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Abstract

In this paper, we consider the integral system with weight and the Bessel potentials:⎧⎨
⎩ u(x) =

∫
Rn

gα(x−y)u(y)pv(y)q

|y|σ dy,

v(x) =
∫
Rn

gα(x−y)v(y)pu(y)q

|y|σ dy,

where u, v > 0, σ ≥ 0, 0 < α < n, p + q = γ ≥ 2 and gα(x) is the Bessel potential of order α.

First, we get the integrability by regularity lifting lemma. Then we also establish the regularity of

the positive solutions. Afterwards, by the method of moving planes in integral forms, we show that

the positive solutions are radially symmetric and monotone decreasing about the origin. Finally, by

an extension of the idea of Lei[14] and analytical techniques, we get the decay rates of solutions when

|x| → ∞.

Keywords: Bessel potential; Integral system; Integrability; Regularity lifting; Radial symmetry; Method

of moving planes; Decay rates.

1 Introduction

In this paper, we consider the following integral system with weight and the Bessel potentials:⎧⎪⎨
⎪⎩

u(x) =
∫
Rn

gα(x−y)u(y)pv(y)q

|y|σ dy,

v(x) =
∫
Rn

gα(x−y)v(y)pu(y)q

|y|σ dy,
(1.1)

where u, v > 0, σ ≥ 0, 0 < α < n, p+ q = γ ≥ 2 and gα(x) is the Bessel potential of order α. Here

gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞

0

e(−
π
t |x|2− t

4π )t(α−n)/2 dt

t
.

Integral system (1.1) is associated with the following partial differential equations(PDEs)⎧⎪⎨
⎪⎩

(I −Δ)α/2u = upvq

|y|σ , u > 0,

(I −Δ)α/2v = vpuq

|y|σ , v > 0.
(1.2)
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When σ = 0, (1.2) becomes the following PDEs(cf. [23])⎧⎪⎨
⎪⎩

(I −Δ)α/2u = upvq, u > 0,

(I −Δ)α/2v = vpuq, v > 0.
(1.3)

When α = 2, PDEs (1.3) is associated with the nonlinear Klein-Gordon equations and the quintic

Schrödinger system (see [1,13,19]).

Lei [14] studied the uniqueness of the positive solution of (1.3) under some assumptions. In addition,

he proved the integrability and radial symmetry of positive solutions of integral system. By an iteration

he also obtained the estimate of the exponential decay of those solutions near infinity.

Another integral system with weight and the Bessel potential is the following⎧⎪⎨
⎪⎩

u(x) =
∫
Rn

gα(x−y)v(y)q

|y|β dy,

v(x) =
∫
Rn

gα(x−y)u(y)p

|y|β dy,
(1.4)

where 0 ≤ β < α < n, 1 < p, q < n−β
β and

1

p+ 1
+

1

q + 1
>

n− α+ β

n
.

Chen and Yang [4] proved regularity and symmetry of this integral system and obtained that system was

actually equivalent to indefinite fractional elliptic system⎧⎪⎨
⎪⎩

(−Δ+ I)α/2u = vq

|y|β , u > 0,

(−Δ+ I)α/2v = up

|y|β , v > 0.
(1.5)

If α = 2 and β = 0, (1.5) is the Hamiltonian type system [6]. In the special case, when p = q and

u = v, system (1.5) becomes

(−Δ+ I)
α
2 u =

up

|y|β . (1.6)

It was known from [17] and [18] that the dynamical behavior of bosons spin-0 particles in relativistic

fields can be described by the Schrödinger-Klein-Gordon equation

i
∂ψ

∂t
= (−Δ+ I)

1
2ψ − ψ + f(x, ψ). (1.7)

Equation (1.6) arises in finding the standing wave eitu(x) of the pseudo-relativistic wave equation (1.7)

with special f . For more papers, please see [5,7,9,19-22,25,26].

In particular, when σ = 0, if the Bessel potential in (1.3) is replaced by Riesz type potential, then we

have ⎧⎪⎨
⎪⎩

u(x) = |x|α−n ∗ vq(x),
v(x) = |x|α−n ∗ up(x).

(1.8)
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The solutions (u, v) of (1.8) are critical points of the functional associated with the well-known classical

Hardy-Littlewood-Sobolev (HLS) inequality (see [11,22]):∫
Rn

∫
Rn

f(x)g(y)

|x− y|n−α
dxdy ≤ Cr,α,n‖f‖Lr‖g‖Ls , (1.9)

where 0 < α < n; r, s > 1, such that 1
r + 1

s + n−α
n = 2; f ∈ Lr(Rn), g ∈ Ls(Rn).

The following weighted Hardy-Littlewood-Sobolev (WHLS) inequality was introduced by Stein and

Weiss (see [24]): ∫
Rn

∫
Rn

f(x)g(y)

|x|α|x− y|λ|y|β dxdy ≤ Cα,β,s,λ,n‖f‖Lr‖g‖Ls ,

where

1− 1

r
− λ

n
<

α

n
< 1− 1

r
and

1

r
+

1

s
+

λ+ α+ β

n
= 2.

We can also write the WHLS inequality in another form. Let Tg(x) =
∫
Rn

g(y)
|x|α|x−y|λ|y|β dy. Then

‖Tg(x)‖Lp ≤ Cα,β,s,λ,n‖g(y)‖Ls , (1.10)

where 1 + 1
p = 1

s + λ+α+β
n , 1 < s, p < ∞, α+ β ≥ 0, 0 < λ < n, 1

p − λ
n < α

n < 1
p .

When p = q = n+α
n−α and u(x) = v(x), the integral system (1.8) becomes (cf. [2] and [15])

u(x) =

∫
Rn

uγ(y)

|x− y|n−α
dy, u > 0, in Rn. (1.11)

(1.11) arises as an Euler-Lagrange equation for a functional under a constraint in the context of the

Hardy-Littlewood-Sobolev inequalities (see [16]). In [16], Lieb classified all the maximizers of functional

(1.9) under the constraints ‖f‖r = ‖g‖s = 1 in the critical case where γ = n+α
n−α , and thus obtained the

sharp constant in the HLS inequalities in that case, he then posed the classification of all the critical

points of the functional, the solutions of the integral equation (1.11) as an open problem. In [3], Chen, Li,

and Ou solved the open problem by using the method of moving planes. In particular, the corresponding

PDE becomes

−�u = u
n+α
n−α , u > 0, in Rn. (1.12)

(1.12) is also of practical interest and importance. The classification of solutions of (1.12) has provided an

important ingredient in the study of the well-known Yamabe problem and the prescribing scalar curvature

problem.

Han and Lu [10] considered the following system without weight:⎧⎪⎨
⎪⎩

(−Δ+ I)α/2u = vp, u > 0,

(−Δ+ I)β/2v = uq, v > 0,
(1.13)

where α, β > 0 and p, q > 1. By virtue of the integral form and the decay estimate for the Bessel kernel

both at the origin and the infinity, they proved the L∞ and Lipschitz continuity of the positive solutions

to the system (1.13). Obviously, (1.2) is very different from (1.13).
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To the best of our knowledge, there are no results about (1.1). In this paper, we will prove the

integrability, the regularity, radial symmetry and decay rates of the positive solutions of (1.1).

Before we state our main results, we give two propositions which will be useful in the proof of main

results.

Proposition 1 (See [23]). Let 0 < α < n. The kernel gα satisfies

gα(x) =

⎧⎪⎨
⎪⎩

C|x|−n+α + o(|x|−n+α), when |x| → 0,

O(e−
|x|
2 ), when |x| → ∞.

(1.14)

Here C is a constant.

Proposition 2 (See [14]). For β ∈ (0, α], then we can get

Bα(f)(x) ≤ CIβ(f)(x), x ∈ Rn, (1.15)

where C > 0, Bα(f)(x) = (gα ∗f)(x) =
∫
Rn gα(x−y)f(y)dy and Iβ(f)(x) :=

Γ((n−β)/2)
2βπn/2Γ(β/2)

|x|β−n ∗f(x) are
the Bessel potential and the Riesz potential of a positive function f ∈ Lp(Rn) (1 ≤ p ≤ ∞) respectively.

Now we state the main results as follows:

Theorem 1.1. Let σ ≥ 0, 0 < α < n, p+q = γ ≥ 2. For all β ∈ (σ,min
{

n+σ
2 , α

}
), assume (u(x), v(x)) ∈

L
n(γ−1)
β−σ (Rn)× L

n(γ−1)
β−σ (Rn) is a pair of positive solutions of (1.1), then

(R-1) u, v ∈ Lr(Rn) for any r ∈ [1,∞).

(R-2) (u(x), v(x)) is uniformly bounded in Rn.

(R-3) (u(x), v(x)) is continuous.

(R-4) u(x) and v(x) are radially symmetric and monotone decreasing about some point x ∈ Rn.

(R-5) We can get the decay rates

lim
|x|→∞

1

gα(x)
u(x) =

∫
Rn

upvq

|y|σ dy,

lim
|x|→∞

1

gα(x)
v(x) =

∫
Rn

vpuq

|y|σ dy.

Remark 1.1. Since the Bessel kernel does not have singularity at infinity, we can extend the integrability

interval to the whole [1,∞], the result is the same as the case σ = 0. Note that u(x) is monotone decreasing

about some point x ∈ Rn means that u(x) is monotone decreasing about |x− x̄|.
Remark 1.2. When σ ≥ 0, both u(x) and v(x) are radially symmetric and decreasing about x ∈ Rn. In

particular, when σ 
= 0, we can prove that x must be the origin.

Remark 1.3. We only treat the case p+ q ≥ 2, the case 1 < p+ q < 2 can not be handled in the same

way, we will exploit the corresponding questions in the future.
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2 Integrability

In this section, we use the method of regularity lifting lemma to prove (R-1) of Theorem 1.1.

Proof of (R-1). Step 1. We first show u, v ∈ Lr(Rn), for all r > n
n−β .

Let w = u+ v, for A > 0, define

wA(x) =

⎧⎪⎨
⎪⎩

w(x), if |w(x)| > A or |x| > A,

0, elsewhere.

From (1.1) and the definition of Bα(f), we know that

w(x) =

∫
Rn

gα(x− y)(
up(y)vq(y)

|y|σ +
vp(y)uq(y)

|y|σ )dy ≤ c

∫
Rn

gα(x− y)
wγ(y)

|y|σ dy = cBα(
wγ

|y|σ )(x).

Now set R(x) = w(x)

Bα( wγ

|y|σ )(x)
, then 0 < R(x) ≤ c, and

w(x) = R(x)

∫
Rn

gα(x− y)
wγ(y)

|y|σ dy. (2.1)

Let f ∈ Lr(Rn) for all r > n
n−β , define an operator T by

(Tf)(x) := R(x)

∫
Rn

gα(x− y)
wγ−1

A (y)

|y|σ f(y)dy

and write

F = R(x)

∫
Rn

gα(x− y)
(w − wA)

γ(y)

|y|σ dy.

Clearly, w is a solution of the following equation

f = Tf + F. (2.2)

By (1.10), (1.14) and the Hölder inequality, we have

‖Tf‖Lr ≤ c‖Iβ(w
γ−1
A f

|y|σ )‖Lr ≤ c‖wγ−1
A f‖Lm ≤ c‖wA‖γ−1

L
n(γ−1)
β−σ

‖f‖Lr ,

where 1
r = 1

m − β−σ
n .

From w ∈ L
n(γ−1)
β−σ (Rn), we can find a large constant A, such that

‖Tf‖Lr ≤ 1

2
‖f‖Lr .

Then for r > n
n−β , the operator T is a contracting map from Lr(Rn) to itself. Similar to the argument

above, for any r > n
n−β , there holds

‖F‖Lr ≤ C‖(w − wA)
γ‖

L
nr

n+r(β−σ)
.

In view of the definition of wA(x), we have F ∈ Lr(Rn). Using (2.2) and the regularity lifting lemma

[11], we can get

w ∈ Lr(Rn), ∀r >
n

n− β
. (2.3)
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Step 2. In this step, we need to prove

∫
Rn

wγ(y)

|y|σ dy ≤ C. (2.4)

Clearly, ∫
Rn

wγ(y)

|y|σ dy =

∫
BR

wγ(y)

|y|σ dy +

∫
Rn\BR

wγ(y)

|y|σ dy := I1 + I2.

Take k1 = n
n−β , it follows that γk1 ≥ 2n

n−β > n
n−β , then by using the Hölder inequality, we obtain

I1 =

∫
BR

wγ(y)

|y|σ dy ≤
(∫

BR

wγk1(y)dy

) 1
k1

(∫
BR

1

|y|
σk1
k1−1

dy

)1− 1
k1

≤ C.

For all β ∈ (σ,min
{

n+σ
2 , α

}
), there exists n

2(n−β) < k2 < n
n−σ , then by Hölder inequality, we can get

I2 =

∫
Rn\BR

wγ(y)

|y|σ dy ≤
(∫

Rn\BR

wγk2(y)dy

) 1
k2

(∫
Rn\BR

1

|y|
σk2
k2−1

dy

)1− 1
k2

≤ C.

Step 3. In the final step, we improve the integrability of u and v from (2.3) to

u, v ∈ Lr(Rn), for r ≥ 1.

Since
∫
Rn e−π|x|2/tdx = tn/2, Fubini’s theorem applied to gα(x) shows∫

Rn

gα(x)dx =
1

(4π)α/2Γ(α/2)

∫ ∞

0

e−t/4πtα/2
dt

t
= 1.

Now by virtue of (2.4), we can get

∫
Rn

w(x)dx =

∫
Rn

R(x)

∫
Rn

gα(x− y)
wγ(y)

|y|σ dydx

≤ c

∫
Rn

(

∫
Rn

gα(x− y)dx)
wγ(y)

|y|σ dy

= c

∫
Rn

gα(x)dx

∫
Rn

wγ(y)

|y|σ dy

= c

∫
Rn

wγ(y)

|y|σ dy < ∞.

So

u, v ∈ L1(Rn). (2.5)

Combining (2.3) with (2.5), for all m ∈ (1, n
n−β ], we have

∫
Rn

wmdx ≤
∫
0<w<1

wdx+

∫
w>1

w
n

n−β+εdx

≤
∫
Rn

wdx+

∫
Rn

w
n

n−β+εdx < ∞.

Thus we get

u, v ∈ Lr(Rn), ∀r ≥ 1. (2.6)
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3 Regularity

Based on the integrability of solutions obtained in the previous section, we will prove (R-2) and (R-3)

of Theorem 1.1.

To prove the conclusions, we need the following lemma.

Lemma 3.1. For all x ∈ Rn, we have ∫
Bt(x)

1

|y|β dy ≤ ctn−β . (3.1)

Proof. When x ∈ Rn \B2t(0), for y ∈ Bt(x), we have |y| ≥ |x|
2 , and hence 1

|y|β ≤ c
tβ
.

So ∫
Bt(x)

1

|y|β dy ≤ c

∫
Bt(x)

1

tβ
dy = ctn−β .

When x ∈ B2t(0), for y ∈ Bt(x), we have y ∈ Bt(x) ⊂ B3t(0).

Therefore, ∫
Bt(x)

1

|y|β dy ≤
∫
B3t(0)

1

|y|β dy ≤ ctn−β .

Thus, Lemma 3.1 is proved.

Proof of (R-2). By (1.14), we can get

w(x) = R(x)Bα(
wγ

|y|σ )(x) ≤ CIβ(
wγ

|y|σ )(x)

= C(n− β)

∫
Rn

w(y)γ

|y|σ (

∫ ∞

|x−y|
tβ−n dt

t
)dy

= C(n− β)

∫ ∞

0

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
.

Thus,

w(x) ≤ C(n− β)

∫ d

0

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
+ C(n− β)

∫ ∞

d

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t

=: C(n− β)(J1 + J2).

By the Hölder inequality, we get

∫
Bt(x)

w(y)γ

|y|σ dy ≤
(∫

Bt(x)

w(y)γkdy

) 1
k
(∫

Bt(x)

(
1

|y|σ
) k

k−1

dy

)1− 1
k

. (3.2)

Here k > n
β−σ . From (3.1), (3.2) and w ∈ Lr, ∀r ≥ 1, we have

J1 =

∫ d

0

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
≤ c

∫ d

0

tβ−σ−n
k
dt

t
≤ c.

By (2.4), we can obtain

J2 =

∫ ∞

d

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
≤ c

∫ ∞

d

1

tn−β

dt

t
≤ c.
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From the estimates of J1 and J2, we can get w(x) < c for all x. Hence, u(x) and v(x) are uniformly

bounded in Rn.

Based on (R-2) of Theorem 1.1, we can deduce the following corollary.

Corollary 3.1. (u(x), v(x)) converges to 0 when |x| → ∞.

Proof. Since u and v are bounded, ∀ε > 0, there exists d ∈ (0, 1) such that

∫ d

0

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
≤ ε,

and for z ∈ Bd(x), by virtue of Bt(x) ⊂ Bt+d(z) with t ≥ d, we get

∫ ∞

d

(

∫
Bt(x)

w(y)γ

|y|σ dy

tn−β
)
dt

t
≤

∫ ∞

d

∫
Bt+d(z)

w(y)γ

|y|σ dy

(t+ d)
n−β

(
t+ d

t

)n−β+1
d (t+ d)

t+ d

≤ C

∫ ∞

0

(

∫
Bt(z)

w(y)γ

|y|σ dy

tn−β
)
dt

t

≤ CIβ(
wγ

|y|σ )(z).

Then from (R-2) of Theorem 1.1, we get w(x) < Cε+ CIβ(
wγ

|y|σ )(z). When r ≥ 1, we have

wr(x) ≤ Cεr + C

(
Iβ(

wγ

|y|σ )(z)
)r

.

Integrating on Bd(x) and multiplying by |Bd(x)|−1, we can obtain

wr(x) ≤ Cεr + C|Bd(x)|−1‖Iβ( w
γ

|y|σ )‖
r
Lr(Bd(x))

. (3.3)

From w ∈ Lr(Rn) and nrγ
n+r(β−σ) > 1 for all r ≥ 1, we have

‖Iβ( w
γ

|y|σ )‖Lr(Bd(x)) ≤ C‖wγ‖ nr
n+r(β−σ)

< ∞.

Therefore,

lim
|x|→∞

∫
Bd(x)

[
Iβ(

wγ

|y|σ )
]r

(z)dz = 0 (3.4)

By (3.3) and (3.4), we have

lim
|x|→∞

wr(x) = 0.

Thus (u(x), v(x)) converges to 0. Corollary 3.1 is proved.

Proof of (R-3). Let u(x)− u(z) = K1 +K2, here

K1 =

∫
BR(x)

[gα(x− y)− gα(z − y)]
u(y)pv(y)q

|y|σ dy,

K2 =

∫
Rn\BR(x)

[gα(x− y)− gα(z − y)]
u(y)pv(y)q

|y|σ dy.

When y ∈ BR(x) and |x− z| → 0, we have gα(x− y)− gα(z − y) → 0.

Now we estimate K1 :

lim
|x−z|→0

K1 = lim
|x−z|→0

∫
BR(x)

[gα(x− y)− gα(z − y)]
u(y)pv(y)q

|y|σ dy
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=

∫
BR(x)

lim
|x−z|→0

[gα(x− y)− gα(z − y)]
u(y)pv(y)q

|y|σ dy.

Based on the result of (2.4), we can get

lim
|x−z|→0

K1 = 0.

As |x− y| > R, by virtue of (1.14) and (2.4), we can get

K2 =

∫
Rn\BR(x)

[gα(x− y)− gα(z − y)]
up(y)vq(y)

|y|σ dy

≤
∫
Rn\BR(x)

gα(x− y)
up(y)vq(y)

|y|σ dy

≤ c
1

e
R
2

∫
Rn\BR(x)

wγ(y)

|y|σ dy

≤ c
1

e
R
2

∫
Rn

wγ(y)

|y|σ dy

≤ c
1

e
R
2

.

Letting R → ∞, we obtain

lim
|x−z|→0

K2 = 0.

Therefore, u(x) is continuous. Similarly, we can get another conclusion about v(x).

4 Radial symmetry and monotonicity of solutions

In this section, we prove (R-4) of Theorem 1.1 by using the method of moving planes in integral forms

which was established by Chen et al.[3].

For any real number λ, define

Σλ = {x = (x1, x2, · · · , xn) ∈ Rn|x1 > λ}; xλ = (2λ− x1, x2, ..., xn);

uλ(x) = u(xλ); Tλ = {x = (x1, x2, · · · , xn) ∈ Rn|x1 = λ}.

Firstly, we give a lemma which will be useful in the proof of (R-4) of Theorem 1.1.

Lemma 4.1. We have

uλ(x)− u(x) =

∫
Σλ

(gα(x− y)− gα(x
λ − y))

1

|yλ|σ (uλ
pvλ

q − upvq)dy

−
∫
Σλ

(gα(x− y)− gα(x
λ − y))(

1

|y|σ − 1

|yλ|σ )u
pvqdy,

vλ(x)− v(x) =

∫
Σλ

(gα(x− y)− gα(x
λ − y))

1

|yλ|σ (vλ
puλ

q − vpuq)dy

−
∫
Σλ

(gα(x− y)− gα(x
λ − y))(

1

|y|σ − 1

|yλ|σ )v
puqdy.
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Proof. By gα(x− yλ) = gα(x
λ − y),

u(x) =

∫
Σλ

gα(x− y)up(y)vq(y)

|y|σ dy +

∫
Σλ

gα(x
λ − y)uλ

p(y)vλ
q(y)

|yλ|σ dy,

uλ(x) =

∫
Σλ

gα(x
λ − y)up(y)vq(y)

|y|σ dy +

∫
Σλ

gα(x− y)uλ
p(y)vλ

q(y)

|yλ|σ dy,

then we have

uλ(x)− u(x) =

∫
Σλ

(gα(x− y)− gα(x
λ − y))

1

|yλ|σ (uλ
pvλ

q − upvq)dy

−
∫
Σλ

(gα(x− y)− gα(x
λ − y))(

1

|y|σ − 1

|yλ|σ )u
pvqdy.

Similarly, v has the same property. Lemma 4.1 is proved.

Proof of (R-4). Step 1. One can claim that there exists an N ≥ 0 such that for λ < −N,

u(x) ≥ uλ(x), v(x) ≥ vλ(x). (4.1)

Define

Σu
λ = {x ∈ Σλ|u(x) ≤ uλ(x)}, Σv

λ = {x ∈ Σλ|v(x) ≤ vλ(x)}, Σ−
λ = Σλ \ (Σu

λ ∪ Σv
λ).

By virtue of gα(x− y) > gα(x
λ − y) on Σλ, we get

(gα(x− y)− gα(x
λ − y))(

1

|y|σ − 1

|yλ|σ ) ≥ 0, (4.2)

then

uλ(x)− u(x) ≤
∫
Σλ

(gα(x− y)− gα(x
λ − y))

1

|yλ|σ (uλ
pvλ

q − upvq)dy

=

∫
Σu

λ

(gα(x− y)
1

|yλ|σ v
q
λ(uλ

p − up)dy +

∫
Σv

λ

(gα(x− y)
1

|yλ|σ u
p(vλ

q − vq)dy + I,

here

I =

∫
Σ−

λ

(gα(x−y)−gα(x
λ−y))

1

|yλ|σ v
q
λ(uλ

p−up)dy+

∫
Σ−

λ

(gα(x−y)−gα(x
λ−y))

1

|yλ|σ u
p(vλ

q−vq)dy

−
∫
Σu

λ

gα(x
λ − y)

1

|yλ|σ v
q
λ(uλ

p − up)dy −
∫
Σv

λ

gα(x
λ − y)

1

|yλ|σ u
p(vλ

q − vq)dy ≤ 0.

From (1.14) and above,

uλ(x)−u(x) ≤
∫
Σu

λ

gα(x− y)
1

|yλ|σ v
q
λ(uλ

p−up)(y)dy+

∫
Σv

λ

gα(x
λ− y)

1

|yλ|σ u
p(vλ

q − vq)(y)dy

≤ c

∫
Σu

λ

gα(x− y)
1

|yλ|σ v
q
λuλ

p−1(uλ − u)(y)dy + c

∫
Σv

λ

gα(x
λ − y)

1

|yλ|σ u
pvq−1

λ (vλ − v)(y)dy

≤ c

∫
Σu

λ

1

|yλ|σ|x− y|n−β
vqλu

p−1
λ (uλ−u)(y)dy+c

∫
Σv

λ

1

|yλ|σ|xλ − y|n−β
upvλ

q−1(vλ−v)(y)dy.
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Let m = n(γ−1)
β−σ , by (1.10), (2.6) and the Hölder inequality, we can deduce that

‖uλ(x)− u(x)‖Lm ≤ c‖vqλup−1
λ (uλ − u)‖

L
mn

n+m(β−σ) (Σu
λ
)
+ c‖upvq−1

λ (vλ − v)‖
L

mn
n+m(β−σ) (Σv

λ
)

≤ c‖vλ‖qLm‖uλ‖p−1
Lm ‖uλ − u‖Lm(Σu

λ
) + c‖u‖pLm‖vλ‖q−1

Lm ‖vλ − v‖Lm(Σv
λ
). (4.3)

One can choose a sufficiently large N > 0, such that for λ ≤ −N < 0,

c‖vλ‖qLm‖uλ‖p−1
Lm ≤ 1

4
,

and

C‖u‖pLm‖vλ‖q−1
Lm ≤ 1

4
.

Then (4.3) implies that

‖uλ(x)− u(x)‖Lm(Σu
λ
) ≤

1

4
‖uλ(x)− u(x)‖Lm(Σu

λ
) +

1

4
‖vλ(x)− v(x)‖Lm(Σv

λ
). (4.4)

Similarly, we have

‖vλ(x)− v(x)‖Lm(Σv
λ
) ≤ 1

4
‖vλ(x)− v(x)‖Lm(Σv

λ
) +

1

4
‖uλ(x)− u(x)‖Lm(Σu

λ
). (4.5)

Combining (4.4) with (4.5), we can get ‖uλ(x) − u(x)‖Lm(Σu
λ
) = 0. So the measure of Σu

λ,Σ
v
λ must be

zero. This means (4.1).

Step 2. Now we start from this neighborhood of x1 = −∞ and move the plane to the right as long as

(4.1) holds to the limiting position and argue that the solution w must be symmetric about the limiting

plane. More precisely, define

λ0 = sup{μ|(4.1) holds for any λ ≤ μ}.

One can see that λ0 < +∞ by using the similar to step 1 and starting the plane Tλ near x1 = +∞.

We will show that u and v are symmetric about the plane Tλ0 :

u(x) ≡ uλ0(x) and v(x) ≡ vλ0(x) a.e. ∀x ∈ Σλ0 . (4.6)

Suppose for such λ0 < 0, we have, on Σλ0 ,

u(x) ≥ uλ0(x) and v(x) ≥ vλ0(x), but u(x) 
≡ uλ0(x) or v(x) 
≡ vλ0(x), a.e. ∀x ∈ Σλ0 ; (4.7)

we show that the plane can be moved to the right. More precisely, there exists an ε > 0 such that

u(x) ≥ uλ(x) and v(x) ≥ vλ(x) a.e. ∀x ∈ Σλ, ∀λ ∈ [λ0, λ0 + ε). (4.8)

This contradicts to the definition of λ0.
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In the case that u(x) 
≡ uλ0(x) in Σλ0 , we can get that u(x) ≥ uλ(x) in the interior of Σλ0 .

Let

Φũ
λ0

= {x ∈ Σλ0 |u(x) ≤ uλ0(x)} and Φṽ
λ0

= {x ∈ Σλ0 |v(x) ≤ vλ0(x)}.

Then obviously, Φũ
λ0

has measure zero, and limλ→λ0 Σ
u
λ ⊂ Φũ

λ0
. The same is true for that of v. Again the

integrability conditions u, v ∈ Lm(Rn) ensure that one can choose ε sufficiently small, so that for all λ

in [λ0, λ0 + ε), by the step 1, we have

‖uλ − u‖Lm(Σu
λ
) = 0 and ‖vλ − v‖Lm(Σv

λ
) = 0,

hence the measure of Σu
λ and Σv

λ must be zero. This verifies (4.1) and hence (4.6).

Since x1 direction can be chosen arbitrarily, we deduce that u(x) and v(x) must be radially symmetric

and monotone decreasing about some point x ∈ Rn.

If σ 
= 0, we claim that x = (x1, x2, . . . , xn) must be the origin. Otherwise, there exists k ∈
{1, 2, · · · , n} such that xk 
= 0. Without loss of generality, suppose xk < 0. For any x satisfying xk > xk,

we denote the reflection point of x about the plane x = x by x∗. Thus, by Lemma 4.1 and the symmetry,

we obtain

0 = u(x∗)− u(x) = −
∫

{y; yk>xk}

(gα(x− y)− gα(x
∗ − y))(

1

|y|σ − 1

|y∗|σ )u
pvqdy < 0.

It is impossible, so the claim is verified.

5 Decay rate

In this section, we will prove (R-5) of Theorem 1.1.

We first need a lemma which makes it possible to get the the decay rates of u and v.

Lemma 5.1. Under the same conditions of Theorem 1.1, there exist c, C > 0, such that when |x| → ∞,

cgα(x) ≤ u, v ≤ Cgα(x).

Proof. Step 1. We first prove that u, v ≥ cgα(x).

When |x| > 2, for u, v > 0, we have

∫
B1(0)∩B|x|(x)

up(y)vq(y)

|y|σ dy ≥ c > 0.

Therefore, for sufficiently large |x|,

u(x) =

∫
Rn

gα(x− y)u(y)pv(y)q

|y|σ dy

= c

∫ ∞

0

∫
Rn e(−π|x−y|2/t) up(y)vq(y)

|y|σ dy

e(t/(4π))t(n−α)/2

dt

t

12



≥ c

∫ ∞

0

∫
B1(0)∩B|x|(x)

up(y)vq(y)
|y|σ dy

e(π|x|2/4+t/(4π))t(n−α)/2

dt

t

≥ cga(x).

Similarly, for sufficiently large |x|, we can get v(x) ≥ cgα(x).

Step 2. In this step, we show that u, v ≤ Cgα(x).

For η ∈ (0, 1/3), take a sequence

ξ0 = 1, ξk = η

k∑
j=1

1

2j
, k = 1, 2, · · · ,

then

lim
|k|→∞

ξk = η. (5.1)

Write w = u+ v, then (2.1) leads to

w(x) ≤ c

∫
Rn

gα(x− y)wγ(y)

|y|σ dy = I1 + I2 + I3,

where

I1 =

∫
BR

gα(x− y)wγ(y)

|y|σ dy,

I2 =

∫
(Rn\BR)\B(x,ξ1|x|)

gα(x− y)wγ(y)

|y|σ dy,

I3 =

∫
B(x,ξ1|x|)

gα(x− y)wγ(y)

|y|σ dy.

Where R > 0.

For fixed R > 0, When y ∈ BR, there holds

lim
|x|→∞

|gα(x− y)

gα(x)
− 1| = 0.

Thus, by virtue of (2.4), we can get

I1 ≤ 2gα(x)

∫
BR

w(y)γ

|y|σ dy ≤ cgα(x).

Since gα is decreasing, when y ∈ (Rn \BR) \B(x, ξ1|x|) and |x| → ∞, we have

gα(x− y) ≤ gα(ξ1|x|) ≤ 1.

Therefore,

I2 ≤
∫
Rn\BR

w(y)γ

|y|σ dy.

Based on Corollary 3.1 and the monotonicity of w, we can get, when |x| → ∞,

wγ−1((1− ξ1)x) ≤ 1

2
. (5.2)
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Thus, we have

I3 ≤ wγ((1− ξ1)x)

[(1− ξ1)|x|]σ
∫
B(x,ζ1|x|)

gα(x− y)dy ≤ 1

2
· w((1− ξ1)x)

[(1− ξ1)|x|]σ
∫
Rn

gα(y)dy =
1

2
· w((1− ξ1)x)

[(1− ξ1)|x|]σ .

Combining the results above, we have

w(x) ≤ 2gα(x)

∫
BR

wγ(y)

|y|σ dy +

∫
Rn\BR

wγ(y)

|y|σ dy +
1

2
· w((1− ξ1)x)

[(1− ξ1)|x|]σ (5.3)

and furthermore,

w((1− ξk)x) ≤
∫
BR

gα((1− ξk)x−y)
wγ(y)

|y|σ dy+

∫
(Rn\BR)\B(x,ξk+1|x|)

gα((1− ξk)x−y)
wγ(y)

|y|σ dy

+

∫
B(x,ξk+1|x|)

gα((1− ξk)x− y)
wγ(y)

|y|σ dy

≤ 2gα((1−ξk)x)

∫
BR

wγ(y)

|y|σ dy+

∫
Rn\BR

wγ(y)

|y|σ dy+
1

2

w((1− ξk+1)x)

[(1− ξk+1)|x|]σ , k = 1, 2, · · ·

Inserting these estimates into (5.3) we can get that

w(x) ≤ [2gα(x) +
2gα((1− ξ1)x)

2[(1− ξ1)|x|]σ +
2gα((1− ξ2)x)

2 · 2 · [(1− ξ1)|x|]σ[(1− ξ2)|x|]σ

+ · · ·+ 2gα((1− ξm)x)

2m · [(1− ξ1)|x|]σ · · · [(1− ξm)|x|]σ ]
∫
BR

wγ(y)

|y|σ dy

+[1 +
1

2[(1− ξ1)|x|]σ +
1

22[(1− ξ1)|x|]σ[(1− ξ2)|x|]σ

+ · · ·+ 1

2m[(1− ξ1)|x|]σ[(1− ξ2)|x|]σ · · · [(1− ξm)|x|]σ ]
∫
Rn\BR

wγ(y)

|y|σ dy

+

(
1

2

)m+1
w((1− ξm+1)x)

[(1− ξ1)|x|]σ · · · [(1− ξm+1)|x|]σ .

Note that when ξk ≤ ξm, we have

gα((1− ξk)x) ≤ gα((1− ξm)x),

1

[(1− ξk)|x|]σ ≤ 1

[(1− ξm)|x|]σ .

Thus we get

w(x) ≤ 2gα((1− ξm)x)[1 +
1

2[(1− ξm)|x|]σ +
1

22[(1− ξm)|x|]2σ + · · ·+ 1

2m[(1− ξm)|x|]mσ
]

∫
BR

wγ(y)

|y|σ dy

+ [1 +
1

2[(1− ξm)|x|]σ +
1

22[(1− ξm)|x|]2σ + · · ·+ 1

2m[(1− ξm)|x|]mσ
]

∫
Rn\BR

wγ(y)

|y|σ dy

+

(
1

2

)m+1
w((1− ξm+1)x)

[(1− ξm+1)|x|](m+1)σ
.

So

w(x) ≤ 2gα((1− ξm)x)
2 [(1− ξm)|x|]σ

2 [(1− ξm)|x|]σ − 1

∫
BR

wγ(y)

|y|σ dy
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+
2 [(1− ξm)|x|]σ

2 [(1− ξm)|x|]σ − 1

∫
Rn\BR

wγ(y)

|y|σ dy+

(
1

2

)m+1
w((1− ξm+1)x)

[(1− ξm+1)|x|](m+1)σ
.

Letting m → ∞, we have (5.1) and

w(x) ≤ 2gα((1− η)x)
2 [(1− η)|x|]σ

2 [(1− η)|x|]σ − 1

∫
BR

wγ(y)

|y|σ dy +
2 [(1− η)|x|]σ

2 [(1− η)|x|]σ − 1

∫
Rn\BR

wγ(y)

|y|σ dy.

Letting R → ∞, we can get

w(x) ≤ 2gα((1− η)x)
2 [(1− η)|x|]σ

2 [(1− η)|x|]σ − 1

∫
Rn

wγ(y)

|y|σ dy. (5.4)

Letting η → 0, we obtain the upper bound of w from (2.4).

Therefore,

u, v ≤ Cgα(x). (5.5)

Combining Step 1 with Step 2, we prove Lemma 5.1.

Proof of (R-5). Clearly,

u(x)

gα(x)
=

∫
Rn

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy := H1 +H2 +H3,

here

H1 =

∫
BR

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy,

H2 =

∫
(Rn\BR)\B(x,|x|/2)

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy,

H3 =

∫
B(x,|x|/2)

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy.

Where R > 0.

For fixed R > 0, when y ∈ BR, we have

lim
|x|→∞

|gα(x− y)

gα(x)
− 1| = 0,

and

up(y)vq(y)

|y|σ |gα(x− y)

gα(x)
− 1| ≤ 3

up(y)vq(y)

|y|σ .

From (2.4), we have ∫
Rn

up(y)vq(y)

|y|σ dy ≤
∫
Rn

wγ(y)

|y|σ dy ≤ c.

Then when |x| → ∞, by the Dominated convergence theorem, we can get

|
∫
BR

upvq

|y|σ [
gα(x− y)

gα(x)
− 1]dy| → 0, as |x| → ∞.

This result leads to

lim
R→∞

lim
|x|→∞

H1 =

∫
Rn

upvq

|y|σ dy.

15



Next we consider

H2 =

∫
(Rn\BR)\B(x,|x|/2)

gα(x− y)upvq

gα(x)|y|σ dy.

According to the Lemma 5.1, Proposition 1 and (5.2), when |x| → ∞ and |x− y| ≥ |x|
2 , we can get∫

(Rn\BR)\B(x,|x|/2)

gα(x− y)

gα(x)

upvq

|y|σ dy ≤ c
1

|R|σ
∫
Rn\BR

e
|x|
2 wγ(y)

e
|x−y|

2

dy

≤ c
1

|R|σ
∫
Rn\BR

e
|x|
2 gα(y)

e
|x−y|

2

dy

= c
1

|R|σ
∫
Rn\BR

e
|x|
2

e
|x−y|

2 · e |y|
2

dy.

As |x− y|+ |y| > |x|, then e
|x|
2

e
|x−y|

2 ·e
|y|
2

< 1.

Clearly, when R → ∞,

H2 =

∫
(Rn\BR)\B(x,|x|/2)

gα(x− y)

gα(x)

upvq

|y|σ dy → 0.

Finally, we consider

H3 =

∫
B(x,|x|/2)

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy.

(R-4) of Theorem 1.1 implies w is radially symmetric and decreasing about origin o. Therefore, if we

denote the point ox ∩ ∂B(x, |x|/2) by x0, then |x0| = |x|/2. By the result, (1.14) and (5.5), we know

H3 =

∫
B(x,|x|/2)

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy

≤ c
wγ(x0)

|x0|βgα(x)
∫
B(x,|x|/2)

gα(x− y)dy

≤ c
wγ(x0)

|x|βgα(x) ≤ c
gγα(x0)

|x|βgα(x) ≤ c
e

|x|
2

|x|βe |x|
4 ·γ

.

Hence, when p+ q = γ ≥ 2, and |x| → ∞,

H3 =

∫
B(x,|x|/2)

gα(x− y)up(y)vq(y)

gα(x)|y|σ dy → 0.

Combining all the estimate of H1, H2 and H3, we get

lim
|x|→∞

1

gα(x)
u(x) =

∫
Rn

upvq

|y|σ dy.

Similarly,

lim
|x|→∞

1

gα(x)
v(x) =

∫
Rn

vpuq

|y|σ dy.

Thus, we complete the proof of Theorem 1.1.
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