1x)2 and size of time step 1t := τ . We use the notion

vm
i,j := v(i1x, j1x, τm) for i, j ∈ Z and m ∈ N0.

If the length of an image pixel 1x satisfies (cf. Definition 1)

R(τ ) = c τ ≡ 1x,

then we can use the rough approximation
|x−y|=R(τ )

f (x′)

|S1(0)|
dσ(y) ≈ (fi+1,j + fi−1,j + fi,j+1 + fi,j−1)/4.

With this rough discretization the causal diffusion model (6) is equivalent to

vn+1
i,j =

1
4


vn
i+1,j + vn

i−1,j + vn
i,j+1 + vn

i,j−1


,

which can be reformulated as follows

vn+1
i,j − vn

i,j

τ
=

1x2

4 τ


vn
i+1,j − 2 vn

i,j + vn
i−1,j

1x2
+

vn
i,j+1 − 2 vn

i,j + vn
i,j−1

1x2


. (11)

But this is the Forward Euler method of the classical diffusion equation.
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Fig. 1. The left picture shows the initial distribution u and the right picture visualizes the discretization of the circle of radius R = R(τ ) that is used to
evaluate the circle integrals in Definition 1.

Remark 2. From this finite difference equation, the classical diffusion equation can be obtained for τ → 0 under the side
condition 1x2/(4 τ) = const, i.e. the diffusivity corresponds to

D0 =
c2 τ

2N
with c :=

1x
τ

and N = 2. (12)

Carrying out this limit process yields c = ∞, i.e. the diffusion speed can be interpreted as infinite.

The following numerical example indicates that for sufficiently large time t the forward Euler method (with fine space
discretization) can be considered as a noncausal approximation of the causal diffusion model.

Example 1. We choose the following values

c = 6.3 · 10−3 m/s, R := R(τ ) := 10−3 m and τ := R/c.

From (12) it follows that

D0 ≡ c2 τ/4 = 1.575 · 10−6 m2/s.

The initial mass distribution is shown in Fig. 1. vc,τ is calculated via Definition 1 with circles discretized by 65 points (cf.
Fig. 1). The noncausal distribution v∞,0 was calculated via the forward Euler method for the standard diffusion equation
with discretization

1x := R/10 and 1t :=
1x2

2N D0

such that

1x2

2N 1t
≥ D0 (convergence condition)

holds. A time sequence of vc,τ (·, t) and v∞,0(·, t) for the time instants t =
τ
3 , 2 τ

3 , τ , . . . , 2 τ is visualized in Figs. 2 and
3, respectively. As expected each distribution v∞,0(·, t) is very smooth, in contrast to the distribution vc,τ (·, t) of causal
diffusion. No edge or corner appears in the case of standard diffusion. Although it is not visible, in contrast to vc,τ (·, t), the
support of v∞,0(·, t) does not lie within the image.

4. Basic properties of the forward operator

The calculation of a diffusing substance over the time period T with initial concentration u ∈ L1(RN) corresponds
to the evaluation of the forward operator (7). We define this as the direct problem and consider the estimation of the
initial concentration u from appropriate data w. That is to say the solution of the Fredholm integral equation of the first
kind

FT (u) = w for given data w. (13)
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Fig. 2. Visualization of causal diffusion for the time sequence ( τ
3 , 2 τ

3 , τ , . . . , 2 τ) with discretization 1x = 9.6 · 10−6 and 1t = τ = R/c. The initial
distribution is shown in Fig. 1.

This inverse problem requires the knowledge of c, τ and T . In this section we investigate the properties of the forward
operator and in the subsequent section we discuss and perform numerical simulations of the inverse problem. We use the
notation:

Definition 2. (a) Let T > 0 and r > 0. Then we define ΩT := Br+c T (0) for T > 0, where Br(0) denotes the open ball with
center 0 and radius r .

(b) L2c (R
N) is defined as the space of L2-functions with compact support in RN .
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Fig. 3. Visualization of standard diffusion for the time sequence ( τ
3 , 2 τ

3 , τ , . . . , 2 τ) with discretization 1x := R/10 and 1t :=
1x2

2N D0
. The initial

distribution is shown in Fig. 1.

Theorem 3. Let T > 0 and Gc,τ be as in Definition 1. The sets of zeros of Ĝc,τ (·, T ) is discrete and countably infinite, and the
operator FT : L1c (R

N) → L1c (R
N) is injective.

Proof. (a) For t = τn + s with n ∈ N0 and s ∈ (0, τ ], we have Ĝc,τ (k, τn + s) = Ĝc,τ (k, τ )n Ĝc,τ (·, s). Hence it is sufficient
to show that the sets of zeros of Ĝc,τ (·, s) is discrete and countably infinite. But this from Theorem 9 and the fact that
Υ1(s) = cos(s) and Υ2(s) = J0(s) have discrete and countably infinite zeros.
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(b) For the injectivity of FT . Since u and Gc,τ (·, T ) have compact support, û and Ĝc,τ (·, T ) exist and the Convolution
Theorem holds (cf. Theorem 7.1.15 in [27]). Hence

F {FT (u)} = Ĝc,τ (k, T ) û

which implies that

FT (u) = 0 ⇒ u = 0

is equivalent to

Ĝc,τ (·, T ) û = 0 ⇒ û = 0.

From Ĝc,τ (·, T ) û = 0 and part (a) of the proof we infer that û vanishes on a non-empty open setM . Because u has compact
support, the Paley–Wiener Theorem implies that û can be extended to an analytic function ûext on CN satisfying ûext(k) = 0
for k ∈ M . Therefore ûext is the zero function and consequently u vanishes. This proves that FT is injective. �

Theorem 4. The operator FT : L2c (R
N) → L2c (R

N) is positive, linear and self-adjoint.

Proof. First we show that FT : L2c (R
N) → L2c (R

N) is well-defined. Because L2c (R
N) is a subspace of a Hilbert space, it is

a Hilbert space, too. If u ∈ L2c (R
N), then u ∈ L1c (R

N) and thus FT (u) ∈ L1(RN) by part (a) of Theorem 1. Since Gc,τ and
u have compact support, their convolution exists and has compact support (cf. Theorem 7.1.15 in [27]). Hence we obtain
FT (L2c (R

N)) ⊆ L1c (R
N). According to Parseval’s formula and

|(2π)N/2 Ĝ(k, t)| ≤ C for some constant C,

which follows from Theorem 9 (cf. Appendix) and Theorem 2, we have

∥FT (u)∥2
L2 = (2π)N∥F {FT (u)}∥2

L2 = (2π)N C


RN
|Ĝ(k, t) û(k)|2 dk

≤ C ∥u∥2
L2 < ∞,

i.e. FT (u) ∈ L2c (R
N). Hence the operator is well-defined.

The positivity and linearity of the operator FT follows at once from Definition 1 and Theorem 1, respectively.
Since Gc,τ (x − x′, T ) = Gc,τ (x′

− x, T ), it follows that

⟨FT (u), w⟩L2 =


RN


RN

Gc,τ (x − x′, T )u(x′) w(x) d x′ d x = ⟨u, FT (w)⟩L2

for w ∈ L2c (R
N) and thus FT is self-adjoint. This concludes the proof. �

Theorem 5. If N = 1 and T > 0, then Gc,τ (·, T ) is a discrete and positive measure and the operator FT : L2(Ω0) → L2(ΩT ) is
not compact.

Proof. Without loss of generality we set c = 1. According to Theorem 2 we have for s ∈ (0, τ ]:

Gc,τ (x, s) = F −1
{cos(k s)}(x) =

1
2

[δ(x − s) + δ(x + s)],

which implies thatGc,τ (x, T ) is a convolution of positive distributionswith singular support. ThereforeGc,τ (·, T ) corresponds
to a discrete and positive measure. That FT is not compact follows from the fact that

FT = (Rτ + Lτ )
m (Rs + Ls) for T = τm + s,

where Rs, Ls : L2(R) → L2(R) are noncompact operators defined by

Rs(u) := u(· − s) and Ls(u) := u(· + s). �

Theorem 6. If N = 2 and T > 2 τ , then Gc,τ (·, T ) ∈ L2c (R
2) and the operator FT : L2(Ω0) → L2(ΩT ) is compact.

Proof. Without loss of generality we set c = 1. Let T = τm + s with m ≥ 2 and s ∈ (0, τ ]. From Theorem 2 together with
|J0(r)| ≤ 1 and the asymptotic behavior (23) of J0 (cf. Appendix), we get for N = 2:

∥Ĝc,τ (·, T )∥2
L2(R2)

= 2π


∞

0
J2m
0 (r τ) J20(r s) r d r

≤ A +
23

π τ s


∞

M

1
r2

d r,
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where

A := 2π

 M

0
J2m
0 (r τ) J20(r s) r d r < ∞

andM > 0. Because of


∞

M 1/r2 d r = 1/M , we arrive at

∥Ĝc,τ (·, T )∥2
L2(R2)

= A +
23

π τ s
1
M

< ∞,

i.e. Ĝc,τ (·, T ) lies in L2(R2). Consequently,Gc,τ (·, T ) lies in L2c (R
2). The compactness of the operator FT (forN = 2 and T > 2 τ )

follows from Theorem 8.15 in [28]. �

Theorem 7. If N ≥ 3 and T > τ , then Gc,τ (·, T ) ∈ L2c (R
3) and the operator FT : L2(Ω0) → L2(ΩT ) is compact.

Proof. Without loss of generality we set c = 1. Let T = τm + s with m ∈ N and s ∈ (0, τ ]. From Theorem 2 and the
estimation (21) in Theorem 9, it follows for N ≥ 3:

∥Ĝc,τ (·, T )∥2
L2(R2)

= |S1(0)|


∞

0
Υ 2m

N (r s) Υ 2
N (r s) rN−1 d r

≤ |S1(0)|

A + C2 (m+1)

N


∞

M

rN−1

(r s)(m+1) (N−1)
d r


,

where

A := |S1(0)|
 M

0
Υ 2m

N (r s) Υ 2
N (r s) rN−1d r < ∞

andM > 0 is sufficiently large. Because of


∞

M r−(N−1) d r = −
1

(N−2) M
−(N−2), we end up with

∥Ĝc,τ (·, T )∥2
L2(R2)

= |S1(0)|


A +

C2 (m+1)
N

s(m+1) (N−1) (N − 2)MN−2


< ∞,

i.e. Ĝc,τ (·, T ) lies in L2(R2). As a consequence, Gc,τ (·, T ) lies in L2c (R
2). The compactness of the operator FT (for N = 2 and

T > 2 τ ) follows from Theorem 8.15 in [28]. �

From the Paley–Wiener–Schwartz Theorem (cf. [27]), it follows that the Moore–Penrose inverse F Ď is uniquely defined
by

F ĎT := (F Ďτ )m F Ďs (T = τm + s, s ∈ (0, τ ])

with

F {F Ďs (w)}(k) :=
ŵ(k)

Ĝ(k, s)
χΩ0(s)(k) for k ∈ Ω0(s). (14)

Therefore if the data lies in

R(FT ) :=


w ∈ L2c (R

N)

 ŵ

Ĝ(·, τ )m Ĝ(·, s)
∈ L2(RN)


,

then the initial concentration u can be estimated in principle. In contrast to standard diffusion Ĝ(k, s) has countably infinite
and discrete zeros (cf. Theorem 3). Hence it follows:

Corollary 1. A necessary condition for w ∈ R(FT ) is that ŵ has a zero of order ≥ m at k∗ if Ĝc,τ (·, T ) has a zero of order m
at k∗.

According to Theorem 9 for N ∈ N we have

ΥN(t) ≍ t(N−1)/2 for t → ∞

and thus the envelope of k → Ĝc,τ (k, T ) decreases as

k → aT |k|
(⌊T/τ⌋+1) (N−1)/2 for |k| → ∞,

where

aT := (c τ)⌊T/τ⌋ (N−1)/2 (c (T − ⌊T/τ⌋ τ))(N−1)/2 .

Here ⌊a⌋ denotes the largest integer ≤ a (and m ≡ ⌊T/τ⌋, s ≡ T − τ ⌊T/τ⌋). Hence we get the following.
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Corollary 2. If N = 2 and T > 2 τ or N ≥ 3 and T > τ , then the inverse problem (13) is ill-posed, but not exponentially
ill-posed.

5. Simulation of the inverse problem

5.1. Simulation of data via a particle method

In order to avoid an inverse crime we calculate the synthetic data for the inverse problem by a particle method (cf. [29]).
One of the advantages of a particle method (as long as no mass flows over the boundary) is that the total mass is conserved.
For simplicity we focus on the 2D-case and drop the subscripts c and τ in Gc,τ and vc,τ .

5.1.1. The particle method
The initial distribution u is approximated by an image, i.e. a piecewise constant function with quadratic pixels of length

1x. At time instant t = τn−1 (n ∈ N) the mass concentrated in a pixel separates in M parts and each part propagates on a
straight linewith constant speed c in a randomly chosen direction d during the time period τ . Here the directions are chosen
with equal probability out of the set

{A(ϕ) e1 | ϕ = 0, π/M, . . . , (M − 1) π/M},

where e1 := (1, 0)T and A(ϕ) denotes thematrix that rotates the argument about the angle ϕ in positive direction. This kind
of data simulation allows that more than one ‘‘particle’’ go in the same direction such that a special type of noise is included
in the simulated data. To each image pixel is then associated the number of all particles that lie within the pixel multiplied
by 1/M .

5.1.2. Noise
In order to avoid an inverse crime we perturbed the length of the radius R(τ ) = c τ by ±0.25% of its original length

(uniformly distributed perturbation). In addition, uniformly distributed L2-noise with positive mean value were added to
the simulated data. As noise level we have chosen δ = 0.005 (0.5%).

5.1.3. Convergence of the particle method
In the followingwe denote byG[M](x, t) the distribution simulatedwith the particlemethod andwith initial distribution

δ[M](x) :=


1 if max(|x|, |y|) <

1x
2

0 elsewhere.

From analysis it is known that

δ[M](x) M→∞
−→ δ(x) and G[M](x, t) M→∞

−→ G(x, t) in D ′(R2). (15)

Here G denotes the Green function of causal diffusion (cf. Definition 1) and D ′(R2) denotes the space of distributions on R2.
We now show that the algorithm described above for an initial distribution u provides us with an approximate solution of
FT (u), where FT denotes the forward operator (7).

Theorem 8. Let u ∈ L1c (R
2) and v(·, t) := G(·, t) ∗x u. For

v[M](·, t) := G[M](·, t) ∗x u (t > 0),

it follows that

v[M](·, t)
M→∞
−→ v(·, t) in L1(R2).

Proof. Since the space C∞

0 (R2) is dense in L1(R2), we assume without loss of generality that u ∈ C∞

0 (R2). We have

∥v[M](·, t) − v(·, t)∥L1 =


R2

|f [M](x)| dx

with

f [M](x) =


R2

[G[M](x′, t) − G(x′, t)]u(x − x′) dx′. (16)

The function f [M] is an element of C∞

0 (R2), since G[M](·, t) − G(·, t) has compact support and u ∈ C∞

0 (R2) (cf.
Proposition 32.1.1 in [30]). From (15) together with u ∈ C∞

0 (R2), it follows that the right hand side of (16) converges
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pointwise and uniformly to zero on compact sets. This together with the fact that f [M] has compact support implies

∥v[M](·, t) − v(·, t)∥L1
M→∞
−→ 0.

As was to be shown. �

5.2. Numerical solution of the backwards diffusion problem

For solving the inverse problem we use the Landweber method (cf. e.g. [16–18,21]). Since FT : L2c (R
N) → L2c (R

N) is a
positive, linear and self-adjoint operator (cf. Theorem 4) the Landweber method reads as follows2

un+1 = P{un − ω FT [FT (un) − wδ
]},

where ω denotes the relaxation parameter, wδ denotes the noisy data and P denotes the orthogonal projection onto

R(P) = {u ∈ L2 | u ≥ 0}.

The use of the projection operator guarantees that the solution is a positive (mass) distribution. As parameter choice rule
we use the discrepancy principle, i.e. the iteration is stopped as soon as

∥FT (un+1) − wδ
∥L2 < η δ (η ≥ 2)

is true. The relaxation parameter was chosen as

ω :=
1
4

∥FT (un) − wδ
∥
2
L2

∥FT [FT (un) − wδ]∥
2
L2

.

In order to avoid an inverse crime, the data wδ is calculated by the particle method (M = 65) described above and the
calculation of the Forward operator FT in each iteration step is performed by integrals over circles (cf. Definition 1). Each
circle is discretized by 50 points.

We now present two simulations of the backwards diffusion problem for T = τ and T = 3 τ , respectively.

Example 2. Consider the initial distribution shown in Fig. 4. This image consists of 6822 quadratic pixels of length 1x :=

1/681. As characteristic parameters of causal diffusion we have chosen c = 1 and τ = 81x/c. Hence the characteristic
radius R(τ ) is 8 times 1x. As described above, the length of the radius R(τ ) was randomly perturbed by ±0.25% of its
original length. The data acquisition is performed at time T = τ and 0.5% (uniformly distributed) L2-noise was added to
the simulated data. The numerical results are visualized in Figs. 4 and 5. As expected, the estimation of large structures is
much better than for smaller ones. Since the data acquisition is performed at a quite early time the estimation works well
(for t < τ the forward operator is not compact). The discrepancy principle stops optimally for η = 9.4 after 6 steps.

Example 3. We consider the inverse problem from Example 2 again, but for the later data acquisition time T = 3 τ . The
discrepancy principle stops optimally for η = 5.9 after 6 steps. As Fig. 6 shows it is not possible to restore the edges of the
question mark, since the data are too much ‘‘smooth’’. This result reflects the ill-posedness of the problem (for t > 2 τ the
forward operator is compact).

6. Conclusions

The theoretical and numerical results of this paper show that the causal backwards diffusion problem is practically
solvable for data acquisition time T ≤ τ but not for T ≥ 3 τ , where τ is a time period that characterizes causal diffusion
(cf. Definition 1). Although the causal backwards diffusion problem is not exponentially ill-posed, the numerical solution
of this problem is strongly limited by irreversibility. Indeed, as explained in Section 1.3, in order to perform a time reversal
method, the set of data

∂v

∂t
(·, n τ−) | n ∈ N0 and n τ < T


∪


∂v

∂t
(·, T−)


is required which cannot be obtained by experiment.

Why are these facts not always numerically noticeable? This can be explained as follows. According to Section 3 the
causal diffusion model with parameters c, τ and the discretized standard diffusion model with parameter D lead to similar
results for time instants t ≥ τ if

D =
c2 τ

2N
(N space dimension).

2 For simplicity, we write un, w
δ instead of un[M], wδ

[M].
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Fig. 4. Numerical solution of the inverse problem with 0.5% uniformly distributed L2-noise for data acquisition time T = τ and T = 3 τ . For T = τ and
T = 3 τ , the discrepancy principle stops optimally for η = 9.4 (6 steps) and η = 5.9 (6 steps), respectively.

Consider the discretized causal backwards diffusion problem for the two cases:

(1) 1t ≈ τ ≪ T : the problem is ‘‘irreversible’’ and severe numerical problems are expected.
(2) 1t ≪ τ = T : the problem is ‘‘reversible’’ and no severe numerical problems are expected.
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Fig. 5. Details to the second row in Fig. 4 (T = τ ). The left column shows the left top part of the big question mark and the right column shows the small
question mark and the small apostrophe.

The value of τ is usually very small and hence the second case τ = T may not be reasonable. But this fact is not noticeable if
the standard diffusionmodel is used, because the parameter τ does not appear there. In other words, whether the time T for
the standard diffusion model with diffusion constant D is large or small cannot be derived from the value of D. Thus there
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Fig. 6. Details to the third row in Fig. 4 (T = 3 τ ). The left column shows the left top part of the big question mark and the right column shows the small
question mark and the small apostrophe.

are cases where the standard backwards diffusion model can be numerically solved, however, they may not be relevant for
applications.

In particular, we see that a better understanding and numerical solution of direct and inverse problemsmight be achieved
if causal models are used.



236 R. Kowar / J. Math. Anal. Appl. 400 (2013) 222–238

Appendix

We use the following notation for the Fourier transformation:

f̂ (k) := F {f }(k) := (2π)−N/2


RN
ei k·xf (x) dx.

By ǧ(x) and F −1
{g}(x) we denote the inverse Fourier transform.

In order to derive an analytic representation of the Fourier transform of the Green function of causal diffusion, we need
the following two lemmata.

Lemma 1. For N ∈ N with N > 1 and j ∈ N, let

I(N, j) :=

 π/2

−π/2
sinj(ϕ) cosN−2(ϕ) dϕ.

If j is odd, then I(N, j) = 0 and if j is even, then

I(N, j)
I(N, 0)

=
1 · 3 · 5 · · · (j − 1)

N · (N + 2) · (N + 4) · · · (N + j − 2)
. (17)

Proof. The claim follows from Integration by Parts and Induction. �

Lemma 2. Let

ΥN(t) :=

∞
j=0

(−1)j · a2 j · t2 j for t ∈ (0, ∞) (18)

with a0 = 1 and

a2 j =
1

(2 j)!
1 · 3 · 5 · · · (2 j − 1)

N · (N + 2) · (N + 4) · · · (N + 2 j − 2)
(j ∈ N).

The series (18) is absolutely convergent and
S1(0)

δ(x + c s y)
|S1(0)|

dσ(y) =
F −1

{ΥN(| · | c s)}(x)
(2π)N/2

for x ∈ RN , s ∈ (0, τ ].

Proof. That the series representation (18) converges absolutely follows at once from the Quotient Criterion.
Let x, k ∈ RN . From

F {δ(x + a1 y)}(k) = (2π)−N/2 e−i a1 (k·y) (a1 > 0 constant)

and 
S1(0)

ea2 (k·y)dσ(y) =


S1(0)

ea2 |k| (e1·y)dσ(y) (a2 ∈ C constant),

it follows that

ĝ(k, s) := F


S1(0)

δ(· + c s y)
|S1(0)|

dσ(y)


(k) =


S1(0)

e−i (e1·y) |k| c s

(2π)N/2 |S1(0)|
dσ(y)

for s ∈ [0, τ ] and k ∈ RN . Instead of e1 we can also use anyone in {e2, e3, . . . , eN}. Expanding the exponential function
yields

(2π)N/2 ĝ(k, s) =

∞
j=0

(−1)j
(|k| c s)2 j

(2 j)!
d2 j (19)

with

dj :=


S1(0)

(e1 · y)j

|S1(0)|
dσ(y) for j ∈ N.

We see at once that dj = 0 if j is odd and d0 = 1. For the convenience of the reader, we consider the cases N = 1 and N > 1
separately.
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(a) For N = 1 we have

S1(0)

dσ(y) ≡


R(δ(y − 1) + δ(y + 1)) d y and |S1(0)| = 2, and thus

dj =
1j

+ (−1)j

2
=


1 if j is even
0 if j is odd.

Inserting this into the series representation yields the claim.
(b) Let N > 1. The surface measure of the N-dimensional orthogonal coordinate system (cf. [31])

(r, ϕ1, . . . , ϕN−1) ∈ [0, ∞) × (−π, π) × (−π/2, π/2)N−2

is given by dσ = rN−1 dϕ1
N−1

l=2 cosl−1(ϕl) dϕl. From this we obtain dj =
I(N,j)
I(N,0) with I(N, j) defined as in Lemma 1. This

and Lemma 1 implies d2 j−1 = 0, d0 = 1 and

d2 j =
1 · 3 · 5 · · · (2 j − 1)

N · (N + 2) · (N + 4) · · · (N + 2 j − 2)
for j > 0.

Inserting this into the series (19) yields the claimed series.

This concludes the proof. �

The following theorem enables us to specify the space Fourier transform of the Green function of causal diffusion for
every dimension N and to prove some compactness results for the forward operator of causal diffusion.

Theorem 9. Let N ∈ N with N ≥ 3 and t > 0. The function ΥN defined as in (18) satisfies

ΥN(t) = −
(N − 2)

t
Υ ′

N−2(t) (20)

with

Υ1(t) = cos(t) and Υ2(t) = J0(t).

Here J0 denotes the Bessel function of first kind and order zero. Moreover, we have

|ΥN(t)| ≤ CN t−(N−1)/2 for sufficiently large t (21)

and some constant CN > 0.

Proof. The relation between ΥN and Υ ′

N−2 follows at once from the series representation (18). Moreover,

(a) if N = 1, then a2 j =
1

(2 j)! and thus Υ (t) = cos(t) and

(b) if N = 2, then a2 j =
1

[2j (j!)]2
which implies Υ (t) = J0(t) (cf. [26]).

In order to prove the estimation we use

(tN−2 ΥN(t))′

(N − 2) tN−3
= ΥN−2(t), (22)

which follows from the series representation (18). We perform a proof by induction. Since cos(t) is bounded and the Bessel
function J0(t) satisfies the asymptotic behavior (cf. [32])

J0(t) ≍


2

π t
cos


t −

π

4


for t → ∞, (23)

the estimation holds for N = 1 and N = 2. We assume that the estimation (21) holds and prove

|ΥN+2(t)| ≤ CN+2 t−(N+1)/2 for sufficiently large t.

From (20) and (22) we get

|ΥN+2(t)| =

Nt Υ ′

N(t)
 ≤

N (N − 2)
t2

(|ΥN(t)| + |ΥN−2(t)|)

≤
N (N − 2) (CN + CN−2)

t(N+1)/2
,

which proves the claim. �
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