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a b s t r a c t

A class of multivariable weighted geometric means of positive definite matrices admitting
Jensen-type inequalities for geodesically convex functions is considered. It is shown
that there are infinitely many such geometric means including the weighted inductive,
Bini–Meini–Poloni and Karcher means and each of these means provides a geometric
mean majorization on the space of positive definite matrices. Some connections between
our geometric mean majorizations and classical results of the standard majorization
of real numbers are discussed. In particular, we establish the Hardy–Littlewood–Pólya
majorization theorem and also Rado’s theorem and Schur’s convexity theorem for the
weighted Karcher mean.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Hardy–Littlewood–Pólya–Rado majorization theorem (cf. [3]) says in particular that for an n × n doubly stochastic
matrix W = (wij) and x = (x1, . . . , xn) ∈ Rn, y = Wx is a convex combination of the n! vectors xσ = (xσ(1), . . . , xσ(n))
where σ varies over the permutation group Sn = {σ1, . . . , σn!} of n-letters (Rado’s theorem), that is,

Wx =

n!
k=1

µkxσk (1.1)

for some probability vector µ = (µ1, . . . , µn!) ∈ Rn!, and equivalently (Hardy–Littlewood–Pólya theorem), for every
continuous convex function f defined on an interval I containing xi and yi, i = 1, . . . , n,

n
i=1

f (yi) ≤

n
i=1

f (xi). (1.2)

Furthermore for every continuous convex function f : In → R invariant under the permutation of coordinates (Schur’s
convexity),

f (y1, . . . , yn) ≤ f (x1, . . . , xn). (1.3)

Embedding Rn into the space of n × n diagonal matrices and applying the exponential function, we may restate these
beautiful results equivalently for the n × n positive diagonal matrices, where we replace the arithmetic mean by the
geometric mean and a convex function by a geodesically convex function, f (a1−tbt) ≤ (1 − t)f (a) + tf (b), t ∈ [0, 1]. For
instance, Rado’s theorem is equivalent to the statement that for a positive diagonal matrix diag(a1, . . . , an), the diagonal
matrix whose ii-th entry is the ωi

:= (wi1, . . . , win)-weighted geometric mean of positive reals a1, . . . , an is the diagonal
matrix whose ii-th entry is the µ-weighted geometric mean of the n! positive real numbers aσ1(i), . . . , aσn!(i).
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Themain purpose of this paper is to extend these results on diagonalmatrices to the non-commutative setting of positive
definitematrices by taking amultivariableweighted geometricmean of positive definitematrices, amultivariable extension
of theweighted geometricmean A#tB = A1/2(A−1/2BA−1/2)tA1/2 of two positive definitematrices A and B, and a geodesically
convex function which satisfies f (A#tB) ≤ (1− t)f (A) + tf (B). There is no formal definition of a weighted geometric mean
of finite number of positive definite matrices and defining multivariable geometric means is a non-trivial task that has been
a recent topic of interest in core linear algebra. However, the open convex cone Pm of m × m positive definite matrices has
various Finsler structures where the curve t → A#tB on [0, 1] acts as a minimal geodesic between A and B, which provides
various types of geodesically convex sets and functions.

There are infinitely many multivariable weighted geometric means of positive definite matrices that are independent of
matrix size and number of variables that satisfy theweighted version of the ten Ando–Li–Mathias properties [1]. Specifically,
a weighted geometric mean G consists of maps

Gm
n : ∆n × Pn

m → Pm

such that eachGm
n satisfies theweighted Ando–Li–Mathias properties, where∆n is the simplex of positive probability vectors

convexly spanned by the unit coordinate vectors andPm is the convex cone ofm×m positive definitematrices. Theweighted
Karcher mean based on the Riemannian trace metric and the weighted Bini–Meini–Poloni mean defined by induction using
a symmetrization procedure are standard examples of weighted geometric means. In fact, a currently interesting problem
for the Karcher mean is to find properties that distinguish it from other geometric means [6,24,29,23,25].

Let G be a weighted geometric mean and letW = (wij)n×n be a doubly stochastic matrix. A variant of Rado’s theorem for
positive definite matrices would be stated in the following from: for an n-tuple A = (A1, . . . , An) ofm×m positive definite
matrices, the block diagonal matrix whose ii-entry is Gm

n (ωi
; A), ωi

= (wi1, . . . , win) can be realized as a Gmn
n! -weighted

mean of the n!-block diagonal matrices A(i)
= diag(Aσi(1), . . . , Aσi(n)), that is, there is a probability vector µ ∈ Rn! satisfyingGm

n (ω1
; A)

. . .

Gm
n (ωn

; A)

 = Gmn
n! (µ; A(1), . . . , A(n!)).

Rado’s problem in the preceding form gives an important notion of geometric mean majorization for positive definite
matrices. Let G be a weighted matrix geometric mean. For A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ Pn

m, we define A ≺
G B if

there exists a doubly stochastic matrixW = (wij)n×n such that for each i = 1, . . . , n,

Ai = G(wi1, . . . , win; B).

We construct infinitely many weighted geometric means such that if A ≺
G B, then {A1, . . . , An} ∈ [B1, . . . , Bn], the geodesic

convex hull of {B1, . . . , Bn} in the Riemannianmanifold of positive definitematrices and
n

i=1 f (A
±1
i ) ≤

n
i=1 f (B

±1
i ) for any

continuous geodesically convex function f (Jensen inequality). We further establish Rado’s theorem and Schur’s convexity
theorem for the Karcher mean, among other weighted geometric means.

2. Invariant metrics

Let H = Hm be the space of Hermitian matrices of a fixed sizem, and P = Pm the corresponding convex cone of positive
definite Hermitian matrices. For X, Y ∈ H, we write X ≤ Y if Y − X is positive semidefinite, and X < Y if Y − X is positive
definite. For A ∈ H, λj(A)’s are denoted by the eigenvalues of A in non-increasing order: λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A).

For A, B ∈ P and t ∈ R, the t-weighted geometric mean of A and B is defined by

A#tB = A1/2(A−1/2BA−1/2)tA1/2.

The following properties for the weighted geometric mean are well-known [17].

Lemma 2.1. Let A, B, C,D ∈ P and let t ∈ R. Then

(i) A#tB = A1−tBt for AB = BA;
(ii) (aA)#t(bB) = a1−tbt(A#tB) for a, b > 0;
(iii) (Löwner–Heinz inequality) A#tB ≤ C#tD for A ≤ C, B ≤ D and t ∈ [0, 1];
(iv) M(A#tB)M∗

= (MAM∗)#t(MBM∗) for non-singular M;
(v) A#tB = B#1−tA, (A#tB)−1

= A−1#tB−1;
(vi) (λA + (1 − λ)B)#t(λC + (1 − λ)D) ≥ λ(A#tC) + (1 − λ)(B#tD) for λ, t ∈ [0, 1];
(vii) det(A#tB) = det(A)1−tdet(B)t ;
(viii) ((1 − t)A−1

+ tB−1)−1
≤ A#tB ≤ (1 − t)A + tB for t ∈ [0, 1];

(ix) (A#tB)#s(A#uB) = A#(1−s)t+suB for any s, t, u ∈ R.
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A normΦ onRm is called a symmetric gauge function if it is invariant under permutations and sign changes of coordinates.
Every symmetric gauge function Φ induces a unitarily invariant norm on H

∥A∥Φ := Φ(λ1(A), λ2(A), . . . , λm(A)),

and conversely all unitarily invariant norms arise in this way by a theorem of von Neumann. Let Φ be a symmetric gauge
norm. For A ∈ P, we define a norm on the tangent space TA(P) = {A} × H ≡ H by ∥X∥A = ∥A−1/2XA−1/2

∥Φ . This yields a
Finsler metric on P. For a path γ : [0, 1] → P, we define its length as

LΦ(γ ) =

 1

0
∥γ −1/2(t)γ ′(t)γ −1/2(t)∥Φdt (2.4)

and for A, B ∈ P, its distance

dΦ(A, B) = inf{LΦ(γ ) : γ is a path from A to B}. (2.5)

Theorem 2.2 ([4]).We have dΦ(A, B) = ∥ log(A−1/2BA−1/2)∥Φ and dΦ is a complete metric distance on P such that for A, B ∈ P
and for invertible matrix M,

(i) dΦ(A, B) = dΦ(A−1, B−1) = dΦ(MAM∗,MBM∗);
(ii) dΦ(A#B, A) = dΦ(A#B, B) =

1
2dΦ(A, B), where A#B = A# 1

2
B;

(iii) dΦ(A#tB, A#sB) = |s − t|dΦ(A, B) for all t, s ∈ [0, 1];
(iv) dΦ(A#tB, C#tD) ≤ (1 − t)dΦ(A, C) + tdΦ(B,D) for all t ∈ [0, 1].

By the triangular inequality,

dΦ(A#tB, C#sD) ≤ (1 − t)dΦ(A, C) + tdΦ(B,D) + |t − s|dΦ(C,D) (2.6)

for all s, t ∈ [0, 1]. Indeed,

dΦ(A#tB, C#sD) ≤ dΦ(A#tB, C#tD) + dΦ(C#tD, C#sD)

≤ (1 − t)dΦ(A, C) + tdΦ(B,D) + |t − s|dΦ(C,D).

Example 2.3 (Schatten p-Norms). For 1 < p < ∞, let Φp be the lp-norm, which is a symmetric gauge function. The
corresponding unitarily invariant norm on H is known as the Schatten p-norm and is defined by

∥X∥p =


m
i=1

λi(|X |)p

 1
p

,

where |X | := (X2)
1
2 . The corresponding Finsler distance metric is given by dp(A, B) = ∥ log(A−1/2BA−1/2)∥p on P. In [10]

C. Conde has proved that

d2p(X, A#B) ≤
1
2
d2p(X, A) +

1
2
d2p(X, B) −

p − 1
4

d2p(A, B) (p ≤ 2)

dpp(X, A#B) ≤
1
2
dpp(X, A) +

1
2
dpp(X, B) −

1
2p

dpp(A, B) (p ≥ 2)

for all X > 0. (The formulas actually extend to the setting of compact operators on a separable Hilbert space.)

Example 2.4 (Riemannian Trace Metric). The Frobenius norm ∥ · ∥2 gives rise to the Riemannian structure

⟨X, Y ⟩A = Tr(A−1XA−1Y ),

where A ∈ P and X, Y ∈ TA(P) = H. In this case, the curve t → A#tB is the unique minimal geodesic (up to parametriza-
tion) from A to B and A#B is a unique midpoint between A and B. One important property of the metric δ(A, B) =

∥ log A−1/2BA−1/2
∥2 is the semiparallelogram law

δ2(Z, X#Y ) ≤
1
2
δ2(Z, X) +

1
2
δ2(Z, Y ) −

1
4
δ2(X, Y )

and its general form for any t ∈ [0, 1]

δ2(Z, X#tY ) ≤ (1 − t)δ2(Z, X) + tδ2(Z, Y ) − t(1 − t)δ2(X, Y ). (2.7)

The metric space (P, δ) is an important example of a Hadamard space, a complete metric space satisfying the semiparallel-
ogram law.
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Example 2.5 (Thompson Metric). For p = ∞, the metric on P arising from the spectral norm ∥ · ∥∞ is given by d∞(A, B) =

∥ log(A−1/2BA−1/2)∥∞ and coincides with the Thompson metric

d∞(A, B) = max{logM(B/A), logM(A/B)}, (2.8)

where M(B/A) = inf{α > 0 : B ≤ αA} = λ1(A−1/2BA−1/2) = λ1(A−1B). We note that d∞(A, B) = max{log λ1(A−1B),
log λ1(B−1A)}.

3. Convex sets and functions

Definition 3.1. A subset C ⊂ P is called geodesically convex (occasionally, in context, convex) if A#tB ∈ C for all t ∈ [0, 1]
whenever A, B ∈ C . A function f : C → R on a geodesically convex set C is called geodesically convex if for any A, B ∈ C
and t ∈ [0, 1],

f (A#tB) ≤ (1 − t)f (A) + tf (B).

Remark 3.2. Alternatively f : P → R is geodesically convex if and only if for all A, B ∈ P, the composition f γA,B : [0, 1] → R
is convex in the usual sense, where γA,B(t) = A#tB.

Proof. Since by Lemma 2.1 (ix)

γA,B((1 − t)s + tu) = A#(1−t)s+tuB = (A#sB)#t(A#uB) = γA,B(s)#tγA,B(u),

we have

f γA,B((1 − t)s + tu) = f (γA,B(s)#tγA,B(u)) ≤ (1 − t)f γA,B(s) + tf γA,B(u)

if f is convex. Conversely letting s = 0 and u = 1 in the first equation yields

f (A#tB) = f γA,B(0)#t f γA,B(1) ≤ (1 − t)f γA,B(0) + tf γA,B(0) = (1 − t)f (A) + tf (B)

if f γA,B is convex in the usual sense. �

Remark 3.3. By the Hermite–Hadamard inequality of convex functions on real intervals, which says that for a convex
function g on [a, b],

g

a + b
2


≤

1
b − a

 b

a
g(x)dx ≤

g(a) + g(b)
2

,

we have

f (A#B) ≤

 1

0
f (A#tB)dt ≤

f (A) + f (B)
2

(3.9)

for any geodesically convex function f on P. See [11].

For C ⊆ P, let M(C) = {X#Y : X, Y ∈ C}. Note C ⊆ M(C) since X#X = X . Inductively set Mn+1(C) = M(Mn(C)).
Then it is easy to see that M∞(C) :=


n M

n(C) is the smallest midpoint-convex set containing C . It turns out [7,15] that
the closure ofM∞(C) is the smallest closed, convex set containing C . We call it the closed convex hull of C and denote by [C].
It is straightforward to see that [[C1] ∪ [C2]] = [C1 ∪ C2]. We denote the closed convex hull of a finite set {X1, . . . , Xn} by
[X1, . . . , Xn].

Proposition 3.4 ([15]).Wehave∆Φ[C] = ∆ΦC for any subset C of P and any symmetric gauge functionΦ , where∆ΦC denotes
the dΦ-diameter of the set C.

We list some examples of geodesically convex sets and convex functions.

Proposition 3.5. (1) Every dΦ-ball is geodesically convex;
(2) Every Löwner order interval [X, Y ] := {Z ∈ P : 0 < X ≤ Z ≤ Y } is geodesically convex;
(3) Every closed subset of Pm which is stable under the arithmetic A+B

2 and harmonicmean 2(A−1
+B−1)−1 is geodesically convex;

(4) For a non-singular M, the sets

{X > 0 : MXM∗
= X}, {X > 0 : MXM∗

= X−1
}

are geodesically convex;
(5) The map dα

Φ(·, Z) is geodesically convex for any α ≥ 1;
(6) The trace and determinant functions are geodesically convex;
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(7) The log-determinant function X → log det(X) is geodesically convex;
(8) If f is operator monotone and convex and g : P → R is monotone and convex, then g ◦ f is geodesically convex; and
(9) If Ψ : Mm → Mk is a strictly positive linear map and g : Pk → R is monotone and convex, then g ◦Ψ is geodesically convex.

Proof. (1) and (5): From Theorem 2.2.
(2), (6) and (7): From Lemma 2.1.
(3) and (4): See [21,22].
(8) Let f be an operator monotone and convex function and let g : P → R be monotone and convex. Then f (A#tB) ≤

f ((1 − t)A + tB) ≤ (1 − t)f (A) + tf (B) for all t ∈ [0, 1]. Since g is monotone and convex,

(g ◦ f )(A#tB) ≤ g((1 − t)f (A) + tf (B)) ≤ (1 − t)(g ◦ f )(A) + t(g ◦ f )(B),

which implies the convexity of g ◦ f .
(9) Follows from Ψ (A#tB) ≤ Ψ (A)#tΨ (B) (cf. Theorem 4.1.5 of [5]). �

See Example 2.2.1 of [5] for a family of positive linear maps and also [22] for a one-parameter family of geodesically
convex setswhich covers the spaceP.Wenote that anymap satisfying f (A#tB) ≤ f (A)#t f (B) = f (A)1−t f (B)t for all t ∈ [0, 1]
is geodesically convex.

Remark 3.6. We have by Example 2.3 that d2p(·, Z) is uniformly convex for 1 < p ≤ 2 and dpp(·, Z) for p > 2 is uniformly
convex. Here a map f : P → R is called uniformly convex with respect to on a complete metric d on P if there is a strictly
increasing function φ : [0, ∞) → [0, ∞) such that

f (A#B) ≤
1
2
(f (A) + f (B)) − φ(d(A, B))

for allA, B ∈ P. A lower semicontinuous uniformly convex function f : P → R that is bounded belowhas a uniqueminimizer
arg minX∈Pf (X) (see [28, Proposition 1.7]). We further note that (P, δ) is a p-uniformly convex Cartan Hadamard manifold
for any p > 1 (see [12]).

4. Geometric means

Once one realizes that the matrix geometric mean G2(A, B) = A#B is a metric midpoint of A and B for the metric dΦ , it is
natural to use an averaging technique over this metric to extend this mean to a larger number of variables. M. Moakher [26]
and Bhatia and Holbrook [7] suggested extending the geometric mean to n-points by taking the mean to be the unique
minimizer of the sum of the squares of the distances:

Λn(A1, . . . , An) = arg min
X∈P

n
i=1

δ2(X, Ai).

Another approach, independent of metric notions, was suggested by Ando, Li, and Mathias [1] via a ‘‘symmetrization
procedure’’ and induction. The Ando–Li–Mathias paper was also important for listing, and deriving for their mean, ten
desirable properties for extended geometric means that onemight anticipate from properties of the two-variable geometric
mean. The Ando–Li–Mathias mean proved to be computationally cumbersome, and Bini, Meini, and Poloni [9] suggested an
alternative with more rapid convergence properties, which also satisfied the ten axioms. One notes in particular that while
the axioms characterize the two-variable case, this is no longer true in the n-variable case, n > 2.

The ten properties originating from [1] may be generalized to the setting of weighted geometric means of n-positive
definite matrices, where the weights ω = (w1, . . . , wn) vary over ∆n, the simplex of positive probability vectors convexly
spanned by the unit coordinate vectors. We define a symmetric weighted geometric mean of n positive definite matrices to
be a map G : ∆n × Pn

→ P that satisfies the following properties: For A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ Pn, σ ∈ Sn a
permutation on n-letters, a = (a1, . . . , an) ∈ Rn

++
(R++ = (0, ∞)), these are

(P1) (Consistency with scalars) G(ω; A) = Aw1
1 · · · Awn

n if the Ai’s commute;
(P2) (Joint homogeneity) G(ω; a1A1, . . . , anAn) = aw1

1 · · · awn
n G(ω; A);

(P3) (Permutation invariance) G(ωσ ; Aσ ) = G(ω; A), where ωσ = (wσ(1), . . . , wσ(n)) and Aσ = (Aσ(1), . . . , Aσ(n));
(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then G(ω; B) ≤ G(ω; A);
(P5) (Continuity) The map G(ω; ·) is continuous;
(P6) (Congruence invariance) G(ω;M∗AM) = M∗G(ω; A)M for any invertible matrix M , where M(A1, . . . , An)M∗

=

(MA1M∗, . . . ,MAnM∗);
(P7) (Joint concavity) G(ω; λA + (1 − λ)B) ≥ λG(ω; A) + (1 − λ)G(ω; B) for 0 ≤ λ ≤ 1;
(P8) (Self-duality) G(ω; A−1)−1

= G(ω; A), where A−1
= (A−1

1 , . . . , A−1
n );

(P9) (Determinantal identity) DetG(ω; A1, . . . , An) =
n

i=1(DetAi)
wi ; and

(P10) (AGH weighted mean inequalities) (
n

i=1 wiA−1
i )−1

≤ G(ω; A1, . . . , An) ≤
n

i=1 wiAi.
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Wecall amapG satisfying (P1)–(P10) except for (P3) aweighted geometricmean.Wenote that the two-variableweighted
geometric mean G2(w1, w2; A, B) = A#w2B satisfies (P1)–(P10) and is uniquely determined by (P1) and (P6).

The following result is valid for any map G satisfying (P2) and (P5); see [18].

Proposition 4.1. Every weighted geometric mean is ‘‘contractive’’ for the Thompson metric d∞;

d∞(G(ω; A),G(ω; B)) ≤

n
i=1

wid∞(Ai, Bi).

Lemma 4.2. If G and H are weighted geometric means, then G#tH is a weighted geometric mean for all t ∈ [0, 1], where

(G#tH)(ω; A) = G(ω; A)#tH(ω; A).

Proof. One can directly show from Lemma 2.1 that G#tH satisfies (Pk) whenever G and H satisfy (Pk); that is, if G and H are
weighted geometric means then G#tH is also. �

Definition 4.3 (Weighted Inductive Mean). For ω = (w1, . . . , wn) ∈ ∆n and A = (A1, . . . , An) ∈ Pn, define

S1(1; A1) = A1,

Sn(ω; A) = Sn−1(ω̂; Â)#wnAn, (n ≥ 2),

where ω̂ =
1

1−wn
(w1, w2, . . . , wn−1) ∈ ∆n−1 and Â = (A1, . . . , An−1). We call Sn(ω; A) the ω-weighted inductive mean

(convex combination) of A1, . . . , An.

Proposition 4.4. The weighted inductive mean is indeed a (non-symmetric) weighted geometric mean.
Proof. By induction and Lemma 2.1. �

The ω-weighted Karcher mean, also called the least squares mean, of n positive definite matrices A1, . . . , An and ω =

(w1, . . . , wn) ∈ ∆n is defined as the unique minimizer of the sum of squares of the Riemannian trace metric distances to
each of the Ai, i.e.,

Λ(ω; A1, . . . , An) = arg min
X∈P

n
i=1

wiδ
2(X, Ai). (4.10)

From [7,26] the Karcher mean coincides with the unique positive definite solution of the Karcher equation
n

i=1

wi log(X1/2A−1
i X1/2) = 0. (4.11)

Theorem 4.5 ([17]). The Karcher mean is a symmetric weighted geometric mean.
We note that the weighted Karcher mean exists on any Hadamard space. (cf. [28]).

Remark 4.6 (Fixed Point Means). Let G : ∆n+k × Pn+k
→ P be a weighted geometric (n+ k)-mean. Let ω = (w1, . . . , wn) ∈

∆n and A = (A1, . . . , An) ∈ Pn. Then for each t > 1, the equation

G(ωt,k; A1, . . . , An, X, . . . , X  
k

) = X

has a unique positive definite solution, where ωt,k = (
w1
t , . . . , wn

t , t−1
tk , . . . , t−1

tk ) ∈ ∆n+k, denoted by Gt,k(ω; A). Indeed,
one can see by using Proposition 4.1 that the map

X → G(ωt,k; A1, . . . , An, X, . . . , X  
k

)

is a strict contraction with the Lipschitz constant less than equal to t−1
t with respect to the Thompsonmetric. One can show

(cf. [20]) that Gt,k is a weighted geometric mean and that the Karcher mean and the weighted inductive mean coincide with
their respective fixed point means.

Remark 4.7 (Geometric Power Means, [23]). Let G be a weighted geometric mean. For t ∈ (0, 1], the following equation

X = G(ω; X#tA1, . . . , X#tAn)

has a unique positive definite solution. In fact, the map X → G(ω; X#tA1, . . . , X#tAn) is a strict contraction on P with least
contraction coefficient less than equal to 1 − t for the Thompson metric. Define by Gt(ω; A1, . . . , An) the unique solution.
Then each Gt is a weighted geometric mean. Moreover,

lim
t→0+

Gt(ω; A1, . . . , An) = Λ(ω; A1, . . . , An). (4.12)
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Remark 4.8 (Weighted BMP Mean). In [19] Lee, Lim and Yamazaki have found via the induction argument and appropriate
symmetrization procedures a continuous map Γ : [0, 1]n × ∆n → ∆n satisfying
• Γ (1n; ω) = ω for all ω ∈ ∆n; and
• Γ (t; 1

n1n) =
1
n1n, 1n := (1, 1, . . . , 1) ∈ Rn

for all t ∈ [0, 1]n, and a map G : [0, 1]n × ∆n × Pn
→ P satisfying

(Γ 1) G(t; ω; A) =
n

i=1 A
Γ (t;ω)i
i for commuting Ai’s;

(Γ 2) (Joint homogeneity) G(t; ω; a1A1, . . . , anAn) =
n

i=1 a
Γ (t;ω)i
i G(t; ω; A);

(Γ 3) (Permutation invariance) G(t; ωσ ; Aσ ) = G(t; ω; A);
(Γ 4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then G(t; ω; B) ≤ G(t; ω; A);
(Γ 5) (Continuity) The map G(t; ω; ·) is continuous;
(Γ 6) (Congruence invariance) G(t; ω;M∗AM) = M∗G(t; ω; A)M;
(Γ 7) (Joint concavity) G(t; ω; ·) is jointly concave;
(Γ 8) (Self-duality) G(t; ω; A−1)−1

= G(ω; A);
(Γ 9) (Determinantal identity) detG(t; ω; A) =

n
i=1(detAi)

Γ (t;ω)i ; and
(Γ 10) (AGH mean inequalities)

n
i=1 Γ (t; ω)iA−1

i

−1
≤ G(t; ω; A) ≤

n
i=1 Γ (t; ω)iAi.

For t ∈ [0, 1]n, the map G(t; ·; ·) : ∆n × Pn
→ P satisfies the weighted geometric mean properties and each of these

means interpolates between the weighted ALM (t = 0n = (0, . . . , 0)) and BMP (t = 1n) means [1,9]. We note that
G(t; 1

n1n; ·) is a (un-weighted) geometric mean for all t ∈ [0, 1]n with

G


0;

1
n
1n; ·


= Almn, G


1;

1
n
1n; ·


= Bmpn.

Wenote fromΓ (1n; ω) = ω that theweighted BMPmean is indeed a symmetricweighted geometricmean; satisfying all
the properties (P1)–(P10) and that the weighted BMP mean is constructed by induction and the following symmetrization
procedure:
(1) For n = 2, Bmp2(w1, w2; A1, A2) = A1#w2A2.
(2) Assume that Bmpn−1(·; ·) : ∆n−1 × Pn−1

→ P is defined. Let {A(r)
i }

∞

r=0 be the sequence defined by; A(0)
i = Ai and

A(r+1)
i = A(r)

i #1−wiBmpn−1


wj

1 − wi


j≠i

; (A(r)
j )j≠i


, 1 ≤ i ≤ n, (4.13)

where (aj)j≠i := (a1, . . . , ai−1, ai+1, . . . , an). Then limr→∞ A(r)
i exists and has the same value for every i; we denote the

common limit by limr→∞ A(r)
i = Bmpn(ω; A1, . . . , An).

See [15] for the weighted BMP mean in a general setting of metric spaces.

Definition 4.9. A map G : ∆n × Pn
→ P is called stable on a subset Ω ⊂ P if G(ω; A1, . . . , An) ∈ Ω for all ω ∈ ∆n and

Ai ∈ Ω, i = 1, . . . , n.

Lemma 4.10. Let Ω ⊂ P be a closed geodesically convex set and let G : ∆n × Pn
→ P be a weighted geometric mean. If G is

stable on Ω , then its geometric power mean and fixed point mean are stable on Ω .

Proof. Let ω ∈ ∆n and let A = (A1, . . . , An) ∈ Ωn. By Remark 4.7, the map f (X) = G(ω; X#tA1, . . . , X#tAn) is a strict
contraction for the Thompson metric whose unique fixed point is Gt(ω; A1, . . . , An). By the Ω-stability of f and X#tAi ∈ Ω

for all i = 1, . . . , n, f maps Ω into itself. Pick X0 ∈ Ω . Since Ω is closed,

Gt(ω; A1, . . . , An) = lim
k→∞

f k(X0) ∈ Ω.

This shows that Gt is stable on Ω .
A similar argument holds for the fixed point means Gt,k. �

Theorem 4.11 (Stability). The weighted inductive, BMP and Karcher means are stable on any closed geodesically convex set.

Proof. It is easy to see that the weighted inductive and BMP means are stable on a geodesically convex set Ω from the
closedness of Ω and their symmetrization procedures and induction.

For the case of the Karcher mean, we let G be either the inductive mean or BMPmean. Let Xt = Gt(ω; A1, . . . , An), where
Ai ∈ Ω, i = 1, . . . , n and t ∈ (0, 1]. Applying the previous lemma and the first paragraph yields Xt ∈ Ω for all t ∈ (0, 1]. It
then follows from (4.12) and closedness of Ω that

Λn(ω; A1, . . . , An) = lim
t→0+

Xt ∈ Ω.

That is, the weighted Karcher mean is stable on Ω . �
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Remark 4.12. The stability of the weighted Karcher mean, in particular the result that

Λn(ω; A1, . . . , An) ∈ [A1, . . . , An] (4.14)

for all ω ∈ ∆n and (A1, . . . , An) ∈ Pn, which was shown by Bhatia and Holbrook [7], can be proved alternatively by Sturm’s
Strong Law of Large Number [28,16,8] or by Holbrook’s no dice theorem [13] for un-weighted caseω = (1/n, . . . , 1/n). The
key step in the proof of Bhatia and Holbrook [7] is the so called Pythagorean inequality for Hadamard metric spaces (see
[5, Theorem 6.2.7]); see also [14, Theorem 2.3.3] for a nice proof of this result.

It is typically non-trivial to show that the stability theorem, equivalently (4.14), holds for a given weighted geometric
mean. Alternatively, this property provides a new class of weighted geometric means, those satisfying the stability theorem
or (4.14).

Remark 4.13 (Block Diagonal Matrices). Let pi ∈ N with
k

i=1 pi = m. For Pi ∈ Ppi , i = 1, . . . , k, the block diagonal matrices
diag(P1, . . . , Pk) ∈ Pm. Obviously the set P(p1, . . . , pk) of such positive definite block diagonal matrices forms a closed
geodesically convex subset of Pm and hence the Karcher mean is stable on it. Let Ai = diag(Pi1, . . . , Pik) ∈ P(p1, . . . , pk) ⊂

Pm, i = 1, . . . , n. One can see by the Karcher equation that

Λn(ω; A1, . . . , An) = diag(Λn(ω; P11, . . . , Pn1), . . . , Λn(ω; P1k, . . . , Pnk)).

5. Convex geometric means

Definition 5.1. A weighted geometric mean G : ∆n × Pn
→ P is called convex if

f (G(ω; A1, . . . , An)) ≤

n
i=1

wif (Ai)

for all ω = (w1, . . . , wn) ∈ ∆n, (A1, . . . , An) ∈ Pn and continuous geodesically convex functions f : P → R. We denote by
Cn the set of all weighted convex geometric n-means.

Proposition 5.2. Let G : ∆n×Pn
→ P be a convex weighted geometric mean. Then for any α ≥ 1, X ∈ P, ω = (w1, . . . , wn) ∈

∆n and A = (A1, . . . , An) ∈ Pn,

dα
Φ(X,G(ω; A1, . . . , An)) ≤

n
i=1

widα
Φ(X, Ai) (5.15)

for all symmetric gauge functions Φ . In particular for all X ∈ P,

d2Φ(X,G(ω; A1, . . . , An)) ≤

n
i=1

wid2Φ(X, Ai). (5.16)

Furthermore, G is stable on any dΦ-balls.

Proof. The first part of proof follows by the convexity of the map X → dα
Φ(X, Z) and the observation that sums and

nonnegative scalar multiples of convex functions are again convex. Let A1, . . . , An ∈ BΦ(A0, r), the dΦ-ball of radius r
and centered at A0. Then by (5.15),

dΦ(A0,G(ω; A1, . . . , An)) ≤

n
i=1

widΦ(A0, Ai) ≤ r,

which shows that G(ω; A1, . . . , An) lies in the ball. �

Remark 5.3. By (5.15), one can derive that

dΦ(G(ω; A1, . . . , An),G(ω; B1, . . . , Bn)) ≤

n
i=1

wi


n

j=1

wjdΦ(Ai, Bj)


.

This is weaker than the corresponding result for the Thompson metric (Proposition 4.1).

Theorem 5.4. The set Cn is closed under the geometric mean G#tH, the fixed point mean and geometric power mean operations.
Moreover the weighted inductive mean Sn, the weighted BMP mean Bmpn and the Karcher mean Λn belong to Cn.
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Proof. Let G,H ∈ Cn. Then G#tH is a weighted geometric mean by Lemma 4.2. Let f be a continuous geodesically convex
function. Then

f ((G#tH)(ω; A)) = f (G(ω; A)#tH(ω; A))

≤ (1 − t)f (G(ω; A)) + tf (H(ω; A))

≤

n
i=1

wif (Ai).

Therefore G#tH ∈ Cn.
Next, we will show that Sn and Bmpn are convex. Suppose that Sn−1 is convex. Then for a continuous geodesically convex

function f ,

f (Sn(ω; A)) = f (Sn−1(ω̂; Â)#wnAn)

≤ (1 − wn)f (Sn−1(ω̂; Â)) + wnf (An)

≤ (1 − wn)

n−1
i=1

wi

1 − wn
f (Ai) + wnf (An)

=

n
i=1

f (Ai).

By induction, Sn is convex. Similarly one can show that weighted BMP mean is convex from the fact that it is defined by
induction and a symmetrization procedure.

Let G ∈ Cn and let t ∈ (0, 1]. Let X = Gt(ω; A). Then for a continuous geodesically convex function f ,

f (X) = f (G(ω; X#tA1, . . . , X#tAn))

≤

n
i=1

wif (X#tAi)

≤

n
i=1

wi[(1 − t)f (X) + tf (Ai)]

= (1 − t)f (X) + t
n

i=1

wif (Ai)

which ensures that f (X) ≤
n

i=1 wif (Ai). That is, the geometric power mean Gt is convex whenever G is.
Similarly each fixed point mean Gt,k belongs to Cn. �

Remark 5.5. The convexity of the Karcher mean holds on any Hadamard space (Sturm, [28]).

Definition 5.6. A weighted geometric mean G : ∆n × Pn
→ P is called Schur-convex if G ∈ Cn and

G(ω; A1, . . . , An) ∈ [A1, . . . , An] (5.17)

for all ω ∈ ∆n and (A1, . . . , An) ∈ Pn. We denote by SCn the set of all Schur-convex weighted geometric n-means.

Theorem 5.7. The set SCn is closed under the geometricmean G#tH, the fixed pointmean and geometric powermean operations.
Moreover the weighted inductive mean Sn, the weighted BMP mean Bmpn and the Karcher mean Λn belong to SCn.

Proof. Let G,H ∈ SCn. For t ∈ [0, 1],

(G#tH)(ω; A) = G(ω; A)#tH(ω; A) ∈ [A1, . . . , An]

by the convexity of [A1, . . . , An]. That is, G#tH ∈ SCn. By Lemma 4.10, the geometric power mean Gt and the fixed point
mean Gt,k are stable on [A1, . . . , An].

The remaining part of proof follows by Theorem 4.11. �

Corollary 5.8. Let G ∈ Cn and H ∈ SCn. Then

dΦ(H(ω; A),G(ω; A)) ≤ ∆Φ(A) := max
1≤i,j≤n

dΦ(Ai, Aj)

for all symmetric gauge functions Φ .
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Proof. Let G ∈ Cn and let A = (A1, . . . , An) ∈ Pn. By Proposition 3.4, the dΦ-diameter of {Ai}
n
i=1 is ∆Φ(A) = max1≤i,j≤n

dΦ(Ai, Aj). Applying (5.16) with X = H(ω; A) leads to

d2Φ(X,G(ω; A)) ≤

n
i=1

wid2Φ(X, Ai).

By Theorem 5.7 and (5.17), dΦ(X, Ai) ≤ ∆Φ(A) for all i = 1, . . . , n. �

Remark 5.9. We note that the weighted inductive mean Sn, the Bmpn and the Karcher mean Λn can be extended continu-
ously into nonnegative weights ω ∈ ∆n from the symmetrization procedures and the Karcher equation.

Remark 5.10 (Un-Weighted Case). We consider the geometric mean, convex function and Schur-convex function for the
un-weighted case ω = (1/n, . . . , 1/n). Then the previous results hold and the un-weighted ALMmean is Schur-convex.

Problem 1. Is any weighted geometric mean (Schur) convex?

Problem 2. Extend (3.9) to (un-weighted) Schur-convex geometric means. We note that the following multivariable
Hermite–Hadamard inequality holds true [2]:

f

p1 + · · · + pn

n


≤

1
Vol(S)


S
f ≤

f (p1) + · · · + f (pn)
n

for any convex function f : S → R, where S = [p1, . . . , pn] ⊂ Rn. An appropriate Hermite–Hadamard inequality for a
Schur-convex geometric mean would be the following:

f (G(A)) ≤
1

(n − 1)!


ω∈∆n

f (G(ω; A))dω ≤
f (A1) + · · · + f (An)

n

for any continuous geodesically convex function f : P → R.

6. Geometric mean majorizations

Definition 6.1. LetG ∈ Cn and letA = (A1, . . . , An), B = (B1, . . . , Bn) ∈ Pn.We say thatA isG-majorized byB (abbreviated,
A ≺

G B) if there exists a positive doubly stochastic matrixW = (wij)n×n such that for all i = 1, . . . , n,

Ai = G(wi1, . . . , win; B).

Remark 6.2. If G ∈ Cn can be defined on ∆n (e.g., Sn, Λn, and Bmpn, see Remark 5.9), then the positivity condition of
G-majorization can be excluded.

Remark 6.3 (n = 2). Since themap (t, A, B) → A#tB is the uniqueweighted geometricmean for n = 2, (A1, A2) ≺ (B1, B2)
if and only if A1 = B1#tB2 and A2 = B1#1−tB2 = B2#tB1 for some t ∈ [0, 1] if and only if A1 and A2 lie in the geodesic segment
between B1 and B2 and dΦ(A1, B1) = dΦ(A2, B2) for some (all) symmetric gauge function Φ .

Example 6.4. We have (G(A), . . . ,G(A)) ≺
G A for all A ∈ Pn and G ∈ Cn. Use

W =
1
n


1 1 · · · 1
1 1 · · · 1

. . .

1 1 · · · 1

 .

Proposition 6.5. Suppose that A ≺
G B.

(1) MAM∗
≺

G MBM∗ for any non-singular M.
(2) A−1

≺
G B−1.

(3) log detA ≺ log detB, where det(A) = (detA1, . . . , detAn).
(4) If G is symmetric, then Aσ ≺

G Bσ for any permutation σ .
(5) If G ∈ {Λn, Sn, Bmpn}, then for any strictly positive unital linear map Φ ,

Φ(A) ≺
Λ Φ(B)

where Φ(A) = (Φ(A1), . . . , Φ(An)).
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Proof. (1)–(3) follow by the congruence invariancy, self-duality and determinantal identity of G.
(4) Let σ be a permutation. LetWσ = (wσ(i)σ (j))n×n. ThenWσ is a positive doubly stochastic matrix and

Aσ(i) = G(wσ(i)1,...,wσ(i)n; B) = G(wσ(i)σ (1), . . . , wσ(i)σ (n); Bσ )

where the second equality follows from the permutation invariancy of G. This shows that Aσ ≺
G Bσ .

(5) Use Φ(Λn(ω; A)) = Λn(ω; Φ(A1), . . . , Φ(An)). �

The next theorem is a partial extension of Hardy–Littlewood–Pólya Theorem to convex geometric means of positive
definite matrices.

Theorem 6.6. If A ≺
G B, then

n
i=1 f (A

±1
i ) ≤

n
i=1 f (B

±1
i ) for any continuous geodesically convex function f .

Proof. This follows from that
n

i=1

f (Ai) =

n
i=1

f (G(wi1, . . . , win; B1, . . . , Bn))

≤

n
i=1

n
j=1

wijf (Bj) =

n
j=1

n
i=1

wijf (Bj) =

n
j=1

f (Bj).

The proof follows from A−1
≺

G B−1. �

Corollary 6.7. Let G ∈ Cn, A ≺
G B, α ≥ 1 and let Φ be symmetric gauge function on Rm.

(1)


1≤i<j≤n d
α
Φ(Ai, Aj) ≤


1≤i<j≤n d

α
Φ(Bi, Bj).

(2) For any X ∈ P,

(dα
Φ(A1, X), . . . , dα

Φ(An, X)) ≺w(dα
Φ(B1, X), . . . , dα

Φ(Bn, X)).

(3) For any X ∈ P and symmetric gauge norm Ψ on Rn,

Ψ (dα
Φ(A1, X), . . . , dα

Φ(An, X)) ≤ Ψ (dα
Φ(B1, X), . . . , dα

Φ(Bn, X)).

(4) If G ∈ SCn, then {A1, . . . , An} ⊂ [B1, . . . , Bn].

Proof. (1) Let fi(X) = dΦ(Ai, X) and gi(X) = dΦ(Bi, X). Set f =
n

i=1 f
α
i and g =

n
i=1 g

α
i . Then f and g are continuous and

geodesically convex functions. By Theorem 6.6,
1≤i<j≤n

dα
Φ(Ai, Aj) =

n
j=1

n
i=1

f α
i (Aj) =

n
j=1

f (Aj)

≤

n
j=1

f (Bj) =


1≤i<j≤n

dα
Φ(Ai, Bj)

=

n
i=1

n
j=1

gα
j (Ai)

=

n
i=1

g(Ai) ≤

n
i=1

g(Bi)

=


1≤i<j≤n

dα
Φ(Bi, Bj).

(2) Let f be a continuous nondecreasing convex function defined on [0, ∞). Then f ◦dα
Φ(·, X) is a continuous geodesically

convex function on P. By Theorem 6.6,

n
i=1

f (dα
Φ(Ai, X)) ≤

n
i=1

f (dα
Φ(Bi, X)).

The conclusion then follows by the characterization of weak majorization on real numbers (M. Tomic and H. Weyl).
(3) This follows from (2).
(4) By Schur-convexity of G, Ai = G(wi1, . . . , win; B1, . . . , Bn) ∈ [B1, . . . , Bn]. �
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7. Schur’s convexity for the Karcher mean

We note that Pn is a Hadamard space with the product metric

δ(A, B) =

 n
i=1

δ2(Ai, Bi).

We also note that a map f : Pn
→ R is geodesically convex if

f (A1#tB1, . . . , An#tBn) ≤ (1 − t)f (A1, . . . , An) + tf (B1, . . . , Bn)

for all t ∈ [0, 1] and (A1, . . . , An), (B1, . . . , Bn) ∈ Pn and that the Karcher mean on the Hadamard space Pn is given by
Λk(ω; A1, . . . , Ak) = (Λk(ω; A11, . . . , Ak1), . . . , Λk(ω; A1n, . . . , Akn)) (7.18)

where Ai = (Ai1, . . . , Ain) ∈ Pn.
Let

Sn = {σi : 1 ≤ i ≤ n!},
the set of all permutations of n-letters. For σ ∈ Sn and A = (A1, . . . , An) ∈ Pn, we denote

Aσ = (Aσ(1), . . . , Aσ(n)) ∈ Pn.

Theorem 7.1 (Rado’s Theorem). A ≺
Λn B if and only if A = Λn!(ω; Bσ1 , . . . , Bσn!) for some ω ∈ ∆n!.

Proof. Let ω = (w1, . . . , wn!) ∈ ∆n!. Suppose that A = Λn!(ω; Bσ1 , . . . , Bσn!). We shall construct a doubly stochastic
matrixW = (pij)n×n such that for all i = 1, . . . , n,

Ai = Λn(pi1, . . . , pin; B1, . . . , Bn)

which would imply A ≺
Λn B. Set

αij = {σk : σk(i) = j}, 1 ≤ i, j ≤ n

and pij =


σk∈αij
wk =


σk(i)=j wk. One can check that W = (pij) is a doubly stochastic matrix. By the permutation

invariancy of the Karcher mean,

Ai = Λn!(ω; Bσ1(i), . . . , Bσn!(i))

= Λn

 
σk(i)=1

wk, . . . ,


σk(i)=n

wk; B1, . . . , Bn


= Λn(pi1, . . . , pin; B1, . . . , Bn).

Conversely, suppose that A ≺
Λn B. By Birkhoff’s theorem on doubly stochastic matrices, the doubly stochastic matrixW

is a linear combination of permutation matrices; there exists a probability vector µ = (u1, . . . , un!) such that

W = (wij)n×n =

n!
k=1

ukPk,

where Pk is the permutationmatrix induced by the permutation σk. By hypothesis and the property of permutationmatrices,
we have

wij =


σk(i)=j

µk

and

Ai = arg min
X∈P

n
i=1

wijδ
2(X, Bj)

= arg min
X∈P

n
i=1

 
σk(i)=j

µk


δ2(X, Bj)

= arg min
X∈P

n
i=1


σk(i)=j

µkδ
2(X, Bj)

= arg min
X∈P

n!
k=1

µkδ
2(X, Bσk(i)).

By (7.18), A = (A1, . . . , An) ∈ Pn is the µ-weighted Karcher mean of Bσ1 , . . . , Bσn! . �
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Remark 7.2. We note that A ≺
Λn B if and only if there exists ω ∈ ∆n! such that

Ai = Λn!(ω; Bσ1(i), . . . , Bσn!(i)), i = 1, . . . , n,

that is,

diag(A1, . . . , An) = diag(Λn!(ω; Bσ1(1), . . . , Bσn!(1)), . . . , Λn!(ω; Bσ1(n), . . . , Bσn!(n))).

By Remark 4.13, the right-hand of the equality coincides with

Λn!(ω;Q1, . . . ,Qn!),

where Qi = diag(Bσi(1), . . . , Bσi(n)), i = 1, . . . , n! This shows that A ≺
Λn B if and only if

diag(A1, . . . , An) = Λn!(ω;Q1, . . . ,Qn!)

for some ω ∈ ∆n!, where Qi = diag(Bσi(1), . . . , Bσi(n)), which extends Rado’s theorem on (positive) real numbers.

Corollary 7.3 (Schur’s Convexity). If A ≺
Λn B, then

(1) f (A) ≤ f (B) for any continuous geodesically convex function f : Pn
→ R invariant under the permutation of coordinates;

(2) A lies in the convex hull of the n! permutations of B in the product space Pn.

Proof. Follows from A = Λn!(ω; Bσ1 , . . . , Bn!) ∈ Pn and

f (A) = f

Λn!(ω; Bσ1 , . . . , Bσn!)


≤

n!
k=1

wif (Bσk) = f (B)

where the inequality follows from the convexity of the Karcher mean on the Hadamard space Pn (Remark 5.5). �

Remark 7.4. Our Rado’s theorem is new and holds on any Hadamard space by the samemethod of the proof of Theorem 7.1.
In [27] Niculescu and Roventa have recently obtained several results along the same lines of this section for the setting of
finite probability measures on Hadamard spaces. The Schur’s convexity on a Hadamard space appears in [27] with a proof
for n = 3.

Remark 7.5. The set of all weighted Karcher means Λn!(ω; Bσ1 , . . . , Bσn!) varying over ω ∈ ∆n! is contained in the convex
hull [Bσ1 , . . . , Bσn! ] ⊂ Pn. It seems that the set of all weighted Karcher mean values in Pn is a proper subset of the convex
hull [Bσ1 , . . . , Bσn! ] ⊂ Pn.

Corollary 7.6. Let A ≺
Λn B. Then

n
i=1

dα
Φ(X, Ai) ≤

n
i=1

dα
Φ(X, Bi)

for all α ≥ 1, X ∈ P and all symmetric gauge functions Φ . In particular,

n
i=1

δ2(Λ(ω; A), Ai) ≤

n
i=1

δ2(Λ(ω; B), Ai) ≤

n
i=1

δ2(Λ(ω; B), Bi) (7.19)

for all ω ∈ ∆n.

Proof. For a fixed X ∈ P, the map (Y1, . . . , Yn) →
n

i=1 d
α
Φ(X, Yi) is a geodesically convex. By the previous corollary,

A ≺
Λn B ensures the desired assertion. �

Remark 7.7. We know that the Karcher mean Λn(ω; A) is the unique minimizer of the objective function

fA(X) =

n
i=1

wiδ
2(X, Ai).

By the previous result, we have a nice relationship between the Karcher mean majorization A ≺
Λn B and the minimum

values of fA and fB as following: A ≺
Λn B implies that minX∈P fA(X) ≤ minX∈P fB(X).

Problem 3. Does Rado’s (Schur’s convexity) theorem hold for any G ∈ SCn or for G = Bmpn? Alternatively, this property
would provide a characteristic property of the Karcher mean among other symmetric weighted geometric means.
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