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In this paper, we prove a blow-up criterion in terms of the density ρ and the 
pressure P for the strong solutions with vacuum to Cauchy problem of the 3D 
compressible non-isentropic Navier–Stokes equations without thermal conductivity. 
More precisely, we show that the strong solution exists globally if the norm 
‖(ρ, P )‖L∞([0,T ]×R3) is bounded from above.
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1. Introduction

The motion of a viscous compressible fluid in R3 can be described by the compressible Navier–Stokes 
equations

⎧⎪⎨
⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇P = divT,
(ρe)t + div(ρeu) + P div u− κ�θ = div(uT) − u divT.

(1.1)

In this system, x ∈ R
3 is the spatial coordinate, t ≥ 0 is the time, ρ is the mass density, u = (u1, u2, u3) ∈

R
3 is the velocity vector of fluids, e is the specific internal energy, the constant κ is the thermal conductivity 

coefficient, P is the pressure satisfying

P = (γ − 1)ρe = Rρθ, (1.2)
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where θ is the absolute temperature, γ is the adiabatic exponent and R is a positive constant; T is the 
viscous stress tensor given by

T = 2μD(u) + λ div uI3, (1.3)

where I3 is the 3 × 3 identity matrix, D(u) = ∇u+(∇u)�
2 is the deformation tensor, μ is the shear viscosity 

coefficient, λ + 2
3μ is the bulk viscosity coefficient, μ and λ are both real constants satisfying

μ > 0, 3λ + 2μ ≥ 0, (1.4)

which ensure the ellipticity of the Lamé operator L defined by

Lu = − divT = −μ�u− (λ + μ)∇ div u. (1.5)

When κ = 0, from (1.2), system (1.1) can be written as
⎧⎪⎨
⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇P = divT,
Pt + u · ∇P + γP div u = (γ − 1)(div(uT) − u divT).

(1.6)

This paper is aimed at giving a blow-up criterion of strong solutions to the Cauchy problem of system (1.6)
with the following initial data

(ρ, u, P )|t=0 = (ρ0(x), u0(x), P0(x)), x ∈ R
3 (1.7)

and the far field behavior

(ρ, u, P )(t, x) → (0, 0, 0) as |x| → +∞, t > 0. (1.8)

Throughout this paper, we adopt the following simplified notations for the standard homogeneous and 
inhomogeneous Sobolev space:

‖f‖s = ‖f‖Hs(R3), |f |p = ‖f‖Lp(R3), ‖(f, g)‖X = ‖f‖X + ‖g‖X ,

Dk,r = {f ∈ L1
loc(R3) : |∇kf |r < +∞}, Dk = Dk,2, |f |Dk,r = ‖f‖Dk,r(R3),

D1
0 = {f ∈ L6(R3) : |∇f |2 < ∞}, |f |D1

0
= ‖f‖D1

0(R3).

A detailed study on homogeneous Sobolev spaces can be found in [4].
As has been observed in Theorem 3 of Cho–Kim [3], in which the existence of unique local strong solution 

for system (1.6) was proved, in order to make sure that the Cauchy problem (1.6)–(1.8) with vacuum is 
well-posed, some compatibility condition on the initial data (ρ0, u0, P0) was proposed to compensate the 
lack of a positive lower bound of the initial mass density ρ0.

Theorem 1.1. (See [3].) If the initial data (ρ0, u0, P0) satisfy

(ρ0, P0) ∈ H1 ∩W 1,q, ρ0 ≥ 0, P0 ≥ 0, u0 ∈ D1
0 ∩D2, (1.9)

and the compatibility condition

Lu0 + ∇P0 = √
ρ0h, for some h ∈ L2, (1.10)
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then there exist a positive time T∗ and a unique solution (ρ, u, P ) to Cauchy problem (1.6)–(1.8) satisfying

ρ ≥ 0, P ≥ 0, (ρ, P ) ∈ C([0, T∗];H1 ∩W 1,q),

u ∈ C([0, T∗];D1
0 ∩D2) ∩ L2([0, T∗];D2,q),

ut ∈ L2([0, T∗];D1
0),

√
ρut ∈ L∞([0, T∗];L2). (1.11)

The well-posedness of global classical solutions with small energy but possibly large oscillations and 
vacuum for isentropic flow has been obtained for Cauchy problem or for initial–boundary value problem 
in Huang–Li–Xin [8,9]. However, for the non-isentropic flow, when the thermal conductivity κ vanishes, 
the finite time blow-up of classical or strong solutions has been studied in Xin [14] and Xin–Yan [15] for 
both Cauchy problem and initial–boundary value problem if the initial density is compactly supported or 
vanishes in some local domain.

Then these motivate us to consider the mechanism of breakdown for the strong solutions and the structure 
of singularities. The similar question has been studied for the incompressible Euler equation by Beale–Kato–
Majda (BKM) in their pioneering work [2] which showed that the L∞-bound of vorticity rotu must blow 
up if the life span of the corresponding strong solution is assumed to be finite. Later, Ponce [11] rephrased 
the BKM-criterion in terms of D(u). The same conclusion as [11] has been extended to compressible isen-
tropic Navier–Stokes equations in Huang–Li–Xin [6], which can be shown as follows. If 0 < T < +∞ is the 
maximum existence time for the strong solution, then

lim sup
T→T

T∫
0

|D(u)|L∞(R3)dt = +∞. (1.12)

Later on, also for the strong solutions to the compressible isentropic Navier–Stokes equations, Sun–Wang–
Zhang [12] proved that

lim sup
T→T

|ρ|L∞([0,T ]×R3) = +∞,

under the physical assumption (1.4) and λ < 7μ, which has been extended to non-isentropic flow with κ > 0
in Wen–Zhu [13] that

lim sup
T→T

(
|ρ|L∞([0,T ]×R3) + |θ|L∞([0,T ]×R3)

)
= +∞, (1.13)

under the physical assumption (1.4) and λ < 3μ.
So it is interesting to ask what the blow-up criterion is for the case κ = 0 compared with [13] for the 

non-isentropic flow with κ > 0. Via introduce some new arguments and more accurate estimates, under the 
assumption

μ > 0, 2μ + 3λ ≥ 0, λ < 3μ, (1.14)

our main result in the following theorem shows that the upper bounds of (ρ, P ) control the possible blow-up 
for strong solutions, which means that if a solution is initially smooth and loses its regularity at some later 
time, then the formation of singularity must be caused by losing the upper bound of ρ or P as the blow-up 
time approaches.

Theorem 1.2. Let (1.14) hold. Assume that (ρ, u, P ) is the unique strong solution to Cauchy problem 
(1.6)–(1.8) with the initial data (ρ0, u0, P0) satisfying (1.9)–(1.10). If 0 < T < +∞ is the maximal time of 
existence, then
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lim sup
T→T

(
|ρ|L∞([0,T ]×R3) + |P |L∞([0,T ]×R3)

)
= +∞. (1.15)

In other words, the strong solution (ρ, u, P ) exists globally if (ρ, P ) is bounded from above.

Remark 1.1. It is worth mentioning that, compared with [13] for the non-isentropic flow with κ > 0, 
according to the criterion obtained in Theorem 1.2, the L∞ bound of θ is not the key point to make sure 
that the solution (ρ, u, P ) is a global one, and it may go to infinity in the vacuum region within the life span 
of our strong solution.

Remark 1.2. Due to the appearance of the quadratic term

Q(u) = div(uT) − u divT

= 2μ
3∑

i=1
(∂iui)2 + λ(div u)2 + μ

3∑
i�=j

(∂iuj)2 + 2μ
∑
i>j

(∂iuj)(∂jui)

in (1.6)3 and the lack of smooth mechanism for the regularity of the pressure P , the arguments used in [12]
or [13] cannot be applied to our case directly. For example, if we want to control the norm |∇P |q, unlike the 
estimate for |∇ρ|q which can be totally determined by ‖ divu‖L1(0,T ;L∞(R3)) due to the scalar hyperbolic 
structure of the continuity equation (1.6)1, here we need the upper bound of ‖|∇u||∇2u|‖L2([0,T ];Lq(R3)). 
However, the latter is not easy to be obtained before we get the upper bound of |∇P |q because of the strong 
coupling between u and P in the momentum equations (1.6)2.

The rest of this paper is organized as follows. In Section 2, we give some important lemmas which will 
be used frequently in our proof. In Section 3, we give the proof for the blow-up criterion (1.15).

2. Preliminary

In this section, we show some important lemmas that will be frequently used in our proof. The first one 
is the well-known Gagliardo–Nirenberg inequality.

Lemma 2.1. (See [10].) Let p ∈ [2, 6], l ∈ (1, +∞), and r ∈ (3, +∞). Then there exists some constant C > 0
that may depend on l and r such that for

f ∈ H1(R3), and g ∈ Ll(R3) ∩D1,r(R3),

we have

|f |pp ≤ C|f |(6−p)/2
2 |∇f |(3p−6)/2

2 ,

|g|∞ ≤ C|g|l(r−3)/(3r+l(r−3))
l |∇g|3r/(3r+l(r−3))

r . (2.1)

Some commonly used versions of this inequality can be written as

|u|6 ≤ C|u|D1 , |u|∞ ≤ C|u|
1
2
6 |∇u|

1
2
6 , |u|∞ ≤ C‖u‖W 1,r . (2.2)

The ellipticity of the Lamé operator L is very important in our analysis. Consider the following boundary 
value problem:
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{
−μ�V − (μ + λ)∇ divV = F, in R

3,

V (t, x) → 0 as |x| → +∞,
(2.3)

where V = (V 1, V 2, V 3), F = (F 1, F 2, F 3). It is well known that (2.3)1 is a strongly elliptic system under 
the assumption (1.4). If F ∈ W−1,2(R3), then there exists a unique weak solution V ∈ D1

0(R3). Moreover, 
we have the following estimates for this system in Lp(R3) spaces, which can be found in [1].

Lemma 2.2. Let p ∈ (1, +∞) and u be a solution of (2.3). Then there exists a constant C depending only 
on λ, μ and p such that the following estimates hold:

(1) if F ∈ Lp(R3), then we have

|V |D2,p ≤ C|F |p; (2.4)

(2) if F ∈ W−1,p(R3) (i.e., F = div f with f = (fij)3×3, fij ∈ Lp(R3)), then we have

|V |D1,p ≤ C|f |p. (2.5)

The following lemma is about the positiveness of the quadratic term Q(u). The proof can be found in [14].

Lemma 2.3. (See [14].) If u(x) ∈ D1
0 ∩D2, then Q(u) ≥ 0.

Finally, we state the following Beal–Kato–Majda inequality which will be used later to prove the upper 
bound of |(∇ρ, ∇P )|q. The proof can be found in [7].

Lemma 2.4. (See [7].) Let p ∈ (3, +∞). Then there exists a constant C = C(p) such that the following 
inequality holds for any ∇u ∈ L2 ∩D1,p(R3):

|∇u|L∞(R3) ≤ C
(
(|div u|∞ + | rotu|∞) ln(e + |∇2u|p) + |∇u|2 + 1

)
. (2.6)

3. Proof of blow-up criterion (1.15)

For any given T ∈ (0, T ], we first show the classical energy estimates of the unique strong solution to 
(ρ, u, P ) the Cauchy problem (1.6)–(1.8) obtained in Theorem 1.1. Hereinafter we use C to denote a generic 
constant which may vary each time when it appears.

Lemma 3.1. For 0 ≤ t < T , we have

|√ρu(t)|22 + |P (t)|1 ≤ C and P (t) ≥ 0,

where C depends only on (ρ0, u0, P0), μ, λ, γ and T .

Proof. First, multiplying the momentum equations (1.6)2 by u and the continuity equation (1.6)1 by |u|
2

2 , 
summing them together and integrating over R3 by parts, we get the classical energy equality

1
2

d
dt

∫
ρ|u|2dx−

∫
u divTdx =

∫
P div udx. (3.1)
R3 R3 R3
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Second, from the pressure equation (1.6)3, we have

P div u = −1
γ − 1

(
Pt + div(uP )

)
+ div(uT) − u divT,

which, together with (3.1) and Lemma 2.3, implies that

d
dt

∫
R3

(1
2ρ|u|

2 + P

γ − 1

)
dx = 0. (3.2)

Finally, again from equation (1.6)3 and Lemma 2.3, P can be expressed by

P (t, x) = exp
(
−

t∫
0

(γ − 1) div u(s, U(s, t, x))ds
)(

P0(U(0; t, x))

+
t∫

0

(γ − 1)Q(s, U(s, t, x)) exp
( s∫

0

(γ − 1) div u(τ, U(τ, t, x))dτ
)
ds

)
≥ 0,

where U ∈ C([0, T ] × [0, T ] × R
3) is the solution to the initial value problem

⎧⎨
⎩

d
dsU(s; t, x) = u(s, U(s; t, x)), 0 ≤ s ≤ T,

U(t; t, x) = x, 0 ≤ t ≤ T, x ∈ R
3.

�

Now we assume that the opposite of (1.15) holds, i.e.,

lim sup
T �→T

(
|ρ|L∞([0,T ]×R3) + |P |L∞([0,T ]×R3)

)
= C0 < +∞. (3.3)

Then based on (3.3), we can improve the energy estimate obtained in Lemma 3.1.

Lemma 3.2. Let (1.14) hold. Then we have

∫
R3

ρ|u(t)|4dx +
T∫

0

∫
R3

|u|2|∇u|2dxdt ≤ C, for 0 ≤ t < T, (3.4)

where C depends only on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. For any (λ, μ) satisfying (1.14), there exists a sufficiently small constant αλμ > 0 such that

λ < (3 − αλμ)μ. (3.5)

So we only need to prove (3.4) under the assumption (3.5).
First, multiplying (1.6)2 by r|u|r−2u (r ≥ 3) and integrating over R3, we have

d
dt

∫
R3

ρ|u|rdx +
∫
R3

Hrdx

= −r(r − 2)(μ + λ)
∫

div u|u|r−3u · ∇|u|dx +
∫

rP div(|u|r−2u)dx, (3.6)

R3 R3
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where

Hr = r|u|r−2(μ|∇u|2 + (μ + λ)| div u|2 + μ(r − 2)
∣∣∇|u|

∣∣2).
For any given ε1 ∈ (0, 1) and ε0 ∈ (0, 1/4), we define a nonnegative function which will be determined in 
Case 2 as follows

φ(ε0, ε1, r) =

⎧⎪⎨
⎪⎩

με1(r − 1)
3
(
− (4−ε0)μ

3 − λ + r2(μ+λ)
4(r−1)

) , if − (4 − ε0)μ
3 − λ + r2(μ + λ)

4(r − 1) > 0,

0, otherwise.

We prove (3.4) in two cases.
Case 1 : we assume that∫

R3∩{|u|>0}

|u|r
∣∣∣∇( u

|u|
)∣∣∣2dx > φ(ε0, ε1, r)

∫
R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx. (3.7)

A direct calculation shows for |u| > 0 that

|∇u|2 = |u|2
∣∣∣∣∇ u

|u|

∣∣∣∣
2

+
∣∣∇|u|

∣∣2, (3.8)

which plays an important role in the proof. By (3.6) and Cauchy’s inequality, we have

d
dt

∫
R3

ρ|u|rdx +
∫

R3∩{|u|>0}

Hrdx

= −r(r − 2)(μ + λ)
∫

R3∩{|u|>0}

div u|u| r−2
2 |u| r−4

2 u · ∇|u|dx +
∫
R3

rP div(|u|r−2u)dx

≤ r(μ + λ)
∫

R3∩{|u|>0}

|u|r−2| div u|2dx + r(r − 2)2(μ + λ)
4

∫
R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx

+
∫
R3

rP div(|u|r−2u)dx. (3.9)

From Hölder’s inequality, Lemmas 3.1 and 2.1, and Young’s inequality, we have

J1 =
∫
R3

rP div(|u|r−2u)dx

≤ Cr(r − 1)

⎛
⎝∫

R3

|u|r−2|∇u|2dx

⎞
⎠

1
2
⎛
⎝∫

R3

|u|r−2P 2dx

⎞
⎠

1
2

≤ Cr(r − 1)|P | 12r
4r+4

⎛
⎝∫

R3

|u|r−2|∇u|2dx

⎞
⎠

1
2
⎛
⎝∫

R3

(
|u| r2

)6dx
⎞
⎠

2(r−2)
12r

≤ Cr(r − 1)

⎛
⎝∫

|u|r−2|∇u|2dx

⎞
⎠

1
2
⎛
⎝∫ ∣∣∇|u| r2

∣∣2dx
⎞
⎠

r−2
2r
R3 R3



Y.C. Li et al. / J. Math. Anal. Appl. 431 (2015) 822–840 829
≤ 1
2μrε0

∫
R3∩{|u|>0}

|u|r−2|∇u|2dx + C(C0, μ, r, ε0), (3.10)

where ε0 ∈ (0, 1/4) is independent of r. Combining (3.8)–(3.10), it is obvious that

d
dt

∫
R3

ρ|u|rdx +
∫

R3∩{|u|>0}

μr(1 − ε0)|u|r−2|∇|u||2dx

+
∫

R3∩{|u|>0}

μr(1 − ε0)|u|r
∣∣∣∣∇ u

|u|

∣∣∣∣
2

dx +
∫

R3∩{|u|>0}

μr(r − 2)|u|r−2∣∣∇|u|
∣∣2dx

≤ r(r − 2)2(μ + λ)
4

∫
R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx + C(C0, μ, r, ε0). (3.11)

According to (3.7) and (3.11), we then obtain that

d
dt

∫
R3

ρ|u|rdx + rf(ε0, ε1, ε2, r)
∫

R3∩{|u|>0}

|u|r−2|∇|u||2dx

+
∫

R3∩{|u|>0}

μr(1 − ε0)ε2|u|r
∣∣∣∣∇ u

|u|

∣∣∣∣
2

dx ≤ C(C0, μ, r, ε0), (3.12)

where

f(ε0, ε1, ε2, r) = μ(1 − ε0)(1 − ε2)φ(ε0, ε1, r) + μ(r − 1 − ε0) −
(r − 2)2(μ + λ)

4 . (3.13)

Subcase 1 : 4 ∈
{
r
∣∣∣− (4−ε0)μ

3 − λ + r2(μ+λ)
4(r−1) > 0

}
, i.e., λ + ε0μ > 0. It is easy to get

[4,+∞) ⊂
{
r
∣∣− (4 − ε0)μ

3 − λ + r2(μ + λ)
4(r − 1) > 0

}
.

Therefore, we have

φ(ε0, ε1, r) = με1(r − 1)
3
(
− (4−ε0)μ

3 − λ + r2(λ+μ)
4(r−1)

) , for r ∈ [4,+∞). (3.14)

Substituting (3.14) into (3.13), for r ∈ [4, ∞), we have

f(ε0, ε1, ε2, r)

= μ2ε1(1 − ε0)(1 − ε2)(r − 1)
3
(
− (4−ε0)μ

3 − λ + r2(λ+μ)
4(r−1)

) + μ(r − 1 − ε0) −
(r − 2)2(μ + λ)

4 . (3.15)

Taking (ε1, ε2, r) = (1, 0, 4), we have

f(ε0, 1, 0, 4) = 3(1 − ε0)μ2
+ 2μ− λ− ε0μ = − (λ− a1μ)(λ− a2μ)

, (3.16)

λ + ε0μ λ + ε0μ
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where

a1(ε0) = 1 − ε0 +
√

4 − 3ε0,

a2(ε0) = 1 − ε0 −
√

4 − 3ε0. (3.17)

Since λ − a2(ε0)μ = λ + ε0μ +
(√

4 − 3ε0 − 1
)
μ > 0, so to make sure that f(ε0, 1, 0, 4) > 0, it suffices to 

assume that

−ε0μ < λ < a1(ε0)μ. (3.18)

Due to the fact that a1(0) = 3 and a′1(ε0) < 0 for ε0 ∈ [0, 1/4], we can choose some ε0 ∈ (0, 1/4) small 
enough such that a1(ε0) ≤ 3 − αλμ.

Since f(ε0, ε1, ε2, 4) is continuous with respect to (ε1, ε2) over [0, 1] × [0, 1], there exists (ε1, ε2) ∈ (0, 1) ×
(0, 1) such that

f(ε0, ε1, ε2, 4) > 0,

which, together with (3.12) (letting r = 4), implies that

d
dt

∫
R3

ρ|u|4dx + 4μ(1 − ε0)ε2
∫

R3∩{|u|>0}

|u|2|∇u|2dx ≤ C(C0, μ, ε0). (3.19)

Subcase 2 : 4 /∈ {r
∣∣ r2(μ+λ)

4(r−1) − (4−ε0)μ
3 − λ > 0}, i.e., λ ≤ −ε0μ. In this case, for r = 4, it is easy to get 

from (3.13) that

4f(ε0, ε1, ε2, 4) = 4 (μ(3 − ε0) − (μ + λ))

> 4
(11

4 μ− (μ + λ)
)

= 4
(7μ

4 − λ
)
≥ 4

(7μ
4 + ε0μ

)
> 7μ, (3.20)

which, together with (3.12) (letting r = 4), implies that

d
dt

∫
R3

ρ|u|4dx + 7μ
∫

R3∩{|u|>0}

|u|2|∇u|2dx ≤ C(C0, μ, ε0). (3.21)

Case 2 : we assume that

∫
R3∩{|u|>0}

|u|r
∣∣∣∣∇

(
u

|u|

)∣∣∣∣
2

dx ≤ φ(ε0, ε1, r)
∫

R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx. (3.22)

A direct calculation yields for |u| > 0 that

div u = |u| div u

|u| + u · ∇|u|
|u| . (3.23)

Combining (3.23) and (3.9)–(3.10), we have



Y.C. Li et al. / J. Math. Anal. Appl. 431 (2015) 822–840 831
d
dt

∫
R3

ρ|u|rdx +
∫

R3∩{|u|>0}

μr(1 − ε0)|u|r−2|∇u|2dx

+
∫

R3∩{|u|>0}

r(μ + λ)|u|r−2| div u|2dx +
∫

R3∩{|u|>0}

μr(r − 2)|u|r−2∣∣∇|u|
∣∣2dx

= −r(r − 2)(μ + λ)
∫

R3∩{|u|>0}

(
|u|r−2u · ∇|u| div u

|u| + |u|r−4|u · ∇|u||2
)

dx. (3.24)

This gives

d
dt

∫
R3

ρ|u|rdx +
∫

R3∩{|u|>0}

r|u|r−4Grdx ≤ C(C0, μ, r, ε0), (3.25)

where

Gr = μ(1 − ε0)|u|2|∇u|2 + (μ + λ)|u|2| div u|2 + μ(r − 2)|u|2
∣∣∇|u|

∣∣2
+ (r − 2)(μ + λ)|u|2u · ∇|u| div u

|u| + (r − 2)(μ + λ)|u · ∇|u||2. (3.26)

Now we analyze how to get the positiveness of the term with Gr in (3.25). Substituting (3.8) and (3.23)
into (3.27), we get

Gr = μ(1 − ε0)|u|4
∣∣∣∣∇ u

|u|

∣∣∣∣
2

+ μ(r − 1 − ε0)|u|2
∣∣∇|u|

∣∣2 + (r − 1)(μ + λ)|u · ∇|u||2

+ r(μ + λ)|u|2u · ∇|u| div u

|u| + (μ + λ)|u|4
(

div u

|u|

)2

= μ(1 − ε0)|u|4
∣∣∣∣∇ u

|u|

∣∣∣∣
2

+ μ(r − 1 − ε0)|u|2
∣∣∇|u|

∣∣2

+ (r − 1)(μ + λ)
(
u · ∇|u| + r

2(r − 1) |u|
2 div u

|u|

)2

+ (μ + λ)|u|4
(

div u

|u|

)2

− r2(μ + λ)
4(r − 1) |u|4

(
div u

|u|

)2

, (3.27)

which, combining with the fact 
(

div u
|u|

)2
≤ 3

∣∣∣∇ u
|u|

∣∣∣2, implies that

Gr ≥ μ(1 − ε0)
3 |u|4

(
div u

|u|

)2

+ μ(r − 1 − ε0)|u|2
∣∣∇|u|

∣∣2

+
(
μ + λ− r2(μ + λ)

4(r − 1)

)
|u|4

(
div u

|u|

)2

= μ(r − 1 − ε0)|u|2
∣∣∇|u|

∣∣2 +
(

(4 − ε0)μ
3 + λ− r2(μ + λ)

4(r − 1)

)
|u|4

(
div u

|u|

)2

. (3.28)

Thus, from the definition of φ(ε0, ε1, r) and (3.22), we get
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∫
R3∩{|u|>0}

r|u|r−4Grdx ≥ μr(r − 1 − ε0)
∫

R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx

+ r

(
(4 − ε0)μ

3 + λ− r2(μ + λ)
4(r − 1)

) ∫
R3∩{|u|>0}

|u|r
(

div u

|u|

)2

dx

≥ μr(r − 1 − ε0)
∫

R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx

+ 3r
(

(4 − ε0)μ
3 + λ− r2(μ + λ)

4(r − 1)

)
φ(ε0, ε1, r)

∫
R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx

= g(ε0, ε1, r)
∫

R3∩{|u|>0}

|u|r−2∣∣∇|u|
∣∣2dx, (3.29)

where

g(ε0, ε1, r) = 3r
(

(4 − ε0)μ
3 + λ− r2(μ + λ)

4(r − 1)

)
φ(ε0, ε1, r) + μr(r − 1 − ε0) > 0. (3.30)

Here we need that ε0 be sufficiently small such that ε0 < (r − 1)(1 − ε1). Then from (3.8), (3.25) and 
(3.29)–(3.30), when r = 4, we have

d
dt

∫
R3

ρ|u|4dx + g(ε0, ε1, 4)
∫

R3∩{|u|>0}

|u|2|∇u|2dx ≤ C(C0, μ, ε0). (3.31)

Combining (3.19), (3.21), and (3.31), and using Gronwall’s inequality, we conclude that if λ < (3 −αλμ)μ, 
there exist positive constants C1 and C2 depending only on C0, μ, λ, and γ such that

d
dt

∫
R3

ρ|u|4dx + C1

∫
R3∩{|u|>0}

|u|2|∇u|2dx ≤ C2. (3.32)

Integrating (3.32), it is shown that there exists a positive constant C depending only on (ρ0, u0, P0), C0, μ, 
λ, γ and T such that (ρ0, u0, P0), C0, μ, λ, γ and T such that (3.4) holds. �

The next lemma will give a key estimate on ∇u.

Lemma 3.3. Let (1.14) hold. Then we have

|∇u(t)|22 +
T∫

0

|√ρut|22dt ≤ C, for 0 ≤ t < T,

where C is a positive constant depending only on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. It follows from the momentum equations (1.6)2 that

�G = div(ρu̇), μ�ω = ∇× (ρu̇), (3.33)

where ḟ = ft + u · ∇f stands for the material derivative of f , and
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G = (2μ + λ) div u− P, and ω = rotu

are the effective viscous flux, and the vorticity, respectively.
Applying the standard Lp-estimates in Lemma 2.2 to the elliptic system (3.33), we have

|∇G|2 + |∇ω|2 ≤ C|ρu̇|2 ≤ C
(
|√ρut|2 +

∣∣√ρ|u||∇u|
∣∣
2

)
. (3.34)

Multiplying the momentum equations (1.6)2 by ut and integrating over R3 lead to

1
2

d
dt

∫
R3

(μ|∇u|2 + (λ + μ)(div u)2)dx +
∫
R3

ρ|ut|2dx

=
∫
R3

(
P div ut − ρ(u · ∇)u · ut

)
dx := A + B. (3.35)

From the definition of G we have

A =
∫
R3

P div utdx = d
dt

∫
R3

P div udx−
∫
R3

Pt div udx

= d
dt

∫
R3

P div udx− 1
2μ + λ

∫
R3

PtGdx− 1
2(2μ + λ)

d
dt

∫
R3

P 2dx

:= A1 + A2 + A3. (3.36)

Denote

E = 1
2ρ|u|

2 + P

γ − 1 ,

and it is easy to show from (1.6) that

Et + div(Eu + Pu) = div(uT). (3.37)

Then we have

A2 = − 1
2μ + λ

∫
R3

PtGdx = − γ − 1
2μ + λ

∫
R3

(
Et −

1
2(ρ|u|2)t

)
Gdx

:= A21 + A22. (3.38)

From (3.37) we get

A21 = − γ − 1
2μ + λ

∫
R3

EtGdx

= − γ − 1
2μ + λ

∫
R3

(
1
2ρ|u|

2u + γ

γ − 1Pu− uT

)
· ∇Gdx

≤ − γ − 1
2μ + λ

∫ 1
2ρ|u|

2u · ∇Gdx + C|∇G|2
(
|u|6|P |3 +

∣∣|u||∇u|
∣∣
2

)
. (3.39)
R3
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From (3.3), Lemma 3.2 and (3.34), we have

|√ρ|u||∇u||2 ≤ C|ρ 1
4u|4|∇u|4 ≤ C

(
|G|4 + |ω|4 + 1

)
≤ C(|G|

1
4
2 |∇G|

3
4
2 + |ω|

1
4
2 |∇ω|

3
4
2 + 1)

≤ ε(|∇G|2 + |∇ω|2) + C(ε)(|G|2 + |ω|2) + C

≤ ε(|√ρut|2 + |√ρ|u||∇u||2) + C(ε)(|∇u|2 + 1), (3.40)

where we used Hölder’s inequality, Gagliardo–Nirenberg’s inequality (Lemma 2.1) and Young’s inequality. 
Therefore,

∣∣√ρ|u||∇u|
∣∣
2 ≤ ε|√ρut|2 + C(ε)(|∇u|2 + 1), (3.41)

where ε > 0 is a sufficiently small constant. Substituting (3.41) into (3.34), we have

|∇G|2 + |∇ω|2 ≤ C(|√ρut|2 + |∇u|2 + 1), (3.42)

which, together with (3.39), implies that

A21 ≤ − γ − 1
2μ + λ

∫
R3

1
2ρ|u|

2u · ∇Gdx + ε|√ρut|22 + C(ε)
(
|∇u|22 +

∣∣|u||∇u|
∣∣2
2 + 1

)
. (3.43)

Now we consider A22. From the continuity equation (1.6)1 and Lemma 3.1, we have

A22 = γ − 1
2μ + λ

∫
R3

1
2
(
ρ|u|2

)
t
Gdx

= γ − 1
2μ + λ

∫
R3

1
2ρt|u|

2Gdx + γ − 1
2μ + λ

∫
R3

ρu · utGdx

≤ − γ − 1
2μ + λ

∫
R3

1
2 div(ρu)|u|2Gdx + ε|√ρut|22 + C(ε)

∫
R3

ρ|u|2|G|2dx

= γ − 1
2μ + λ

∫
R3

ρu · ∇u · uGdx + γ − 1
2μ + λ

∫
R3

1
2ρ|u|

2u · ∇Gdx

+ ε|√ρut|22 + C(ε)
∫
R3

ρ|u|2|G|2dx

≤ γ − 1
2μ + λ

∫
R3

1
2ρ|u|

2u · ∇Gdx + ε|√ρut|22 + C(ε)
(∣∣√ρ|u||∇u|

∣∣2
2 + 1

)
, (3.44)

which implies that

A22 ≤ γ − 1
2μ + λ

∫
R3

1
2ρ|u|

2u · ∇Gdx + ε|√ρut|22 + C(ε)
(∣∣|u||∇u|

∣∣2
2 + 1

)
. (3.45)

Then substituting (3.43) and (3.45) into (3.38), we deduce that

A2 ≤ ε|√ρut|22 + C(ε)
(
|∇u|22 +

∣∣|u||∇u|
∣∣2 + 1

)
. (3.46)
2
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For the term B, we have

B =
∫
R3

−ρ · ∇u · utdx ≤ ε|√ρut|22 + C(ε)
∣∣√ρ|u||∇u|

∣∣2
2

≤ ε|√ρut|22 + C(ε)
∣∣|u||∇u|

∣∣2
2. (3.47)

Then from (3.35)–(3.36) and (3.46)–(3.47), by letting ε > 0 be sufficiently small, we have

1
2

d
dt

∫
R3

(μ|∇u|2 + (λ + μ)(div u)2)dx +
∫
R3

ρ|ut|2dx

≤ C
(
|∇u|22 +

∣∣|u||∇u|
∣∣2
2 + 1

)
. (3.48)

From Gronwall’s inequality and Lemma 3.2, we obtain the desired conclusions. �
In the following two lemmas, we give the estimates on |∇u|6 and |u|L∞([0,T ]×R3).

Lemma 3.4. Let (1.14) hold. Then we have

|√ρu̇(t)|22 +
T∫

0

|u̇|2D1dt ≤ C, for 0 ≤ t < T,

where C only depends on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. We will follow an idea due to Hoff [5]. Applying u̇j [∂/∂t + div(u·)] to the j-th component of (1.6)2
and integrating by parts, we get

1
2

d
dt

∫
R3

ρ|u̇|2dx = −
∫
R3

(
u̇j
(
∂jPt + div(∂jPu)

)
+ μu̇j

(
�uj

t + div(u�uj)
))

dx

+ (λ + μ)
∫
R3

u̇j
(
∂j div ut + div(u∂j div u)

)
dx ≡:

3∑
i=1

Li. (3.49)

According to Lemmas 3.1–3.3, Hölder’s inequality, Lemma 2.1 and Young’s inequality, we have

L1 = −
∫
R3

u̇j
(
∂jPt + div(∂jPu)

)
dx =

∫
R3

(
∂j u̇

jPt + ∂ku̇
j∂jPuk

)
dx

=
∫
R3

(
− ∂j u̇

juk∂kP − γP div u∂j u̇j + (γ − 1)Q(u)∂j u̇j + ∂ku̇
j∂jPuk

)
dx

=
∫
R3

(
− γP div u∂j u̇j + (γ − 1)Q(u)∂j u̇j + P∂k(∂j u̇juk) − P∂j(∂ku̇juk)

)
dx

≤ C
(
|∇u̇|2|∇u|2 + |∇u̇|2|∇u|24

)
≤ ε|∇u̇|22 + C(ε)(|∇u|44 + 1),



836 Y.C. Li et al. / J. Math. Anal. Appl. 431 (2015) 822–840
L2 =
∫
R3

μu̇j
(
�uj

t + div(u�uj)
)
dx = −

∫
R3

μ
(
∂iu̇

j∂iu
j
t + �uju · ∇u̇j

)
dx

= −
∫
R3

μ
(
|∇u̇|2 − ∂iu̇

juk∂k∂iu
j − ∂iu̇

j∂iu
k∂ku

j + �uju · ∇u̇j
)
dx

= −
∫
R3

μ
(
|∇u̇|2 + ∂iu̇

j∂ku
k∂iu

j − ∂iu̇
j∂iu

k∂ku
j − ∂iu

j∂iu
k∂ku̇

j
)
dx

≤ −μ

2 |∇u̇|22 + C|∇u|44, (3.50)

and similarly, we have

L3 = (λ + μ)
∫
R3

u̇j
(
∂j div ut + div(u∂j div u)

)
dx ≤ −μ + λ

2 |∇u̇|22 + C|∇u|44. (3.51)

Letting ε be sufficiently small, from (3.49)–(3.51), Lemma 2.2 and (3.33) we have

d
dt

∫
R3

ρ|u̇|2dx + |u̇|2D1 ≤ C
(
|∇u|44 + 1

)
≤ C

(
|G|44 + |ω|44 + 1

)

≤ C
(
|G|

5
2
2 |∇G|

3
2
6 + |ω|

5
2
2 |∇ω|

3
2
6 + 1

)
≤ C

(
|∇u̇|

3
2
2 + 1

)
≤ ε|∇u̇|22 + C, (3.52)

which implies that

∫
R3

ρ|u̇|2(t)dx +
t∫

0

|u̇|2D1 ≤ C, for 0 ≤ t ≤ T. � (3.53)

Based on Lemma 3.4, we have the following estimate.

Lemma 3.5. Let (1.14) hold. Then we have

|(∇G,∇ω)(t)|2 + |∇u(t)|6 + |u(t)|∞ +
T∫

0

(
| div u|2∞ + |ω|2∞

)
dt ≤ C, (3.54)

for 0 ≤ t < T , where C only depends on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. From Lemmas 2.2, 3.1–3.4 and noting (3.33), we have

|∇G|2 + |∇ω|2 ≤ C|ρu̇|2 ≤ C|√ρu̇|2 ≤ C,

|∇G|6 + |∇ω|6 ≤ C|ρu̇|6 ≤ C|u̇|6 ≤ C|∇u̇|2, (3.55)

which imply that

|∇u|6 ≤ C(|G|6 + |P |6 + |ω|6) ≤ C (|∇G|2 + |∇ω|2 + 1) ≤ C. (3.56)
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From Lemma 2.1, we have

|(div u, ω)|∞ ≤ C (|G|∞ + |ω|∞ + 1)

≤ C (|∇G|6 + |∇ω|6 + |G|6 + |ω|6)
≤ C(1 + |∇u̇|2), (3.57)

which, together with Lemma 3.4, implies that

T∫
0

(
| div u|2∞ + |ω|2∞

)
dt ≤ C. �

Next we will show the estimates on |(ρ, P )|D1,q .

Lemma 3.6. Let (1.14) hold. Then we have

|(ρ, P )(t)|D1∩D1,q + |ρt(t)|L2∩Lq + |Pt(t)|2 +
T∫

0

|∇u|∞dt ≤ C, (3.58)

for 0 ≤ t < T , where C only depends on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. Noting that Lu = −ρut − ρu · ∇u −∇P , for any 2 ≤ r ≤ q, from Lemma 2.2 we have

|∇2u|r ≤ C (|ρu̇|r + |∇P |r) ≤ C (1 + |∇u̇|2 + |∇P |r) . (3.59)

Applying ∇ to (1.6)1 and multiplying by r|∇ρ|r−2∇ρ, we have

(|∇ρ|r)t + div(|∇ρ|ru) + (r − 1)|∇ρ|r div u

= −r|∇ρ|r−2(∇ρ)
∇u(∇ρ) − rρ|∇ρ|r−2∇ρ · ∇ div u. (3.60)

Integrating (3.60) over R3, we get

d
dt |∇ρ|r ≤ C

(
|∇u|∞|∇ρ|r + |∇2u|r

)
, (3.61)

which gives

d
dt |∇ρ|r ≤ C

(
(1 + |∇u|∞)(|∇ρ|r + |∇P |r) + |∇u̇|22 + 1

)
. (3.62)

Next, applying ∇ to (1.6)2 and multiplying by r|∇P |r−2∇P , we have

(|∇P |r)t + div(|∇P |ru) + (rγ − 1)|∇P |r div u

= −r|∇P |r−2(∇P )
∇u(∇P ) − rγP |∇P |r−2∇P · ∇ div u

+ r(γ − 1)∇Q(u) · ∇P |∇P |r−2. (3.63)

Integrating (3.63) over R3, we then get

d |∇P |rr ≤ C
(
|∇u|∞|∇P |rr + |∇2u|r|∇P |r−1

r + |∇u|∞|u|D2,r |∇P |r−1
r

)
, (3.64)
dt
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which means that

d
dt |∇P |r ≤ C ((1 + |∇u|∞)|∇P |r + (1 + |∇u|∞)|u|D2,r )

≤ C ((1 + |∇u|∞)(1 + |∇P |r) + |∇u̇|2 + |∇u|∞|∇u̇|2) . (3.65)

According to Lemma 2.4 and (3.59), we obtain

|∇u|L∞(R3) ≤ C
(
(|div u|∞ + |ω|∞) ln

(
e + |∇2u|q

)
+ |∇u|2 + 1

)
≤ C ((|div u|∞ + |ω|∞) ln (e + |∇u̇|2 + |∇P |q) + 1)

≤ C ((|div u|∞ + |ω|∞) (ln(e + |∇u̇|2) + ln(e + |∇P |q)) + 1) . (3.66)

From Lemma 2.1 we have

|∇u|∞ ≤ C|∇u|1−
3
q

q |∇2u|
3
q
q ≤ C (1 + |∇u̇|2 + |∇P |q)

3
q , (3.67)

which leads to

|∇u|∞|∇u̇|2 ≤ C (1 + |∇u̇|2 + |∇P |q)
3
q |∇u̇|2

≤ C
(
(1 + |∇u̇|2)(1 + |∇P |q) + |∇u̇|22

)
. (3.68)

Combining (3.62), (3.65)–(3.66) and (3.68), we easily have

d
dt

(
|∇ρ|q + |∇P |q

)
≤ C

(
(1 + |∇u|∞)(1 + |∇P |q + |∇ρ|q) + |∇u̇|22 + |∇u|∞|∇u̇|2

)
≤ C

((
1 + | div u|∞ + |ω|∞

)
ln(e + |∇u̇|2)(1 + |∇P |q + |∇ρ|q)

+
(
1 + | div u|∞ + |ω|∞

)
ln(e + |∇P |q)(1 + |∇P |q + |∇ρ|q)

+ (1 + |∇u̇|2)(1 + |∇P |q) + |∇u̇|22
)
. (3.69)

Using the notations

f = e + |∇ρ|q + |∇P |q, g =
(
1 + | div u|∞ + |ω|∞

)
ln(e + |∇u̇|2),

(3.69) yields

ft ≤ C
(
gf + gf ln f + |∇u̇|22 + (1 + |∇u̇|2)f

)
,

which, together with Lemma 3.4 and Gronwall’s inequality, yields

ln f(t) ≤ C, for 0 ≤ t ≤ T.

Thus we have

|∇ρ|q + |∇P |q ≤ C, for 0 ≤ t ≤ T,

which, along with (3.66) and Lemma 3.4, implies that
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t∫
0

|∇u|∞ds ≤ C, for 0 ≤ t ≤ T. (3.70)

Combining (3.62), (3.65) and (3.70), it is not hard to have

|∇ρ|r + |∇P |r ≤ C, for 0 ≤ t ≤ T.

Finally, the estimates for ρt and Pt can be obtained easily by noting the following relations:

ρt = −u · ∇ρ− ρ div u, Pt = −u · ∇P − γP div u + (γ − 1)Q(u), (3.71)

and the estimates obtained in Lemmas 3.1–3.6. �
According to the estimates obtained in Lemmas 3.1–3.6, we deduce that

Lemma 3.7. Let (1.14) hold. Then we have

|u(t)|D2 + |√ρut(t)|2 + |∇P (t)|q +
T∫

0

(
|ut|2D1 + |u|2D2,q

)
dt ≤ C,

for 0 ≤ t ≤ T , where C only depends on (ρ0, u0, P0), C0, μ, λ, γ and T .

Proof. From the momentum equations (1.6)2, Lemmas 2.2, 3.1–3.6 and estimate (3.59), we have

|u|D2 ≤ (1 + |ρu̇|2 + |∇P |2) ≤ C, |u|D2.q ≤ C(1 + |∇u̇|2),

which, together with (3.71) imply that

T∫
0

|u|2D2,qdt ≤ C, |Pt|q ≤ C(1 + |Q(u)|q) ≤ C(1 + ‖∇u‖1) ≤ C.

According to Lemmas 3.2–3.3 and 3.6, we quickly have

|√ρut|2 ≤ C (|√ρu̇|2 + |√ρu · ∇u|2) ≤ C
(
1 + |ρ 1

4u|4|∇u|2
)
≤ C.

Similarly, from Lemma 3.4, we have

T∫
0

|ut|2D1dt ≤ C

T∫
0

(
|u̇|2D1 + |u · ∇u|2D1

)
dt ≤ C. �

At last, in view of the estimates obtained in Lemmas 3.1–3.7, we know that the functions (ρ, u, P )|t=T =
limt→T (ρ, u, P ) satisfy the conditions imposed on the initial data (1.9)–(1.10). Then, we take (ρ, u, P )|t=T as 
the initial data and apply the local existence Theorem 1.1 to extend our local strong solution beyond t ≥ T . 
This contradicts the maximum assumption on T . Therefore, the blowup criterion showed by Theorem 1.2
is proved.
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