J. Math. Anal. Appl. 421 (2015) 51-58

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The Bishop—Phelps—Bollobés property for operators from C(K) @ CossMark
to uniformly convex spaces ™

Sun Kwang Kim *, Han Ju Lee ™*

& Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of Korea
Y Department of Mathematics Education, Dongguk University — Seoul, 100-715 Seoul, Republic of Korea

ARTICLE INFO ABSTRACT

Article history: We show that the pair (C(K),X) has the Bishop—Phelps—Bollobas property for
Received 19 April 2014 operators if K is a compact Hausdorff space and X is a uniformly convex space.
Available online 2 July 2014 © 2014 Elsevier Inc. All rights reserved.

Submitted by Richard M. Aron

Keywords:

Banach space

Approximation
Bishop-Phelps—Bollobés theorem

1. Introduction

In this paper, we deal with strengthening of the famous Bishop—Phelps theorem. In 1961, Bishop and
Phelps [8] showed that the set of all norm attaining functionals on a Banach space X is dense in its
dual space X* which is now called Bishop—Phelps theorem. This theorem has been extended to operators
between Banach spaces X and Y. In general, the set of norm attaining operators N A(X,Y) is not dense
in the space of linear operators L£(X,Y"). However, it is true for some pair of Banach spaces (X,Y’). One
of very well-known examples is the pair of every reflexive Banach space X and every Banach space Y,
which was shown by Lindenstrauss [24]. After that, this was generalized by Bourgain to Banach space X
with Radon—Nikodym property [10], and also there have been many efforts to find other positive examples
[12,13,15,17,19,26,27].

Meanwhile, Bollobéds sharpened Bishop—Phelps theorem as follows. From now on, the unit ball and the
unit sphere of a Banach space X will be denoted by Bx and Sx, respectively.
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Theorem 1.1. (See [9].) For an arbitrary € > 0, if £* € Sx« satisfies |1 —z*(x)| < % for x € Bx, then there
are both y € Sx and y* € Sx« such that y*(y) =1, |ly — z|| < € and |ly* — z*|| <.

This Bishop—Phelps—Bollobas theorem shows that if a functional almost attains its norm at a point,
then it is possible to approximate simultaneously both the functional and the point by norm attaining
functionals and their corresponding norm attaining points. Clearly, Bishop—Phelps—Bollobés theorem implies
Bishop—Phelps theorem.

Similarly to the case of Bishop—Phelps theorem, Acosta, Aron, Garcia and Maestre [1] started to extend
this theorem to bounded linear operators between Banach spaces and introduced the new notion Bishop—
Phelps—Bollobds property.

Definition 1.2. (See [1, Definition 1.1].) Let X and Y be Banach spaces. We say that the pair (X,Y) has
the Bishop—Phelps—Bollobas property for operators (BPBp) if, given € > 0, there exists 7(e) > 0 such that
if there exist both T € S, (x,y) and ¢ € Sx satisfying || Txgl| > 1 —n(e), then there exist both an operator
S € Se(x,y) and ug € Sx such that

[|Suo|| =1, lzo —uoll <€ and ||T— S <e.

Acosta et al. showed [1] that the pair (X,Y) has the BPBp for finite dimensional Banach spaces X and Y,
and that the pair (¢7,Y) has the BPBp for every n if Y is a uniformly convex space. In the same paper,
they asked if the pairs (cg,Y) and (£, Y) have the BPBp for uniformly convex spaces Y. The first author
solved the ¢ case and proved [20] that (c¢o,Y") has the Bishop—Phelps—Bollobés property for all uniformly
convex spaces Y.

Let X = Loo(u) or X = ¢o(I") for a set I'. Very recently, Lin and authors [23] proved that (X,Y") has the
BPBp for every uniformly convex space Y. So (Loo (), Lp(v)) has the BPBp for all 1 < p < co and for all
measures v. They also proved that (X,Y’), as a pair of complex spaces, has the BPBp for every uniformly
complex convex space Y. In particular, (Lo (), L1(v)), as a pair of complex spaces, has the BPBp, since
Ly (v) is uniformly complex convex [18].

On the other hand, there have been several researches about the BPBp for operators into C(K) spaces
(or uniform algebras). Even though Schachermayer showed [26] that the set of norm attaining operators
is not dense in £(L1[0,1],C0,1]), there are some positive results about the BPBp. It is shown [5] that
(X, C(K)) has the BPBp if X is an Asplund space. This result was extended so that (X, A) has the BPBp if
X is Asplund and A is a uniform algebra [11]. The authors also proved [21] that (X, C(K)) has the BPBp if
X* admits a uniformly simultaneously continuous retractions. It is also worthwhile to remark that the pair
(C(K),C(L)) of the spaces of real-valued continuous functions has the BPBp for every compact Hausdorff
spaces K and L [2]|. Concerning the results about L., spaces, it is shown [7] that (L1(u), Loo[0,1]) has the
BPBp and this was generalized [14] so that (L1(u), Leo(v)) has the BPBp if p is any measure and v is a
localizable measure. These are the strengthening of the results that the set of norm-attaining operators is
dense in L(L1(p), Loo(v)) [17,25] for every measure p and every localizable measure v. Finally we remark
that if X is uniformly convex, then (X,Y’) has the BPBp for every Banach space Y [3,6,22].

Throughout this paper, we consider only real Banach spaces. It is the main result of this paper that
(C(K), X) has the BPBp for every compact Hausdorff space K and for every uniformly convex space X.
Recall that Schachermayer showed [26] that every weakly compact operator from C'(K) into a Banach space
can be approximated by norm attaining weakly compact operators (cf. [4, Theorem 2]). So the set of all
norm attaining operators is dense in L(C(K),Y) for every reflexive space Y. Notice that the reflexivity
of Y is not sufficient to prove that (C(K),Y) has the BPBp. Indeed, if we take a reflexive strictly convex
space Yy which is not uniformly convex, then (6(12),Y0) does not have the BPBp [1,6]. If we take Kj as

the set consisting of only two points, then C(Kj) is isometrically isomorphic to 2-dimensional 652) space.
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Hence (C(Ky),Yy) does not have the BPBp. However, if X is uniformly convex, then it will be shown that
(C(K), X) has the BPBp.

2. Main result

Given a Banach space X, the modulus of convexity dx (¢) of the unit ball By is defined by for 0 < & < 1,

r+y

6X(e):inf{1— H:x,yEBX, |x—y||>6}.
A Banach space X is said to be uniformly convex if dx(e) > 0 for all 0 < e < 1. It is well known that every
uniformly convex space is reflexive.

In [20], the following result was shown: Let 1 > € > 0 be given and X be a reflexive Banach space and
Y be a uniformly convex Banach space with modulus of convexity dx(e) > 0. If T' € Sg(x,y) and x; € Sx
satisfy

€ €

then there exist S € Sg(x,y) and w2 € Sx such that ||Sxaf| =1, [[S — T < € and ||Tz; — Sz <e.

This says that for a reflexive space X and a uniformly convex space Y, the pair (X,Y) has a little weaker
property than BPBp. The only difference from the BPBp and the above is approximating the image of a
point if the given operator almost attains its norm. Since the set of all norm attaining operators is dense in
L(X,Y) for every YV if X is reflexive, the following result generalize the result mentioned above [20].

Proposition 2.1. Let X be a Banach space and Y be a uniformly conver space. Suppose that the set of
norm attaining operators is dense in L(X,Y). Then, given 0 < € < 1, there exists n(e) > 0 such that if
T € Sexyy and x1 € Sx satisfy || Tx1|| > 1 —n(e), then there exist S € Sp(x,yy and x2 € Sx such that
|Szo|| =1, |S—T|| <€ and ||Txy — Szsz|| < €.

Proof. Let &y (-) be the modulus of convexity of ¥ and 0 < &; < e. Choose €2 > 0 such that (1 —&3)3 —
26y —e3 > 1—dy(e1) and €2 + 260 + 61 < .

We show that 7(g) = €% is a suitable number. Assume ||Tx|| > 1 — 2. Choose y* € Sy~ such that
y*Tx1 = Rey*Tx1 > 1 — €3 and define an operator Ty by

Tyx =Tz + eoy*(Tx)Txy for every x € X.

It is easy to see that 1 — ey < (1 —€2)(1 + ex(1 —€3)) < || Thz || < |Th]| < 1+ 2.

Let Ty = Ty /||T1||. Since the set of norm attaining operators is dense in £(X,Y), there exist an operator S
and z € Sx such that |7} — S|| < €3 and ||Sz|| = ||S|| = 1. Since ||Sz—T} 2| < 3, we see that || Ty 2| > 1—¢&3,
which means that

Tz + eay* (T2)Tar|| > (1 —e3) 1T > (1 —e3) (1 —e3) (1 +e2(1 —€3)).

Hence, we have |y*(T2)| > (1 —€3)3 — 265 — &3 > 1 — §y (g1). Choose @ = 41 satisfying y*T(az) = |y*T(2)|
and let 2 = az. Then

> Yy T, Jer*sz

>1-— (5}/(61).

Txy 4+ Txo
2
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Hence, we see that ||Tx1 — Txz|| < 1. Moreover,

||Sf£2 - TZL'1H < |S£L’2 - T1x2|| + HTlxg - TlI'QH + ||T1£L'2 - T.TQH + ||T£E2 — TQZ'1||
<

|
IS = Tull + [IT2)l = 1] + &2 + &1

<E§+52+52+51 < e.
This completes the proof. O
Now we state the main theorem of this paper.

Theorem 2.2. Let X be a uniformly conver space and K be a compact Hausdorff space. Then the pair
(C(K),X) has the BPBp.

Before we present the proof of the main result, we begin with preliminary comments on vector measure

and two lemmas. Recall that a vector measure G : X — X on a g-algebra X is said to be countably additive
if, for every mutually disjoint sequence of YX-measurable subsets {A;}5°;, we have

G(U Ai> = G(4).
i=1 i=1
For a Y-measurable subset A, the semi-variation |G||(A) of G is defined by

IG1I(A) = sup{

2*G|(A): z* € Bx-},
where |2*G|(A) is the total variation of the scalar-valued countably additive measure *G on A. The vector
measure G on a Borel o-algebra is said to be regular if for each Borel subset E and € > 0 there exist a
compact subset K and an open set O such that

KCFECO and |G|(O\K)<e.
It is well known that if X is reflexive, each operator T in L(C(K), X) has an X-valued countably additive

representing Borel measure G and the measure is regular (see [16, VI. Theorems 1, 5 and Corollary 14] for
a reference). That is, for all f € C(K) and x* € X*, we have

Tf = / fdG,  @T(f) = / fd'G and |T| = |GII(K).
K K

If G is a countably additive representing measure for an operator T in L(C(K), X), then it is easy to see
that for any bounded Borel measurable function i : K — R, the mapping S, defined by Sf = [ fhdG, is a
bounded linear operator and [|S|| < [|T|| - ||h]|co, Where ||h]lcc = sup{|h(k)| : k € K}.

Lemma 2.3. Let G be a countably additive, Borel regular X -valued vector measure on a compact Hausdorff
space K with ||G||(K) =1 and let 0 < n,v < 1. Assume that f € Sc(x) and x* € Sx~ satisfy

/fdx*G>1—77.
K

Then, we have
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#*G|(K\ (AT UAD)) < zg +,

where AT = {t € K | f(t) > 11—~} and A; = {t € K | f(t) < =1 +~}. Moreover, there exist mutually
disjoint compact sets F*, F~ such that x*G is positive on F'T, negative on F~ and

/ fda*G>1— 4",
v

(FHNATYU(F-NAY)

Proof. The Hahn decomposition of z*G and the regularity of G show that there exist mutually disjoint
compact sets F*, F'~ such that 2*G is positive on F'*', negative on F~ and |G||(K \ (FT UF7)) <.

1—n</fda;*G:/fd:c*G+/fdz*G+ / fda*G
K Pt F- K\(FtUF-)
- / fda*G+ / fda G+ / Fda*G+ / Fda*G + / fda*G
F+nAY FH\AT F-NA5 F-\Ay K\(FtUF~)
ST*GFTNAN) + (1 =" G(FT\AY) —2*G(F NA]) —(1—7)z*"G(F~ \ A7) +1
=2"G(FY) —2*G(F) —y(=*"G(F* \ A) —2*G(F~\ A])) +n.
Since z*G(F*) —2*G(F~) = |[z*G|(FT UF~) < |G|(K) = 1, we get

GI(FF\ADU(F\ A7) =2"G(FT\ AT) —2"G(F~\ 4]) < 2%.

This shows that

TG|(K\ (FTUF))+|z*G|((FTUF7)\ (AT UAY))
IGI(K\ (FYTUF™))+|2*G|((FT\AT) U (F~\ 47))

<2ﬁ+n
Y

T"G|(K\ (A7 UAY)) <
<

and

/ fdz*G = / fde*G — / fdz*G

(F+NAT)U(F-NAY) FHUF- (FH\AD)U(F-\A7)

>/fmwanMK\@*UFﬁ>—

T G|(FT\ A7) U (F7\ 47))

>1-2p-27 5147
v v

This completes the proof. O

Lemma 2.4. Let X be a uniformly convex space with the modulus of convezity 6x and T € Sgc(k),x) be an
operator represented by the countably additive, Borel reqular vector measure G. Let 0 < e < 1 and A be a
Borel set of K. Suppose that an operator S, defined by Sf = [, fdG, satisfies ||S|| > 1 — dx(€). Then

KéfdGH<e.

IT =5 = sup

feBco (k)
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Proof. Choose z* € Sx~, fo € Sc(k) such that ||Sfol| = 2*Sfo > 1 — dx(e). By the regularity of G, we
may choose a compact set A; C A such that

/f() dx*G >1— (5_)((6).
Ay
Fix a closed set B C K\ A and g € B¢ (p). Then, choose g, g € Bk satisfying
g+(t) =g-(t) = fo(t) forte A; and
—g-(t) =g(t) forte B.

NS
+
—
~
=
Il

So, we have

1—6X(e)</f0dx*G<H/fodGH:%H / gy dG + / gdGH.
A Ay AUB AjUB

1

Note that || [, 5 9+ dGll, || [4, 5 9+ dG|| < 1. Thus, from the uniform convexity of X, we get that

H2/gdGH = ” / g+ dG — / gdGH < €.
B A,UB A,UB

1

This implies |7 — S|| < € and the proof is done. O

Proof of Theorem 2.2. Let Jx be the modulus of convexity for Bx. Fix 0 < e < 2% and let 1 be the function
which appears in Proposition 2.1 for the pair (C(K), X), and let v(t) = min{n(t),dx(t), £} for t € (0,1).
Assume that T' € S, o), x) and fo € Sc (k) satisfy that

ITfoll > 1 gv(g(sX(g)).

Let G be the representing vector measure for 7" which is countably additive Borel regular on K. Choose
x] € Sx- such that 21T fy > 1 — £y(§0x(§)). By Lemma 2.3 there exist two mutually disjoint compact
sets F'T, F~ such that 2*G is positive on F', negative on F'~ and

/ fdm*G>1—'y(g§X<%>)7

(FHNAL )U(F-NA_),)

where Aj/2 ={teK|fo()>1-§tand A_, ={t€ K | fo(t) < -1+ §}.
Let A; = Ft ﬂA:_/Q, Ay = F~ ﬂAE_/2 and A = A, U A,. Then, define S; € B[,(C(K),X) by Slf = fA fdG
for every f € C(K). Then Lemma 2.4 shows that || T'— Si|| < §. Choose fi € S¢(k) such that

fit)=1 forte Ay and
fit) =—1 forte As.

For f € C(K), the restriction of f to A will be denoted by f|4. Now consider S; as an operator in
L(C(A), X). Then we have
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S (f1la)|| > 1 —7(%6)((%)).

So Proposition 2.1 shows that there exist Sy € Sy (c(a),x) and fa € Sg(a) such that [|Sofoll = 1, ||S2 —

ﬁ” < £0x(§) and || Safy — Sl\l(gi‘HA) | < §0x(§)- Let G’ be the representing vector measure for Sy which

is countably additive Borel regular on A. Choose 25 € Sx- so that 23Sy f2 = ||Safo|| = [, fodasG' = 1.
Since

2582 (f1la + f2) = 22582 f2 — ||Safa — Sa(f1]a)]|

S1(f1la) ‘ S1(f1la)
S fo — _
T 15,]

2(1-fo(5))

fitfo v s (€
/72 dx*G' > 1 65X 6/
A

By applying Lemma 2.3 again, we get a compact subset F' of A such that

—S2(f1la)

>2-|

we get

Fc{te A:|A®)+ f2(t)] >2(1—¢)}

>1ax(g>
>1—5X(§>.

and

fitfao,
|[ 25 e
i

Let B={t€ A: f1(t)f2(t) = 0}. Then, F C B and

B/fdG’ > Hp/fl;f? e

sup
f€Bc(a)

By Lemma 2.4, we have

sup
f€Bco (k)

<e
5

/ f G
A\B

Define S € L(C(A), X) by, for f € C(A),

Sf:}!fdG'—/fdG’

A\B
and let

f . |f2| fOI‘tEAl,
ST U =|fe| for t € A,.

So f3 € C(A) and f3 = faxs — faxa\B, Where xs is the characteristic function on a set S. Hence we have

Sfz = Safo, |Sf3] =|S]| =1 and ||S — Sz < 5. On the other hand, we have [|2f3 — fi|4]| < 1. Since X is

uniformly convex and we have S f3 = S(fl‘A)JrSQ(erfl‘A)

, we get
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Sfs=5(fila) = S(2fs — fila).

We now consider Sy, Se, S as operators in L(C(K), X) using the canonical extension. That is, S(f) =
S(fla), Si(f) = Si(fla) for all f € C(K) and for i = 1,2. Let C be the compact subset defined by

C={teK:|filt) = folt)] > €}

Note that A and C' are mutually disjoint. Indeed, if ¢t € A, then |fo(t) — f1(t)] < €/2. So there is ¢ € C(K)
such that 0 < ¢ < 1, ¢(k) =1 for k € A and ¢(k) =0 for k € C. Let g = ¢f1 + (1 — @) fo. Then we see that
1S9l =1,

IS~ T) < IS - Safl + \ S =T

a1l s
Sy — + - S
2 Sl B

<44 tto=c
3 6 3 6

and [|g — foll = supreg\c [¢(k)(f1(k) — fo(k))| < e. This completes the proof. O
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