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Revisit to sign-changing solutions for the nonlinear

Schrödinger-Poisson system in R
3 ∗

Zhanping Liang, Jing Xu, Xiaoli Zhu†

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, P.R. China

Abstract

In this paper, we investigate the existence of solutions for the nonlinear Schrödinger-Poisson system

with zero mass. By introducing some new ideas, we prove, via the constraint variational method and the

quantitative deformation lemma, that the system has a sign-changing solution.

Keywords: Schrödinger-Poisson system; Sign-changing solution; Zero mass

1 Introduction

In recent years, the following Schrödinger-Poisson system,

⎧⎨
⎩−Δu+ V (x)u+ φu = f(u), x ∈ R

3,

−Δφ = u2, x ∈ R
3,

(1.1)

has been investigated extensively, specially on the existence of positive solutions, ground state solutions and

multiple solutions, see for examples [4, 8, 9, 15]. For the mathematical and physical background of the

system (1.1), we refer the reader to the papers [5, 6] and the references therein. To the authors’ knowledge,

there are very few results on the existence of sign-changing solutions for system (1.1) except [12, 16].

In [16], by introducing the constraint variational method and the Brouwer degree theory, Wang and Zhou

successfully show the existence of sign-changing solutions for the following nonlinear Schrödinger-Poisson

system ⎧⎨
⎩−Δu+ V (x)u+ μφu = |u|p−1u, x ∈ R

3,

−Δφ = u2, x ∈ R
3,

(1.2)

where p ∈ (3, 5), μ is a positive parameter. In [16], the authors define

H =

⎧⎨
⎩ H1

r (R
3) = {u ∈ H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,{

u ∈ D1,2(R3) :
∫
R3 V (x)u2 < ∞}

, if V (x) is not a constant

and assume that

(V) V ∈ C(R3,R+) such that H ⊂ H1(R3) and the embedding H ↪→ Lq(R3)(2 < q < 6) is compact, where

R+ = [0,∞).

∗Partially supported by National Natural Science Foundation of China (Grant No. 11301313, 11571209), Science Council of

Shanxi Province (2013021001-4, 2014021009-1, 2015021007).
†Corresponding author. E-mail address: zxlbingchun@126.com

1



They get a sign-changing solution of (1.2) by seeking first a minimizer of the energy functional Iμ over the

constraint

Mμ = {u ∈ H : u± �= 0, 〈I ′μ(u), u+〉 = 〈I ′μ(u), u−〉 = 0}
and then showing that the minimizer is a sign-changing solution of (1.2) via degree theory, where

Iμ(u) =
1

2

∫
R3

(|∇u|2 + V (x)u2) +
μ

4

∫
R3

φuu
2 − 1

p+ 1

∫
R3

|u|p+1

and φu(x) =
1
4π

∫
R3

u2(y)
|x−y|dy, u ∈ H. The difficulty and novelty of [16] is to explainMμ �= ∅ and the minimizer

is a critical point of Iμ.

Inspired by above references, more precisely by [16], we are concerned in this paper with the existence

of sign-changing solutions for a class of nonlinear Schrödinger-Poisson system⎧⎨
⎩−Δu+ V (x)u+ φu = K(x)f(u), x ∈ R

3,

−Δφ = u2, x ∈ R
3,

(1.3)

where more general conditions involving the function V are assumed. Throughout this paper, we say that

(V,K) ∈ K if the following conditions hold:

(H0) V (x),K(x) > 0 for all x ∈ R
3 and K ∈ L∞(R3);

(H1) if {An} ⊂ R
3 is a sequence of Borel sets such that the Lebesgue measure of An is less than R, for

all n and some R > 0, then

lim
r→∞

∫
An∩Bc

r(0)

K = 0, uniformly in n = 1, 2, . . . ;

(H2) K/V ∈ L∞(R3); or

(H3) there exists p ∈ (2, 6) such that

K(x)

V (x)(6−p)/4
→ 0, |x| → ∞.

The hypotheses (H0)-(H3) on functions V and K were firstly introduced in [1] and characterize system (1.3)

as zero mass. Nonlinear elliptic equations with zero mass have been studied by many authors, for instance,

[1, 2, 3, 7, 10, 11] and the references therein. As for the function f , we assume f ∈ C1(R,R) and satisfies

the following conditions:

(f1) limt→0 f(t)/t = 0, if (H2) hold;

(f2) limt→0 f(t)/|t|p−1 = A ∈ R, if (H3) hold;

(f3) f has a “quasicritical growth”, namely, lim|t|→∞ f(t)/t5 = 0;

(f4) lim|t|→∞ F (t)/t4 = ∞, where F (t) =
∫ t

0
f(s)ds;

(f5) the map t �→ f(t)/|t|3 is nondecreasing on (−∞, 0) and (0,∞) respectively.

Since (1.3) is a zero mass problem, it seems that the approprite working space should be

X =

{
u ∈ D1,2(R3) :

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy < ∞
}

with the norm

‖u‖2X =

∫
R3

|∇u|2 +
(

1

4π

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy

)1/2

.
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By [13], we know that (X, ‖·‖X) is a uniformly convex Banach space. Let us define φu(x) =
1
4π

∫
R3

u2(y)
|x−y|dy, u ∈

X. Then, u ∈ X if and only if both u and φu belong to D1,2(R3). In such a case, −Δφu = u2 in a weak

sense, and ∫
R3

|∇φu|2 =

∫
R3

φuu
2 =

1

4π

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy. (1.4)

Using the expression of (1.4), we obtain that the system (1.3) is merely a single equation on u.

The condition (V,K) ∈ K is fascinating. It can be used to certify that the space E given by

E =

{
u ∈ D1,2(R3) :

∫
R3

V |u|2 < ∞
}

endowed with the norm

‖u‖2E =

∫
R3

(|∇u|2 + V |u|2)

is compactly embedded into the weighted Lebesgue space

Lq
K(R3) =

{
u : u is measurable on R

3 and

∫
R3

K|u|q < ∞
}
,

for some q ∈ (2, 6), see Proposition 2.1 below. However, because of zero mass situation, we need to consider

a new space

B =

{
u ∈ D1,2(R3) :

∫
R3

V |u|2 < ∞,

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy < ∞
}

with the norm

‖u‖2 =

∫
R3

(|∇u|2 + V |u|2) +
(

1

4π

∫
R3

∫
R3

u2(x)u2(y)

|x− y| dxdy

)1/2

.

Since (X, ‖ · ‖X) is a Banach space and (E, ‖ · ‖E) is a Banach space because of (H0), (B, ‖ · ‖) is also a

Banach space. Denote the usual norm of Lp(R3) by | · |p. By Sobolev embedding theorem, the embedding

E ↪→ D1,2(R3) ↪→ L6(R3) is continuous. Let S′ > 0 be the embedding constant, i.e,

|u|26 � S′−1‖u‖2E , u ∈ E. (1.5)

Define the energy functional J : B → R by

J(u) =
1

2

∫
R3

(|∇u|2 + V u2) +
1

4

∫
R3

φuu
2 −

∫
R3

KF (u), u ∈ B. (1.6)

The functional J is well-defined on B and belongs to C1(B,R). In addition, we have

〈J ′(u), v〉 =
∫
R3

(∇u · ∇v + V uv) +

∫
R3

φuuv −
∫
R3

Kf(u)v, u, v ∈ B. (1.7)

As is well known, a critical point of J is a weak solution of (1.3). If u ∈ B is a weak solution of (1.3) and

u± �= 0, we say that u is a sign-changing solution of (1.3), where

u+(x) = max{u(x), 0}, u−(x) = min{u(x), 0}.

Motivated by [16], for the purpose of getting a sign-changing solution of (1.3), we first try to seek a minimizer

of the energy functional J over the following constraint:

M =
{
u ∈ B : u± �= 0, 〈J ′(u), u+〉 = 〈J ′(u), u−〉 = 0

}
, (1.8)

and then show that the minimizer is a sign-changing solution of (1.3).

The main result of this paper is stated below.
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Theorem 1.1. Suppose that (V,K) ∈ K and f satisfies (f1)-(f5). Then the system (1.3) possesses at least

one sign-changing solution.

In this paper, the main tools used are the minimization argument and the quantitative deformation

lemma. We must point out that the difficulty in the proof of Theorem 1.1 is still to show that M �= ∅ and

the minimizer is a critical point of J . To show M �= ∅, we use the Brouwer fixed point theorem, which is

entirely different from the method presented in [16]; to prove the minimizer is a critical point of J , we make

use of the quantitative deformation lemma which is introduced in [14]. There are some new ingredients in

the proof process of using the quantitative deformation lemma.

The paper is organized as follows. In Section 2 we give some propositions and lemmas for convenience.

In Section 3, we establish some technical lemmas which play a critical role in showing M �= ∅. In Section 4

we accomplish the proof of Theorem 1.1 by the quantitative deformation lemma.

2 Preliminaries

In this section we give some propositions and lemmas for convenience. In order to recover compactness, for

q ∈ [1,∞), we define the weighted Lebesgue space Lq
K(R3) with the norm

‖u‖K =

(∫
R3

K|u|q
)1/q

, u ∈ Lq
K(R3).

By (H0), L
q
K(R3) is a Banach space. We firstly state two important consequences owing to Alves and Souto

[1, Proposition 2.1 and Lemma 2.2].

Proposition 2.1. Assume (V,K) ∈ K. If (H2) holds, then E is compactly embedded in Lq
K(R3) for every

q ∈ (2, 6); if (H3) holds, then E is compactly embedded in Lp
K(R3).

Proposition 2.2. Suppose that f satisfies (f1)-(f5) and (V,K) ∈ K. Let {vn} be such that vn ⇀ v in E.

Then ∫
R3

KF (vn) →
∫
R3

KF (v),

∫
R3

Kf(vn)vn →
∫
R3

Kf(v)v.

Secondly, we consult a proposition for the sake of proving Lemma 3.3 below.

Proposition 2.3. [13] Given a sequence {un} in X, un ⇀ u in X if and only if un ⇀ u in D1,2(R3) and∫
R3

∫
R3

u2(x)u2(y)
|x−y| dxdy is bounded. In such a case, φun ⇀ φu in D1,2(R3).

Finally, we need to introduce some lemmas which will play a crucial role in the proof of Lemma 3.1 below.

Lemma 2.4. Assume that (V,K) ∈ K and f satisfies (f1)-(f5). Then, for any u ∈ E\{0},

lim
|t|→∞

∫
R3

Kf(tu)u

t3
= ∞. (2.1)

Proof. First of all, by the conditions (f4) and (f5), we have that

lim
|t|→∞

f(t)

t3
= ∞. (2.2)

Suppose that (H2) is true. It follows from (2.2) that for any given M > 0, there exists R > 0 such that

f(t)t � Mt4, |t| > R.

By the condition (f1), we get

lim
t→0

f(t)t−Mt4

t2
= 0. (2.3)
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It follows from (2.3) that there exists C > 0 such that

f(t)t−Mt4

t2
� −C, |t| ∈ (0, R].

Therefore we can conclude that

f(t)t � Mt4 − Ct2, t ∈ R. (2.4)

From (2.4), we get ∫
R3

Kf(tu)tu � Mt4
∫
R3

Ku4 − Ct2
∫
R3

Ku2. (2.5)

Dividing by t4 and letting |t| → ∞, we deduce (2.1). Here, we used the integrability about Ku4 and Ku2.

In order to show its rationality, we need to prove that
∫
R3 Ku4 < ∞ and

∫
R3 Ku2 < ∞. In fact, since (H2)

holds,
∫
R3 Ku2 � |K/V |∞‖u‖2E < ∞. By Proposition 2.1, we know that E ↪→ Lq

K(R3) is compactly for

q ∈ (2, 6). Hence
∫
R3 Ku4 � C‖u‖4E < ∞.

Next, supposing that (H3) is true, we divide the proof process into three cases. Consider the case

p ∈ (2, 4). Similar to the argument about (2.4), it follows from (f2) and (2.2) that

f(t)t � Mt4 − C|t|p, t ∈ R. (2.6)

From (2.6), we get ∫
R3

Kf(tu)(tu) � Mt4
∫
R3

Ku4 − C|t|p
∫
R3

K|u|p. (2.7)

Dividing by t4 and letting |t| → ∞, we can also deduce (2.1). In the following, we still need to illustrate

that
∫
R3 Ku4 < ∞ and

∫
R3 K|u|p < ∞. Indeed, by (H3), we know that E ↪→ Lp

K(R3) is compact. Hence

there is C ′ > 0 such that
∫
R3 K|u|p � C ′‖u‖pE < ∞. By the interpolation inequality and (1.5), there exists

some 0 < λ < 1 such that ∫
R3

Ku4 =

∫
R3

(K|u|p)1−λ(Ku6)λ

�
(∫

R3

K|u|p
)1−λ (∫

R3

Ku6

)λ

� (C ′‖u‖pE)1−λ(|K|∞S′−3‖u‖6E)λ < ∞.

We now consider the case p = 4. By the condition (f2), we get

lim
t→0±

f(t)

t3
= lim

t→0±

f(t)

|t|p−1

|t|p−1

t3
= ±A. (2.8)

Thus, from (f5) and (2.8), there exists C > 0 such that

f(t)

t3
� −C, t ∈ R, (2.9)

namely, f(t)/t3 is bounded from below. According to Proposition 2.1,
∫
R3 Ku4 < ∞. Thus, by (2.2), (2.9)

and Fatou’s Lemma, it follows that

lim
|t|→∞

∫
R3

Kf(tu)u

t3
= lim

|t|→∞

∫
R3

Kf(tu)

(tu)3
u4 = ∞. (2.10)

We consider the case p ∈ (4, 6). By the condition (f2), we get

lim
t→0±

f(t)

t3
= lim

t→0±

f(t)

|t|p−1

|t|p−1

t3
= 0. (2.11)

Thus, it follows from (f5) and (2.11) that

f(t)

t3
� 0, t ∈ R. (2.12)

From (2.2), (2.12) and Fatou’s Lemma, (2.10) also holds. The proof is completed.
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Lemma 2.5. Assume that (V,K) ∈ K and f satisfies (f1)-(f5). Then, for any u ∈ E\{0},

lim
|t|→∞

∫
R3

KF (tu)

t4
= ∞.

Because the proof is analogous to that of Lemma 2.4, we omit it here. In fact, it is sufficient to transform

f(t)t into F (t) in the proof process of Lemma 2.4.

Lemma 2.6. Assume that (V,K) ∈ K and f satisfies (f1)-(f5). Then, for any u ∈ E\{0},

lim
t→0

∫
R3

Kf(tu)u

t
= 0.

Proof. First of all, suppose that (H2) is true. It follows from (f1) and (f3) that for any given ε > 0, there

exists Cε > 0 such that

|f(t)| � ε|t|+ Cε|t|5, t ∈ R.

It follows from (1.5) that ∣∣∣∣
∫
R3

Kf(u)u

∣∣∣∣ � ε

∫
R3

Ku2 + Cε

∫
R3

Ku6

� ε|K/V |∞‖u‖2E + Cε|K|∞S′−3‖u‖6E . (2.13)

Next, by assuming that (H3) is true. From [1], there is a constant Cp > 0. For every given ε ∈ (0, Cp), there

exists R > 0 large enough leading to∫
|x|�R

K|u|p � ε

∫
|x|�R

(V u2 + u6), u ∈ E. (2.14)

From (f2) and (f3), there are C1, C2 > 0 such that

|f(t)| � C1|t|p−1 + C2|t|5, t ∈ R.

By (1.5), (2.14) and Hölder’s inequality, we obtain∣∣∣∣
∫
R3

Kf(u)u

∣∣∣∣
� C1

∫
R3

K|u|p + C2

∫
R3

Ku6

� C1ε

∫
|x|�R

(V u2 + u6) + C1

(∫
|x|<R

K6/(6−p)

)(6−p)/6 (∫
|x|<R

u6

)p/6

+ C2|K|∞
∫
R3

u6

� C1

(
ε‖u‖2E + S′−3ε‖u‖6E + |K|L6/(6−p)BR(0)S

′−p/2‖u‖pE
)
+ C2|K|∞S′−3‖u‖6E . (2.15)

Consequently, either (H2) or (H3) holds, there exist C3, C4, C5 > 0 such that∣∣∣∣
∫
R3

Kf(tu)tu

∣∣∣∣ � C3εt
2‖u‖2E + C4t

6‖u‖6E + C5|t|p‖u‖pE .

Dividing by t2 and letting t → 0, we deduce that

lim
t→0

∫
R3

Kf(tu)u

t
= 0.

The proof is completed.
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3 Technical Lemmas

In this section, we prove some technical lemmas related to the existence of sign-changing solutions of (1.3).

To this end, for u ∈ B with u± �= 0, we define Gu : R2
+ → R by Gu(t, s) = J(tu+ + su−).

Lemma 3.1. Assume that (V,K) ∈ K and f satisfies (f1)-(f5). Then,

(i) The pair (t, s) is a critical point of Gu with t, s > 0 if and only if tu+ + su− ∈ M.

(ii) The map Gu has a unique critical point (t+, s−), with t+ = t+(u) > 0 and s− = s−(u) > 0, which is

the unique maximum point of Gu.

Proof. Since

∇Gu(t, s) = (〈J ′(tu+ + su−), u+〉, 〈J ′(tu+ + su−), u−〉)
=

(
1

t
〈J ′(tu+ + su−), tu+〉, 1

s
〈J ′(tu+ + su−), su−〉

)

:=

(
1

t
gu(t, s),

1

s
hu(t, s)

)
,

where

gu(t, s) = t2‖u+‖2E + t4
∫
R3

φu+(u+)2 + t2s2
∫
R3

φu−(u+)2 −
∫
R3

Kf(tu+)(tu+), (3.1)

hu(t, s) = s2‖u−‖2E + s4
∫
R3

φu−(u−)2 + t2s2
∫
R3

φu+(u−)2 −
∫
R3

Kf(su−)(su−), (3.2)

we can prove the item (i).

By (1.4) and Fubini theorem, we see that∫
R3

φu−(u+)2 =

∫
R3

φu+(u−)2.

Now we prove (ii). First we prove the existence of a critical point of Gu, namely, M �= ∅. For u ∈ B with

u± �= 0 and s0 � 0 fixed. By (3.1) and Lemma 2.6, we obtain

gu(t, s0) = t2
(
‖u+‖2E + t2

∫
R3

φu+(u+)2 + s20

∫
R3

φu−(u+)2 −
∫
R3

Kf(tu+)u+

t

)

and that gu(t, s0) > 0 for t small enough. At the same time, by (3.1) and Lemma 2.4, we get

gu(t, s0) = t4
(

1

t2
‖u+‖2E +

∫
R3

φu+(u+)2 +
s20
t2

∫
R3

φu−(u+)2 −
∫
R3

Kf(tu+)u+

t3

)

and that gu(t, s0) < 0 for t large enough. From continuity of gu(t, s0), there is a t0 > 0 such that gu(t0, s0) =

0. We claim t0 is unique. In fact, supposing by contradiction there are 0 < t1 < t2 such that gu(t1, s0) =

gu(t2, s0) = 0. Then

‖u+‖2E
t21

+

∫
R3

φu+(u+)2 +
s20
t21

∫
R3

φu−(u+)2 =

∫
R3

Kf(t1u
+)

(t1u+)3
(u+)4

and this identity is also true if t2 is substituted for t1. Hence,(
1

t21
− 1

t22

)(
‖u+‖2E + s20

∫
R3

φu−(u+)2
)

=

∫
R3

K

[
f(t1u

+)

(t1u+)3
− f(t2u

+)

(t2u+)3

]
(u+)4,

which is absurd in view of (f5) and 0 < t1 < t2. Therefore, there exists a unique t0 > 0 such that

gu(t0, s0) = 0. Let ϕ1(s) := t(s), where t(s) satisfies the properties as it mentioned before with s in the place

of s0. Then, the map ϕ1 : R+ → (0,∞) is well defined. According to the definition of ∂Gu/∂t, we have

∂Gu

∂t
(ϕ1(s), s) = 0, s � 0,
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that is,

ϕ1(s)‖u+‖2E + ϕ3
1(s)

∫
R3

φu+(u+)2 + ϕ1(s)s
2

∫
R3

φu−(u+)2 =

∫
R3

Kf(ϕ1(s)u
+)u+, s � 0. (3.3)

In the following, we prove some properties of function ϕ1.

(a) ϕ1 is continuous. In fact, let sn → s0 as n → ∞. We firstly prove that {ϕ1(sn)} is bounded. Suppose,

by contradiction, that there is a subsequence, still denoted by {sn}, such that ϕ1(sn) → ∞ as n → ∞. So,

for n large, we have ϕ1(sn) � sn. From (3.3), we get,

‖u+‖2E
ϕ2
1(sn)

+

∫
R3

φu+(u+)2 +
s2n

ϕ2
1(sn)

∫
R3

φu−(u+)2 =

∫
R3

K
f(ϕ1(sn)u

+)

(ϕ1(sn)u+)3
(u+)4. (3.4)

From Lemma 2.4, passing to the limit as n → ∞, we have a contradiction. So {ϕ1(sn)} is bounded.

Therefore, there exists a t0 � 0 such that, passing to a subsequence,

ϕ1(sn) → t0. (3.5)

Passing to the limit as n → ∞ in (3.3) with s = sn and using (3.5), we obtain

t0‖u+‖2E + t30

∫
R3

φu+(u+)2 + t0s
2
0

∫
R3

φu−(u+)2 =

∫
R3

Kf(t0u
+)u+.

The last equality shows
∂Gu

∂t
(t0, s0) = 0.

As a result, t0 = ϕ1(s0) implies that ϕ1 is continuous.

(b) ϕ1(s) is bounded below form 0. Suppose that there exists a sequence {sn} such that ϕ1(sn) → 0+ as

n → ∞. Then by (3.3) and Lemma 2.6, we have

‖u+‖2E � lim
n→∞

∫
R3

K
f(ϕ1(sn)u

+)u+

ϕ1(sn)
= 0.

This is absurd. Hence, there exists C̃ > 0 such that ϕ1(s) � C̃.

(c) ϕ1(s) < s for s large. In fact, if there exists a sequence {sn} with sn → ∞ such that ϕ1(sn) � sn for

all n ∈ N, then it follows from (3.3) that (3.4) holds. This is a contradiction to Lemma 2.4. Thus, ϕ1(s) < s

for s large.

Analogously, for hu(t, s), we can define a map ϕ2 : R+ → (0,∞) by ϕ2(t) = s(t) satisfying (a), (b) and

(c).

By (c), there exists C1 > 0 such that ϕ1(s) � s and ϕ2(t) � t respectively when t, s > C1. Let

C2 = max

{
max

s∈[0,C1]
ϕ1(s), max

t∈[0,C1]
ϕ2(t)

}
.

Let C = max{C1, C2}. We define T : [0, C] × [0, C] → R
2
+ by T (t, s) = (ϕ1(s), ϕ2(t)). Now we show

T (t, s) ∈ [0, C]× [0, C] for all (t, s) ∈ [0, C]× [0, C]. In fact,⎧⎨
⎩ϕ2(t) � t � C, t > C1,

ϕ2(t) � maxt∈[0,C1] ϕ2(t) � C2, t � C1,

that is to say ϕ2(t) � C. Similarly, we have ϕ1(s) � C. Note that T is continuous. Then, by Brouwer fixed

point theorem, there exists (t+, s−) ∈ [0, C]× [0, C] such that

(ϕ1(s−), ϕ2(t+)) = (t+, s−). (3.6)
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Since ϕi > 0, (3.6) implies t+, s− > 0. By the definition, we have

∂Gu

∂t
(t+, s−) =

∂Gu

∂s
(t+, s−) = 0.

Now we need to show the uniqueness of (t+, s−). Assuming that w ∈ M, we have,

∇Gw(1, 1) =

(
∂Gw

∂t
(1, 1),

∂Gw

∂s
(1, 1)

)
= (〈J ′(w+ + w−), w+〉, 〈J ′(w+ + w−), w−〉) = (0, 0),

which indicates that (1, 1) is a critical point of Gw. In the following, we prove that (1, 1) is the unique

critical point of Gw with positive coordinates. Assume that (t0, s0) is a critical point of Gw. Without loss

of generality, we assume that 0 < t0 � s0. Then,

t20‖w+‖2E + t40

∫
R3

φw+(w+)2 + t20s
2
0

∫
R3

φw−(w+)2 =

∫
R3

Kf(t0w
+)(t0w

+), (3.7)

and

s20‖w−‖2E + s40

∫
R3

φw−(w−)2 + t20s
2
0

∫
R3

φw+(w−)2 =

∫
R3

Kf(s0w
−)(s0w−). (3.8)

By (3.8) we get

s20‖w−‖2E + s40

∫
R3

φw(w
−)2 �

∫
R3

Kf(s0w
−)(s0w−).

Hence,
‖w−‖2E

s20
+

∫
R3

φw(w
−)2 �

∫
R3

K
f(s0w

−)
(s0w−)3

(w−)4. (3.9)

On the other hand, since w ∈ M, we have

‖w−‖2E +

∫
R3

φw(w
−)2 =

∫
R3

K
f(w−)
(w−)3

(w−)4. (3.10)

From (3.9) and (3.10), we have(
1

s20
− 1

)
‖w−‖2E �

∫
R3

K

[
f(s0w

−)
(s0w−)3

− f(w−)
(w−)3

]
(w−)4.

From the last inequality and (f5) we conclude that 0 < t0 � s0 � 1. Now we prove that t0 � 1. In fact, from

(3.7) and 0 < t0 � s0, we have

‖w+‖2E
t20

+

∫
R3

φw(w
+)2 �

∫
R3

K
f(t0w

+)

(t0w+)3
(w+)4. (3.11)

For another hand, since w ∈ M, we have

‖w+‖2E +

∫
R3

φw(w
+)2 =

∫
R3

K
f(w+)

(w+)3
(w+)4. (3.12)

From (3.11) and (3.12), we obtain(
1

t20
− 1

)
‖w+‖2E �

∫
R3

K

[
f(t0w

+)

(t0w+)3
− f(w+)

(w+)3

]
(w+)4.

If t0 < 1, the left side of this inequality is positive. But from (f5), the right side is negative. Thus we must

have t0 � 1. Consequently, t0 = s0 = 1, which implies that (1, 1) is the unique critical point of Gw with

positive coordinates. Now, assume that u ∈ B, u± �= 0 and (t1, s1), (t2, s2) are the critical points of Gu with

positive coordinates. From item (i), we conclude that

w1 = t1u
+ + s1u

− ∈ M, w2 = t2u
+ + s2u

− ∈ M.
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Therefore,

w2 =

(
t2
t1

)
t1u

+ +

(
s2
s1

)
s1u

− =

(
t2
t1

)
w+

1 +

(
s2
s1

)
w−

1 ∈ M.

Since that w1 ∈ B with w±
1 �= 0, we have that

(
t2
t1
, s2
s1

)
is a critical point of the map Gw1 with positive

coordinates. Since w1 ∈ M, we have that
t2
t1

=
s2
s1

= 1,

which implies that t1 = t2, s1 = s2.

Finally, we prove that the unique critical point is the unique maximum point of Gu. By Lemma 2.5, we

deduce that Gu(t, s) → −∞ as |(t, s)| → ∞. So it is sufficient to check that the maximum point cannot be

achieved on the boundary of R2
+. Without loss of generality, we only prove that (0, s̄) is not a maximum

point of Gu. In fact, since

Gu(t, s̄) =
t2

2
‖u+‖2E +

t4

4

∫
R3

φu+(u+)2 −
∫
R3

KF (tu+) +
t2s̄2

2

∫
R3

φu−(u+)2

+
s̄2

2
‖u−‖2E +

s̄4

4

∫
R3

φu−(u−)2 −
∫
R3

KF (s̄u−)

is an increasing function with respect to t if t is small enough by Lemma 2.6, the pair (0, s̄) is not a maximum

point of Gu in R
2
+.

Lemma 3.2. Assume that (V,K) ∈ K and f satisfies (f1)-(f5). If u ∈ B with u± �= 0 such that gu(1, 1) � 0

and hu(1, 1) � 0, where gu(t, s), hu(t, s) are given by (3.1) and (3.2), then the unique pair (t+, s−) obtained
in Lemma 3.1 satisfies 0 < t+, s− � 1.

Proof. Without loss of generality, we suppose that t+ � s− > 0. Since t+u
+ + s−u− ∈ M, we have

t2+‖u+‖2E + t4+

∫
R3

φu+(u+)2 + t4+

∫
R3

φu−(u+)2

� t2+‖u+‖2E + t4+

∫
R3

φu+(u+)2 + t2+s
2
−

∫
R3

φu−(u+)2

=

∫
R3

Kf(t+u
+)(t+u

+). (3.13)

The assumption gu(1, 1) � 0 gives that

‖u+‖2E +

∫
R3

φu+(u+)2 +

∫
R3

φu−(u+)2 �
∫
R3

Kf(u+)u+. (3.14)

Together (3.13) with (3.14), we then get(
1

t2+
− 1

)
‖u+‖2E �

∫
R3

K

[
f(t+u

+)

(t+u+)3
− f(u+)

(u+)3

]
(u+)4.

If t+ > 1, the left side of this inequality is negative. But from (f5), the right side is positive. Thus we must

have t+ � 1. Then the proof is completed.

By Lemma 3.1, we may define

m = inf{J(u) : u ∈ M}. (3.15)

Lemma 3.3. Suppose that (V,K) ∈ K and f satisfies (f1)-(f5). Then m > 0 can be achieved.

Proof. For every u ∈ M, we have 〈J ′(u), u〉 = 0. Then by (2.13), we get

‖u‖2E �
∫
R3

(|∇u|2 + V u2) +

∫
R3

φuu
2 =

∫
R3

Kf(u)u � ε|K/V |∞‖u‖2E + Cε|K|∞S′−3‖u‖6E . (3.16)
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Choosing ε < 1/|K/V |∞, there exists a constant α1 > 0 such that ‖u‖2E � α1. Similarly, by (2.15), we have

‖u‖2E �
∫
R3

(|∇u|2 + V u2) +

∫
R3

φuu
2

=

∫
R3

Kf(u)u � C1ε‖u‖2E + C1S
′−3(ε+ C2|K|∞)‖u‖6E + |K|L6/(6−p)BR(0)S

′−p/2‖u‖pE . (3.17)

Choosing ε < 1/C1, there exists a constant α2 > 0 such that ‖u‖2E � α2. In a word, there exists a constant

α = max{α1, α2} > 0 such that ‖u‖2E � α. By the condition (f5), we have

f ′(t)t2 − 3f(t)t � 0, t ∈ R. (3.18)

Therefore

H(t) := f(t)t− 4F (t) � 0, t ∈ R, (3.19)

and H is increasing when t > 0 and decreasing when t < 0. Hence,

J(u) = J(u)− 1

4
〈J ′(u), u〉

=
1

4
‖u‖2E +

1

4

∫
R3

K(f(u)u− 4F (u))

� 1

4
α.

This implies that m � α/4 > 0.

Let {un} ⊂ M such that J(un) → m. Then ‖un‖E � C. Hence, we may assume that there exists u ∈ E

such that un ⇀ u, u±
n ⇀ u± weakly in E. By Proposition 2.2, we know that

∫
R3 KF (un) → ∫

R3 KF (u).

Hence {∫
R3 KF (un)} is bounded. From (1.6), we get 1

4

∫
R3 φunu

2
n + 1

2‖un‖2E = J(un) +
∫
R3 KF (un), which

implies that {un} is bounded in B. Choosing a subsequence necessarily, by the uniqueness of the convergence,

we deduce u±
n ⇀ u± weakly in B. Since un ∈ M, we have 〈J ′(un), u

±
n 〉 = 0, that is,

‖u±
n ‖2E +

∫
R3

φun(u
±
n )

2 =

∫
R3

Kf(u±
n )u

±
n . (3.20)

By (3.20) and Proposition 2.2, we get

0 < α � ‖u±
n ‖2E +

∫
R3

φun(u
±
n )

2 =

∫
R3

Kf(u±
n )u

±
n =

∫
R3

Kf(u±)u± + o(1),

where o(1) denotes the quantity tending to zero as n → ∞. Thus, u± �= 0. Since un ⇀ u weakly in B, from

Proposition 2.3, we have φun ⇀ φu weakly in D1,2(R3). By the weakly lower semicontinuity of norm and

Fatou’s lemma, we have

‖u±‖2E +

∫
R3

φu(u
±)2 � lim inf

n→∞

[
‖u±

n ‖2E +

∫
R3

φun(u
±
n )

2

]
. (3.21)

Then from Proposition 2.2 we get

‖u±‖2E +

∫
R3

φu(u
±)2 �

∫
R3

Kf(u±)u±. (3.22)

From (3.22), Lemmas 3.1 and 3.2, there exists (t̄, s̄) ∈ (0, 1]× (0, 1] such that

ū := t̄u+ + s̄u− ∈ M.
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By (3.19), we then have

m � J(ū)− 1

4
〈J ′(ū), ū〉

=
1

4
‖ū‖2E +

1

4

∫
R3

K[f(ū)ū− 4F (ū)]

=
1

4
(‖t̄u+‖2E + ‖s̄u−‖2E) +

1

4

∫
R3

K[f(t̄u+)(t̄u+)− 4F (t̄u+)] +
1

4

∫
R3

K[f(s̄u−)(s̄u−)− 4F (s̄u−)]

� 1

4
‖u‖2E +

1

4

∫
R3

K[f(u)u− 4F (u)]

� lim inf
n→∞

[
J(un)− 1

4
〈J ′(un), un〉

]
= m.

By the above inequality we deduce that t̄ = s̄ = 1. Thus ū = u and J(u) = m.

4 Proof of the main result

The main aim of this section is to prove that the minimizer u for (3.15) is indeed a sign-changing solution

of (1.3) using the quantitative deformation lemma from [17].

Proof of Theorem 1.1. It is clear that 〈J ′(u), u+〉 = 0 = 〈J ′(u), u−〉. It follows from Lemma 3.1 that, for

(t, s) ∈ R
2
+ and (t, s) �= (1, 1),

J(tu+ + su−) < J(u+ + u−) = m. (4.1)

Set ξ1 = |u+|6, ξ2 = |u−|6 and ξ = min{ξ1, ξ2}. We denote S̃ the imbedding constant of B ↪→ L6(R3), that

is, |u|6 � S̃‖u‖, u ∈ B.

By contradiction, we assume that J ′(u) �= 0. Then there exist r, λ > 0 such that

‖J ′(v)‖ � λ, ‖v − u‖ � r. (4.2)

Choose δ ∈ (0,min{ξ/(2S̃), r/3}) and σ ∈ (0,min{1/2, δ/(√2‖u‖)}). Let D = (1− σ, 1 + σ)× (1− σ, 1 + σ)

and ψ(t, s) := tu+ + su−, (t, s) ∈ D. It follows from (4.1) that

m̄ := max
∂D

J ◦ ψ < m. (4.3)

Let 0 < ε < min{(m− m̄)/2, λδ/8} and S := {v ∈ B, ‖v − u‖ � δ}. Then it follows from (4.2) that

‖J ′(v)‖ � 8ε/δ, v ∈ J−1([m− 2ε,m+ 2ε]) ∩ S2δ. (4.4)

Applying (4.4) and [17, Lemma 2.3, p.38], there exists a deformation η ∈ C([0, 1]×B,B) such that

(a) η(1, u) = u if u /∈ J−1([m− 2ε,m+ 2ε]) ∩ S2δ;

(b) η(1, Jm+ε ∩ S) ⊂ Jm−ε;

(c) ‖η(1, u)− u‖ � δ for all u ∈ B.

In the following, we firstly show that

max
(t,s)∈D̄

J(η(1, ψ(t, s))) < m. (4.5)

Indeed, by Lemma 3.1, we know J(ψ(t, s)) � m < m+ ε, that is, ψ(t, s) ∈ Jm+ε. Moreover,

‖ψ(t, s)− u‖2 � 2
(
(t− 1)2‖u+‖2 + (s− 1)2‖u−‖2)

� 2σ2‖u‖2
< δ2,
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which yields that ψ(t, s) ∈ S for all (s, t) ∈ D̄. Therefore, by (b), we have, J(η(1, ψ(t, s))) < m − ε. Hence

(4.5) holds.

Next, we claim that

η(1, ψ(D)) ∩M �= ∅. (4.6)

In fact, let us define γ(t, s) := η(1, ψ(t, s)) and

Φ0(t, s) = (〈J ′(ψ(t, s)), tu+〉, 〈J ′(ψ(t, s)), su−〉) = (〈J ′(tu+ + su−), tu+〉, 〈J ′(tu+ + su−), su−〉),
Φ1(t, s) = (〈J ′(γ(t, s)), (γ(t, s))+〉, 〈J ′(γ(t, s)), (γ(t, s))−〉).

We will utilize the degree theory to prove the result (4.6). From (3.1) and (3.2), by a direct calculation, we

have

∂gu
∂t

(1, 1) = ‖u+‖2E + 3

∫
R3

φu+(u+)2 +

∫
R3

φu−(u+)2 −
∫
R3

Kf ′(u+)(u+)2,

∂gu
∂s

(1, 1) = 2

∫
R3

φu−(u+)2,

∂hu

∂t
(1, 1) = 2

∫
R3

φu+(u−)2,

∂hu

∂s
(1, 1) = ‖u−‖2E + 3

∫
R3

φu−(u−)2 +
∫
R3

φu+(u−)2 −
∫
R3

Kf ′(u−)(u−)2.

Set the matrix

M =

⎡
⎣ ∂gu

∂t (1, 1)
∂gu
∂s (1, 1)

∂hu

∂t (1, 1) ∂hu

∂s (1, 1)

⎤
⎦ .

From (3.18), we have

∂gu
∂t

(1, 1) = ‖u+‖2E + 3

∫
R3

φu+(u+)2 +

∫
R3

φu−(u+)2 −
∫
R3

Kf ′(u+)(u+)2

� ‖u+‖2E + 3

∫
R3

φu+(u+)2 +

∫
R3

φu−(u+)2 − 3

∫
R3

Kf(u+)u+

= −2‖u+‖2E − 2

∫
R3

φu−(u+)2.

Similarly,
∂hu

∂s
(1, 1) � −2‖u−‖2E − 2

∫
R3

φu+(u−)2.

Thus, we conclude that

detM � 4

[
‖u+‖2E +

∫
R3

φu−(u+)2
] [

‖u−‖2E +

∫
R3

φu+(u−)2
]

−4

∫
R3

φu−(u+)2
∫
R3

φu+(u−)2 > 0.

Since Φ0 belongs to class C1 and (1, 1) is the unique isolated zero point of Φ0, we know that

deg(Φ0, D, 0) = ind(Φ0, (1, 1)) = sgnJΦ0(1, 1) = 1.

It follows from m̄ < m − 2ε, (4.3) and (a) that ψ = γ on ∂D. Thus, deg(Φ0, D, 0) = deg(Φ1, D, 0) = 1.

Hence, there exists a pair (t0, s0) ∈ D such that Φ1(t0, s0) = 0. Since |u±|6 � ξ and (t0, s0) ∈ D, we have

|(ψ(t0, s0))+|6 = t0|u+|6 � ξ/2 and |(ψ(t0, s0))−|6 = s0|u−|6 � ξ/2. By (c), we get |γ(t0, s0)− ψ(t0, s0)|6 �
S̃‖γ(t0, s0)− ψ(t0, s0)‖ � S̃δ. This implies that |(γ(t0, s0))± − (ψ(t0, s0))

±|6 � |γ(t0, s0)− ψ(t0, s0)|6 � S̃δ.

Thus we have |(γ(t0, s0))±|6 � |(ψ(t0, s0))±|6 − S̃δ � ξ/2− S̃δ > 0. That is to say (γ(t0, s0))
± �= 0. Hence,

η(1, ψ(t0, s0)) = γ(t0, s0) ∈ M, which is a contradiction with (4.5). Hence, u is a critical point of J , that is,

a sign-changing solution for the problem (1.3).
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