
J. Math. Anal. Appl. 416 (2014) 672–682
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Set partition asymptotics and a conjecture of Gould and
Quaintance

Walaa Asakly a, Aubrey Blecher b, Charlotte Brennan c, Arnold Knopfmacher c,∗,
Toufik Mansour a, Stephan Wagner d

a Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
b School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg,
South Africa
c The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics,
University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
d Department of Mathematical Sciences, Stellenbosch University, Matieland 7602, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 November 2013
Available online 6 March 2014
Submitted by U. Stadtmueller

Keywords:
Set partitions
Generating functions
Asymptotics
Bell numbers

The main result of this paper is the generalization and proof of a conjecture by
Gould and Quaintance on the asymptotic behavior of certain sequences related to
the Bell numbers. Thereafter we show some applications of the main theorem to
statistics of partitions of a finite set S, i.e., collections B1,B2, . . . ,Bk of non-empty
disjoint subsets of S such that

⋃k
i=1 Bi = S, as well as to certain classes of partitions

of [n].
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A partition π of a set S is a collection B1,B2, . . . ,Bk of non-empty disjoint subsets of S such that⋃k
i=1 Bi = S (see for example [6]). The Bi’s are called blocks, and the size |B| of a block B is the number of

elements in B. We assume that B1,B2, . . . ,Bk are listed in increasing order of their minimal elements, that
is, minB1 < minB2 < · · · < minBk. This is known as the canonical representation. The collection of all
set partitions of S is denoted by P(S). We define [n] to be the set {1, 2, . . . , n}. For example, the canonical
representations of the five partitions of [3] are

{1, 2, 3}; {1, 2}, {3}; {1, 3}, {2}; {1}, {2, 3} and {1}, {2}, {3}.
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Let A be a (totally ordered) alphabet of k letters. A word w of size n over the alphabet A is an element
of An. In the case A = [k], an element of An is called k-ary word of size n. For example, the 2-ary words
of size 3 are 111, 112, 121, 122, 211, 212, 221, and 222. In the word form of the set partition canonical
representation, we indicate for each integer the block in which it occurs. Thus a partition into k blocks
would be represented by a word π = π1π2 · · ·πn, where for 1 � j � n, πj ∈ [k] and

⋃n
i=1{πi} = [k],

and πj indicates that j ∈ Bπj
. For example, the above set partitions of [3] in canonical representation are

respectively 111, 112, 121, 122, and 123. We denote the set of all partitions of [n] by P([n]), and the number
of all set partitions of [n] by Bn = |P([n])|, with B0 = 1 for the empty set. The Bn are known as the
Bell numbers. Their sequence starts with 1, 1, 2, 5, 15, 52, 203, 877, . . . for n = 0, 1, 2, . . . (see [7, Section 1.4],
A000110 in [8]).

It is a fact (see [6]) that the canonical representations of all set partitions of [n] are precisely the words
π = π1π2 · · ·πn such that π1 = 1, and if i < j then the first occurrence of the letter i precedes the first
occurrence of j. Such words are known as restricted growth functions.

Set partitions (or restricted growth functions) have been extensively studied in the literature, see [6] and
references therein. The exponential generating function for set partitions is given by

ee
x−1 =

∞∑
n=0

Bn
xn

n! ,

and the Bell numbers Bn satisfy the binomial recurrence

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

Let us define a sequence An by the following exponential generating function, as in [4]:

∞∑
n=0

An
xn

n! =
∞∑

n=0
Bn

xn

n!

x∫
0

e1−et dt.

The sequence An, whose first terms are 0, 1, 1, 3, 9, 31, 121, 523, . . . , occurs in various contexts (see entry
A040027 in [8]). In their paper [4], Gould and Quaintance conjectured that

lim
n→∞

An

Bn
=

∞∫
0

e−u

1 + u
du =

∞∫
0

e1−ex dx ≈ 0.5963473623 . . . .

The main result of this paper is a generalisation of their conjecture, which can be formulated as follows.

Theorem 1. Let g be an entire function in the complex plane that satisfies the growth condition g(z) =
O(ee(1−ε)|z|) for some ε > 0 as |z| → ∞, and let

F (x) = ee
x

x∫
0

e−etg(t) dt

be the solution to the differential equation

F ′(x) = exF (x) + g(x)
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with F (0) = 0. If F (x) =
∑∞

n=0
an

n! x
n and g(x) =

∑∞
n=0

bn
n! x

n are the series expansions of F (x) and g(x)
respectively, then the coefficients an satisfy the recursion

an+1 =
n∑

k=0

(
n

k

)
ak + bn.

Moreover, we have

an = Bn

(
C + O

(
e−κn/ log2 n

))
,

where C =
∫∞
0 e1−etg(t) dt and κ is a positive constant.

The paper is organised as follows. In the next section we present the proof of the conjecture of Gould
and Quaintance [4]. In Section 3, we provide some combinatorial applications of Theorem 1, in particular
we determine the asymptotic number of permutations and set partitions of [n] under varying conditions.

Remark 1. For the case g(x) = 1, the constant

∞∫
0

e−u

1 + u
du =

∞∫
0

e1−ex dx = −eEi(−1) ≈ 0.5963473623 . . .

is known as the Euler–Gompertz constant [2, Section 6.2]; it will occur repeatedly in many of our other
examples as well. This corresponds to the basic problem of Gould and Quaintance. We will henceforth
denote this constant by G.

2. Proof of Theorem 1

The recursion for an follows directly by comparing coefficients in the differential equation. Now note that

F (x) = ee
x

x∫
0

e−etg(t) dt = ee
x−1

∞∫
0

e1−etg(t) dt− ee
x

∞∫
x

e−etg(t) dt

= C

∞∑
n=0

Bn

n! x
n − ee

x

∞∫
x

e−etg(t) dt,

so we only have to show that the coefficients of

H(x) =
∞∑

n=0

hn

n! x
n = ee

x

∞∫
x

e−etg(t) dt

satisfy hn = O(Bne
−κn/ log2 n). By our assumptions on g, the function H(x) can be analytically continued

to an entire function in the complex plane, so we can apply Cauchy’s integral formula:

hn

n! = 1
2πi

∫
z−n−1ee

z

∞∫
e−erg(r) dr dz. (2.1)
|z|=R z
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Here, R ∼ logn (defined implicitly by ReR = n + 1) is chosen as the saddle point of the function ee
x−1

xn+1

belonging to the generating function for the Bell numbers. A classical application of the saddle point method
[3, Example VIII.6] yields the asymptotic formula

Bn

n! ∼ R−nee
R−1√

2πR(R + 1)eR
. (2.2)

Our goal will be to prove a uniform bound for

∣∣∣∣ee
z ∫∞

z
e−erg(r) dr
eeR

∣∣∣∣
on the entire circle |z| = R, from which our theorem will follow immediately. Note first that

∣∣∣∣∣
∞∫
R

e−erg(r) dr

∣∣∣∣∣ �
∞∫
R

e−er
∣∣g(r)∣∣ dr = O

( ∞∫
R

ee
(1−ε)r−er dr

)
= O

(
ee

(1−ε)R−eR
)
,

and that |eez | � e|e
z| � ee

|z| = ee
R for |z| = R, which means that

ee
z

∞∫
R

e−erg(r) dr = O
(
ee

(1−ε)R)
.

So we consider

ee
z

R∫
z

e−erg(r) dr

instead of extending the integral to ∞. Write z = Reiθ with |θ| � π, and assume without loss of generality
that θ � 0. We consider two different cases now:

• θ � arcsin π
3R : In this case, we note that for all r = Reit (0 � t � θ) on the arc between R and z, the

inequality

∣∣e−er
∣∣ = exp

(
−Re

(
er
))

= exp
(
−eR cos t cos(R sin t)

)
� exp

(
−eR cos t cos(R sin θ)

)
� exp

(
−eR cos t/2

)
holds. Moreover, since cos t � cos θ =

√
1 − sin2 θ �

√
1 − π2/(9R2) � 1 − π2/(9R2), we end up with

∣∣e−er
∣∣ = O

(
e−c1e

R)
for any positive constant c1 < 1/2. This, the assumption that g(r) = O(ee(1−ε)|r|) and the trivial estimate
|eez | � ee

R from before yield

∣∣∣∣ee
z ∫∞

z
e−erg(r) dr
eeR

∣∣∣∣ = O
(
ee

(1−ε)R−c1e
R)

in this case.
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• θ � arcsin π
3R : We now choose a different path of integration from R to z: the union of the line segments

from R to 0 and from 0 to z. Of course,

∣∣∣∣∣
R∫

0

e−erg(r) dr

∣∣∣∣∣ �
∞∫
0

e−er
∣∣g(r)∣∣ dr < ∞,

and since

∣∣eez ∣∣ � e|e
z| = exp

(
eR cos θ)

� exp
(
eR

√
1−π2/(9R2)) = exp

(
eR

(
1 − π2

18R + O
(
R−2))),

we have

∣∣∣∣ee
z ∫ R

0 e−erg(r) dr
eeR

∣∣∣∣ = O
(
e−c2e

R/R
)

for any constant c2 < π2/18. Thus we focus on the remaining integral from 0 to z, for which we have
the estimate

∣∣∣∣∣
z∫

0

e−erg(r) dr

∣∣∣∣∣ = O
(
Ree

(1−ε)R
max

0�u�1

∣∣e−euz ∣∣)

by our assumptions on g. Let us consider

∣∣eez ∣∣ max
0�u�1

∣∣e−euz ∣∣ = exp
(
Re

(
ez
)
− min

0�u�1
Re

(
euz

))

= exp
(
eR cos θ cos(R sin θ) − min

0�u�1
euR cos θ cos(uR sin θ)

)
. (2.3)

Let the minimum be attained at u = u0. If cos(u0R sin θ) � 0 or cos(R sin θ) − cos(u0R sin θ) � 1, then
we have

∣∣eez ∣∣ max
0�u�1

∣∣e−euz ∣∣ � exp
(
eR cos θ) = O

(
exp

(
eR − c2e

R/R
))

as before. Also, if cos θ � 0, then the entire expression in (2.3) is clearly O(1). Thus we assume now
that cos θ � 0 and

cos(R sin θ) − cos(u0R sin θ) = 2 sin
(
u0 + 1

2 R sin θ

)
sin

(
u0 − 1

2 R sin θ

)
� 1.

It follows that ∣∣∣∣sin
(
u0 − 1

2 R sin θ

)∣∣∣∣ � 1
2

and thus u0 � 1 − π/(3R sin θ). Now (2.3) gives us

∣∣eez ∣∣ max
∣∣e−euz ∣∣ � exp

(
eR cos θ + eR cos θ−π/3 cot θ).
0�u�1
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The maximum of R cos θ− π/3 cot θ (as a function of θ) is achieved when sin θ = (π/(3R))1/3, and it is
R− (3π2R)1/3/2 + O(1). Hence we end up with

∣∣eez ∣∣ max
0�u�1

∣∣e−euz ∣∣ = O
(
exp

(
eR − c2e

R/R
))

once again.

Putting everything together, we find that

∣∣∣∣ee
z ∫∞

z
e−erg(r) dr
eeR

∣∣∣∣ = O
(
e−c3e

R/R
)

for some positive constant c3, uniformly for all z with |z| = R. Applying this estimate to the integral in (2.1),
we obtain

hn

n! = O
(
R−nee

R−c3e
R/R

)
.

Combining this with (2.2) and the definition of R as the unique positive solution to the equation ReR = n+1,
we find that

hn = O
(
Bne

−c4n/ log2 n
)

for a positive constant c4, which finally proves our claim.

3. Applications

In the following subsections, we make use of our main theorem, Theorem 1, to establish asymptotics (as
n → ∞) for the number of set partitions or classes of permutations of [n] under varying conditions.

3.1. Restricted permutations

We say that a permutation π = π1π2 · · ·πn avoids 1–23 if there are no 1 � i < j < n such that
πi < πj < πj+1 and we say that for m � 2, π begins with an m-long descent (or m-long rise, respectively) if
π1 > π2 > · · · > πm (or π1 < π2 < · · · < πm respectively) and n � m. We denote the number of permutations
of length n that avoid 1–23 and begin with an m-long descent by an,m. The exponential generating function
for the sequence an,m is given by

∑
n�m an,m

xn

n! = 1
(m−1)!e

ex
∫ x

0 tm−1et−et dt, see Proposition 4 in [5] (for
other examples see Proposition 26 in [5]). By Theorem 1 with g(x) = 1

(m−1)!x
m−1ex we obtain the following

corollary.

Corollary 1. We have

an,m = Bn

(
Cm + O

(
e−κn/ log2 n

))
,

where Cm = 1
(m−1)!

∫∞
0 tm−1e1+t−et dt and κ is a positive constant. For m = 2, . . . , 5 , we have that C2 =

G = 0.5963473623 . . . , C3 = 0.2659653850 . . . , C4 = 0.09678032514 . . . and C5 = 0.03009381392 . . . .

Let An be the set of permutations of length n that avoid 1–23. Note that |An| = Bn, see [1]. Thus, the
above corollary shows that approximately 59.63% of the permutations of An begin with a descent, but only
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approximately 26.60% of the permutations of An begin with a 3-long descent, when n → ∞. In general,
limn→∞

an,m

|An| = Cm, for all m � 2.
As another example, we denote the number of permutations of length n that avoid 1–23 and begin with

a 2-long rise by bn. It is known that the exponential generating function for the sequence bn is given by∑
n�2 bn

xn

n! = ee
x ∫ x

0 e−et(et − 1) dt (see Proposition 24 in [5]). Thus, by Theorem 1 with g(t) = et − 1, we
obtain the following result.

Corollary 2. We have

bn = Bn

(
C + O

(
e−κn/ log2 n

))
,

where C =
∫∞
0 e1−et(et − 1) dt = 1 −G = 0.4036526378 . . . and κ is a positive constant.

The above corollary agrees with the previous one because each permutation of n � 2 begins with a 2-long
descent or a 2-long rise.

3.2. The last block in a set partition

In this section we are interested in the average size of the last block in the canonical representation of a
set partition. Equivalently, this is the number of maxima in the associated restricted growth function, which
can be decomposed as

1σ(1)2σ(2) · · ·
(
kσ(k−1))∗kσ(k−1),

where ∗ denotes a possibly empty sequence and where σ(m) denotes a word over the alphabet [m].
This yields the generating function

Rk(x, u) =
(

k−1∏
j=1

x

1 − jx

)
xu 1

1−(k−1)x

1 − xu
1−(k−1)x

=
k−1∏
j=1

x

1 − jx

xu

1 − (k − 1)x− xu
(3.1)

where x marks the size of the set partition and u marks the number of elements equal to k which are the
maxima. This is equivalent to

(
1 − (k − 1)x− xu

)
Rk(x, u) = xu

k−1∏
j=1

x

1 − jx
.

Now

k−1∏
j=1

x

1 − jx
= xk−1

(1 − x)(1 − 2x) · · · (1 − (k − 1)x) =
k−1∑
j=0

aj
1 − jx

,

where the coefficients in the partial fraction decomposition are given by

aj = 1/jk−1

(1 − 1/j)(1 − 2/j) · · · (1 − (j − 1)/j)(1 − (j + 1)/j)(1 − (j + 2)/j) · · · (1 − (k − 1)/j)

= (−1)k−1−j 1
(k − 1)!

(
k − 1
j

)
.

So
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1
x
Rk(x, u) − kRk(x, u) − (u− 1)Rk(x, u) = u

k−1∑
j=0

aj
1 − jx

.

Now we translate this to exponential generating functions, in which each term of the form xn is replaced
by xn

n! . Specifically, if Rk(x, u) =
∑∞

n=0 rk,n(u)xn, we set Qk(x, u) =
∑∞

n=0 rk,n(u)xn/n!. Then we get

∂

∂x
Qk(x, u) − kQk(x, u) − (u− 1)Qk(x, u) = u

k−1∑
j=0

aje
jx = u

(ex − 1)k−1

(k − 1)! .

Multiplying by vk and summing over all k � 1 leads to a differential equation for Q(x, u, v) =∑
k�1 Qk(x, u)vk:

∂

∂x
Q(x, u, v) − v

∂

∂v
Q(x, u, v) − (u− 1)Q(x, u, v) =

∑
k�1

uvk
(ex − 1)k−1

(k − 1)! = uvev(ex−1)

It is not hard to check that the solution of this partial differential equation (with initial condition
Q(0, u, v) = 0) is

Q(x, u, v) = uv

x∫
0

ev(ex−et)+ut dt.

To obtain the average size of the last block, we differentiate with respect to u and set u = v = 1, which
gives us the generating function

x∫
0

(t + 1)ee
x−et+t dt = −(t + 1)ee

x−et
∣∣x
0 +

x∫
0

ee
x−et dt = ee

x−1 − x− 1 + ee
x−1

x∫
0

e1−et dt,

also making use of integration by parts. This can be expanded as

−1 − x +
∑
n�0

Bnx
n

n! +
∑
n�0

n−1∑
j=0

(
n

j

)
Bjcn−1−j

xn

n! ,

where cm are the m-th complementary Bell numbers (A000587 in [8]). So, for n � 2, we find that the sum
of the sizes of the last blocks in all set partition of [n] is

qn = Bn +
n−1∑
j=0

(
n

j

)
Bjcn−1−j ,

and Theorem 1 immediately yields

Corollary 3. The average number of elements in the last block of a set partition written in canonical form is

1 + G + O
(
e−κn/ log2 n

)
,

where 1 + G = 1.5963473623 . . . and where κ is a positive constant, when n → ∞.
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Remark 2. Note that the generating function in (3.1) is also the generating function for the number of
elements in the first block that are greater than the first maximum (smallest element of the last block). It
follows immediately that the average number of elements in the first block that are greater than the minimal
element of the last block is G + O(e−κn/ log2 n). The same can be said for any other fixed block (second,
third, . . .).

3.3. Set partitions with m elements in the last block

The generating function method from the previous section could also be used to determine the asymptotic
number of set partitions whose last block has precisely m elements (for some fixed m). Let us however discuss
an alternative approach that gives a combinatorial interpretation for the recursive formula in Theorem 1
as well. We denote the number of set partitions with m elements in the last block by am(n). Now, consider
such a set partition of [n+1], and suppose there are k elements, in addition to the mandatory number 1, in
the first block. The n− k elements not in this block form a set partition with the same property, i.e., there
are am(n− k) possibilities for them. This leads to the recursion

am(n + 1) =
n∑

k=0

(
n

k

)
am(k) =

n∑
k=0

(
n

k

)
am(n− k),

with the initial conditions am(0) = am(1) = · · · = am(m− 1) = 0 and am(m) = 1 (where there is only one
block).

Now we can apply Theorem 1 with bm−1 = 1 and bj = 0 for j �= m− 1. From Theorem 1 the generating
function for such set partitions is

F (x) = ee
x

∞∫
0

e−etg(t) dt,

where g(t) = tm−1

(m−1)! . We obtain the following asymptotic result.

Corollary 4. The probability that a set partition, when written in canonical form, has exactly m elements in
the last block is

∞∫
0

e1−et tm−1

(m− 1)! dt + O
(
e−κn/ log2 n

)
,

as n → ∞. These probabilities are 0.596347, 0.265965, 0.0967803, 0.0300938, 0.0082299 for m = 1, 2, 3, 4, 5.

We remark that it would be possible to prove analogous results for the second-last block, etc.

3.4. The first element in the last block of a set partition

Let us now study the first maximum in a restricted growth function (or equivalently, the minimal element
in the last block of the canonical representation of a set partition). It will be more convenient, however, to
consider the number of elements greater or equal to the minimal element in the last block (if this element
in a set partition of [n] is m, then this number is n−m+ 1). For example the set partition {1, 6}, {2, 4, 8},
{3}, {5, 7} of [8] has m = 5 and n−m + 1 = 4.
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From the decomposition

1σ(1)2σ(2) · · · kσ(k),

of restricted growth functions, we immediately get the generating function

Rk(x, u) =
(

k−1∏
j=1

x

1 − jx

)
xu

1 − kxu

where x marks the size of the set partition and u marks the number of elements greater or equal to the
first maximum. We can follow exactly the same steps as in Section 3.2 to obtain a trivariate exponential
generating function, which is now

Q(x, u, v) = uv

x∫
0

eve
ut(ex−t−1)+ut dt.

Differentiating with respect to u and setting u = v = 1 yields the generating function

x∫
0

(
t
(
ex − et + 1

)
+ 1

)
ee

x−et+t dt = tee
x−et+t

∣∣x
0 + ee

x+x

x∫
0

tet−et dt = xex + ee
x+x

x∫
0

tet−et dt

= d

dx

(
ee

x

x∫
0

tet−et dt

)
.

Since differentiating an exponential generating function merely corresponds to a coefficient shift, we can
apply Theorem 1 once again to obtain the following corollary:

Corollary 5. The average number of elements greater or equal to the minimal element in the last block of a
set partition of [n] is

GBn+1

Bn
+ O

(
e−κn/ log2 n

)
for a positive constant κ. Here, the constant is G = 0.5963473623 . . . again. Consequently, the mean value
of the minimal element in the last block is

n + 1 − GBn+1

Bn
+ O

(
e−κn/ log2 n

)
. (3.2)

Remark 3. Recall that Bn+1
Bn

− 1 ∼ n
log n is exactly the average number of blocks in a set partition of [n].

Let us finally determine how many blocks on average contain an element that is greater than the smallest
element of the last block. For our example {1, 6}, {2, 4, 8}, {3}, {5, 7} the number of such blocks is 3. In
terms of restricted growth functions, this is the number of distinct letters that occur after the first maximum.
If k is the number of blocks (letters in the restricted growth function) and r the number of elements after
the first maximum, then there are kr − (k− 1)r possibilities for these elements that contain a certain letter.
Thus the generating function for the total number of distinct letters after the first maximum is

Rk(x) =
(

k−1∏ x

1 − jx

) ∞∑
k
(
kr − (k − 1)r

)
xr+1 =

(
k−1∏ x

1 − jx

)(
kx

1 − kx
− kx

1 − (k − 1)x

)
.

j=1 r=0 j=1
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Passing on to the exponential generating function again, we end up with

Q(x, v) = v

x∫
0

(
et − 1

)(
v
(
ex − et

)
+ 1

)
ev(ex−et) dt,

with v marking the number of blocks. Setting v = 1 and simplifying yields

Q(x, 1) = ee
x+x−1 −

(
1 + d

dx

)
ee

x

x∫
0

e−et dt,

which gives us the following corollary:

Corollary 6. The average number of blocks with an element greater than the smallest element of the last
block of a set partition of [n] is

(1 −G)Bn+1

Bn
−G + O

(
e−κn/ log2 n

)
for a positive constant κ.

Combining the results of the last two corollaries, we can say that the average number of elements following
the last maximum is about 0.6 times the average number of blocks, while the average number of distinct
blocks these elements belong to is about 0.4 times the average total number of blocks.
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