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We investigate the existence and uniqueness of (locally) absolutely continuous tra-
jectories of a penalty term-based dynamical system associated to a constrained 
variational inequality expressed as a monotone inclusion problem. Relying on Lya-
punov analysis and on the ergodic continuous version of the celebrated Opial Lemma 
we prove weak ergodic convergence of the orbits to a solution of the constrained 
variational inequality under investigation. If one of the operators involved satisfies 
stronger monotonicity properties, then strong convergence of the trajectories can be 
shown.
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1. Introduction and preliminaries

This paper is motivated by the increasing interest in solving constrained variational inequalities expressed 
as monotone inclusion problems of the form

0 ∈ Ax + NC(x), (1)

where H is a real Hilbert space, A : H ⇒ H is a maximally monotone operator, C = argmin Ψ is the set of 
global minima of the proper, convex and lower semicontinuous function Ψ : H → R := R ∪ {±∞} fulfilling 
min Ψ = 0 and NC : H ⇒ H is the normal cone of the set C ⊆ H (see [4–6,8,17,18,26,27]). One can find in 
the literature iterative schemes based on the forward–backward paradigm for solving (1) (see [5,6,26,27]), 
that perform in each iteration a proximal step with respect to A and a subgradient step with respect to the 
penalization function Ψ.

Recently, even more complex structures have been analyzed, like monotone inclusion problems of the 
form
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0 ∈ Ax + Dx + NC(x), (2)

where A : H ⇒ H is a maximally monotone operator, D : H → H is a (single-valued) cocoercive operator 
and C ⊆ H is the (nonempty) set of zeros of another cocoercive operator B : H → H, see [8,17,18].

In this paper we are concerned with addressing monotone inclusion problem (2) from the perspective 
of dynamical systems. More precisely, we associate to this constrained variational inequality a first-order 
dynamical system formulated in terms of the resolvent of the maximal monotone operator A, which has 
as discrete counterparts penalty-type numerical schemes already considered in the literature in the context 
of solving (2). Let us mention that dynamical systems of similar implicit type have been investigated in 
[1,3,9,12,19–21].

In the first part of the manuscript we study the existence and uniqueness of (locally) absolutely continuous 
trajectories generated by the dynamical system, by appealing to arguments based on the Cauchy–Lipschitz–
Picard Theorem (see [25,29]). In the second part of the paper we investigate the convergence of the 
trajectories to a solution of the constrained variational inequality (2). We use as tools Lyapunov analysis 
combined with the continuous version of the Opial Lemma. Under the fulfillment of a condition expressed in 
terms of the Fitzpatrick function of the cocoercive operator B we are able to show ergodic weak convergence 
of the orbits. Moreover, if the operator A is strongly monotone, we can prove even strong (non-ergodic) 
convergence for the generated trajectories.

For the reader’s convenience we present in the following some notations which are used throughout the 
paper (see [10,14,28]).

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =
√
〈·, ·〉. The normal 

cone of S ⊆ H is defined by NS(x) = {u ∈ H : 〈y − x, u〉 ≤ 0 ∀y ∈ S}, if x ∈ S and NS(x) = ∅ for x /∈ S. 
Notice that for x ∈ S, u ∈ NS(x) if and only if σS(u) = 〈x, u〉, where σS is the support function of S, 
defined by σS(u) = supy∈S〈y, u〉.

For an arbitrary set-valued operator M : H ⇒ H we denote by GrM = {(x, u) ∈ H ×H : u ∈ Mx} its 
graph, by domM = {x ∈ H : Mx 
= ∅} its domain, by ranM = {u ∈ H : ∃x ∈ H s.t. u ∈ Mx} its range
and M−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ GrM−1 if and only if (x, u) ∈ GrM . We use 
also the notation zerM = {x ∈ H : 0 ∈ Mx} for the set of zeros of the operator M . We say that M is 
monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrM . A monotone operator M is said to be maximally 
monotone, if there exists no proper monotone extension of the graph of M on H×H. Let us mention that 
in case M is maximally monotone, zerM is a convex and closed set [10, Proposition 23.39]. We refer to 
[10, Section 23.4] for conditions ensuring that zerM is nonempty. If M is maximally monotone, then one 
has the following characterization for the set of its zeros:

z ∈ zerM if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ GrM. (3)

The operator M is said to be γ-strongly monotone with γ > 0, if 〈x − y, u − v〉 ≥ γ‖x − y‖2 for all 
(x, u), (y, v) ∈ GrM . Notice that if M is maximally monotone and strongly monotone, then zerM is a 
singleton, thus nonempty (see [10, Corollary 23.37]).

The resolvent of M , JM : H ⇒ H, is defined by JM = (Id+M)−1, where Id : H → H, Id(x) = x for 
all x ∈ H, is the identity operator on H. Moreover, if M is maximally monotone, then JM : H → H is 
single-valued and maximally monotone (cf. [10, Proposition 23.7 and Corollary 23.10]). We will also use the 
Yosida approximation of the operator M , which is defined by Mα = 1

α (Id−JαM ), for α > 0.
The Fitzpatrick function associated to a monotone operator M , defined as

ϕM : H×H → R, ϕM (x, u) = sup
(y,v)∈Gr M

{〈x, v〉 + 〈y, u〉 − 〈y, v〉},

is a convex and lower semicontinuous function and it will play an important role throughout the paper. 
Introduced by Fitzpatrick in [24], this notion opened the gate towards the employment of convex analysis 



1690 R.I. Boţ, E.R. Csetnek / J. Math. Anal. Appl. 435 (2016) 1688–1700
specific tools when investigating the maximality of monotone operators (see [10,11,13–16,23,28] and the 
references therein). In case M is maximally monotone, ϕM is proper and it fulfills

ϕM (x, u) ≥ 〈x, u〉 ∀(x, u) ∈ H ×H,

with equality if and only if (x, u) ∈ GrM . We refer the reader to [11], for formulae of the corresponding 
Fitzpatrick functions computed for particular classes of monotone operators.

Let γ > 0 be arbitrary. A single-valued operator M : H → H is said to be γ-cocoercive, if 〈x − y, Mx −
My〉 ≥ γ‖Mx −My‖2 for all (x, y) ∈ H×H, and γ-Lipschitz continuous, if ‖Mx −My‖ ≤ γ‖x − y‖ for all 
(x, y) ∈ H ×H.

In this paper we are concerned with the solving of the following constrained variational inequality ex-
pressed as monotone inclusion problem (see also [17]).

Problem 1. Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator, D : H → H
an η-cocoercive operator with η > 0, B : H → H a μ-cocoercive operator with μ > 0 and suppose that 
C = zerB 
= ∅. The monotone inclusion problem to solve is

0 ∈ Ax + Dx + NC(x).

Let us mention that a (discrete) iterative scheme for solving this problem has been proposed and investi-
gated in [6] for D taken as zero operator and B as the gradient of a convex and differentiable function with 
Lipschitz continuous gradient.

2. A penalty term-based dynamical system

We associate to Problem 1 the following dynamical system:
{

ẋ(t) + x(t) = Jλ(t)A

(
x(t) − λ(t)Dx(t) − λ(t)β(t)Bx(t)

)
x(0) = x0,

(4)

where x0 ∈ H is fixed and λ, β : [0, +∞) → (0, +∞).

Remark 2. The dynamical system (4) can be seen as an extension of similar implicit first-order constructions 
considered in the last years in the literature. For instance, the resulting dynamical system when B is the 
zero operator and λ is a constant function has been investigated in [19] in connection with approaching 
the set of zeros of A + D. Moreover, the situation when A is the convex subdifferential of a proper, convex 
and lower semicontinuous function has been addressed in [1], while the even more particular case when this 
function is the indicator function of a nonempty, convex and closed subset of H has been considered in [12].

Remark 3. The explicit discretization of (4) with respect to the time variable t, with step size hn > 0, yields 
for an initial point x0 ∈ H the following iterative scheme

xn+1 − xn

hn
+ xn = JλnA

(
xn − λnDxn − λnβnBxn

)
∀n ≥ 0,

which for hn = 1 becomes

xn+1 = JλnA

(
xn − λnDxn − λnβnBxn

)
∀n ≥ 0, (5)

where (λn)n≥0, (βn)n≥0 are sequences of positive real numbers.
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Let us mention that a convergence analysis for (5) has been carried out in [17]. There we have shown 
that, if

⎧⎪⎪⎨
⎪⎪⎩

(i) A + NC is maximally monotone and zer(A + D + NC) 
= ∅;

(ii) For every p ∈ ranNC ,
∑

n∈N
λnβn

[
sup
u∈C

ϕB

(
u, p

βn

)
− σC

(
p
βn

)]
< +∞;

(iii) (λn)n≥0 ∈ 	2 \ 	1

and lim supn→+∞ λnβn < 2μ, then (zn)n≥1 converges weakly to an element in zer(A +D+NC) as n → +∞, 
where

zn = 1
τn

n∑
k=1

λkxk, and τn =
n∑

k=1

λk ∀n ≥ 1.

If, additionally, A is strongly monotone, then (xn)n≥0 converges strongly to the unique element in zer(A +
D + NC) as n → +∞.

The situation when D is the zero operator has been addressed in [6] under the supplementary assumption 
that B is the gradient of a convex and differentiable function with Lipschitz continuous gradient. Other 
penalty-type iterative schemes have been considered in the context of solving monotone inclusion problems 
and convex optimization problems in [5,8,18,26,27].

As in [2,7], we consider the following definition of an absolutely continuous function.

Definition 1. A function f : [0, b] → H (where b > 0) is said to be absolutely continuous if one of the 
following equivalent properties holds:

(i) there exists an integrable function g : [0, b] → H such that

f(t) = f(0) +
t∫

0

g(s)ds ∀t ∈ [0, b];

(ii) f is continuous and its distributional derivative is Lebesgue integrable on [0, b];
(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik = (ak, bk) we have the 

implication:

(
Ik ∩ Ij = ∅ and

∑
k

|bk − ak| < η

)
=⇒

∑
k

‖f(bk) − f(ak)‖ < ε.

Remark 4.

(a) It follows from the above definition that an absolutely continuous function is differentiable almost 
everywhere, its derivative coincides with its distributional derivative almost everywhere and one can 
recover the function from its derivative ḟ = g by the integration formula (i).

(b) If f : [0, b] → H (where b > 0) is absolutely continuous and B : H → H is L-Lipschitz continuous 
(where L ≥ 0), then the function h = B ◦ f is absolutely continuous, too. This can be easily verified 
by considering the characterization in Definition 1(iii). Moreover, h is almost everywhere differentiable 
and the inequality ‖ḣ(·)‖ ≤ L‖ḟ(·)‖ holds almost everywhere.
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Definition 2. We say that x : [0, +∞) → H is a strong global solution of (4) if the following properties are 
satisfied:

(i) x : [0, +∞) → H is absolutely continuous on each interval [0, b], 0 < b < +∞;
(ii) ẋ(t) + x(t) = Jλ(t)A(x(t) − λ(t)Dx(t) − λ(t)β(t)Bx(t)) for almost every t ∈ [0, +∞);
(iii) x(0) = x0.

In what follows we discuss the existence and uniqueness of strong global solutions of (4). To this end we use 
the Cauchy–Lipschitz theorem for absolutely continuous trajectories (see for example [25, Proposition 6.2.1], 
[29, Theorem 54]). To this end we will make use of the following Lipschitz property of the resolvent operator 
as a function of the step size, which actually is a consequence of the classical results [22, Proposition 2.6]
and [10, Proposition 23.28]; see also [2, Proposition 3.1].

Proposition 5. Let A : H ⇒ H be a maximally monotone operator, x ∈ H and 0 < δ < +∞. Then the 
mapping τ �→ JτAx is Lipschitz continuous on [δ, +∞). More precisely, for any λ, μ ∈ [δ, +∞) the following 
inequality holds:

‖JλAx− JμAx‖ ≤ |λ− μ|‖Aδx‖. (6)

For proving the existence of strong global solutions of (4), we need the following natural assumption:

(H1) λ, β : [0,+∞) → (0,+∞) are continuous on each interval [0, b], for 0 < b < +∞.

Notice that the dynamical system (4) can be written as
{

ẋ(t) = f(t, x(t))
x(0) = x0,

(7)

where f : [0, +∞) ×H → H is defined by

f(t, x) =
[
Jλ(t)A ◦

(
Id−λ(t)D − λ(t)β(t)B

)
− Id

]
x. (8)

(a) We claim that for every t ≥ 0 and every x, y ∈ H we have

‖f(t, x) − f(t, y)‖ ≤
(

2 + λ(t)
η

+ λ(t)β(t)
μ

)
‖x− y‖. (9)

Indeed, since the resolvent operator is nonexpansive (see [10, Corollary 23.10 and Definition 4.1]), D is 
(1/η)-Lipschitz continuous and B is (1/μ)-Lipschitz continuous, it holds

‖f(t, x) − f(t, y)‖ ≤
∥∥Jλ(t)A

(
x− λ(t)Dx− λ(t)β(t)Bx

)
− Jλ(t)A

(
y − λ(t)Dy − λ(t)β(t)By

)∥∥
+ ‖x− y‖

≤λ(t)‖Dx−Dy‖ + λ(t)β(t)‖Bx−By‖ + 2‖x− y‖

≤
(

2 + λ(t)
η

+ λ(t)β(t)
μ

)
‖x− y‖,

hence (9) holds. Further, notice that due to (H1),

Lf : [0,+∞) → R, Lf (t) = 2 + λ(t) + λ(t)β(t)
,

η μ
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which is for every t ≥ 0 equal to the Lipschitz-constant of f(t, ·), satisfies

Lf (·) ∈ L1([0, b]) for any 0 < b < +∞.

(b) We show now that

∀x ∈ H, ∀b > 0, f(·, x) ∈ L1([0, b],H). (10)

Let us fix x ∈ H and b > 0. Due to (H1), there exist λmin, βmin > 0 such that

0 < λmin ≤ λ(t) and 0 < βmin ≤ β(t) ∀t ∈ [0, b].

We obtain for all t ∈ [0, b] the following chain of inequalities:

‖f(t, x)‖ ≤ ‖x‖ +
∥∥Jλ(t)A

(
x− λ(t)Dx− λ(t)β(t)Bx

)∥∥
≤ ‖x‖ + ‖x− λ(t)Dx− λ(t)β(t)Bx− x + λminDx + λminβminBx‖

+
∥∥Jλ(t)A

(
x− λminDx− λminβminBx

)∥∥
≤ ‖x‖ + (λ(t) − λmin)‖Dx‖ + (λ(t)β(t) − λminβmin)‖Bx‖

+ (λ(t) − λmin)‖Aλmin (x− λminDx− λminβminBx)‖
+
∥∥JλminA

(
x− λminDx− λminβminBx

)∥∥ ,
where in the second inequality we used the nonexpansiveness of the resolvent operator and in the third 
one the statement of Proposition 5. The claim (10) follows now easily by integrating and by taking into 
account (H1).

In the light of the statements proven in (a) and (b), the existence and uniqueness of a strong global 
solution of the dynamical system (4) follow from [25, Proposition 6.2.1] (see also [29, Theorem 54]).

3. Convergence of the generated trajectories

In this section we investigate the convergence properties of the trajectories generated by the dynamical 
system (4). Our analysis relies on Lyapunov analysis combined with the continuous ergodic version of the 
Opial Lemma.

We split the proof of the convergence into several lemmas.

Lemma 6. Consider the setting of Problem 1 and the associated dynamical system (4) under the assumption 
that (H1) holds. Take (z, w) ∈ Gr(A + D + NC) such that w = v + p + Dz, where v ∈ Az and p ∈ NC(z). 
Then the following inequality holds for almost every t ≥ 0

d

dt
‖x(t) − z‖2 + λ(t)(2η − 3λ(t))‖Dx(t) −Dz‖2 ≤

2λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
+ 3λ2(t)β2(t)‖Bx(t)‖2 + 3λ2(t)‖Dz + v‖2 +

2λ(t)〈z − x(t), w〉. (11)

Proof. From the definition of the resolvent we have for almost every t ≥ 0

− 1
ẋ(t) −Dx(t) − β(t)Bx(t) ∈ A(ẋ(t) + x(t)),
λ(t)
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which combined with v ∈ Az and the monotonicity of A gives

〈ẋ(t) + x(t) − z, ẋ(t)〉 ≤ λ(t)〈z − ẋ(t) − x(t), β(t)Bx(t) + Dx(t) + v〉.

From here it follows that for almost every t ≥ 0

d

dt
‖x(t) − z‖2 = 2〈ẋ(t) + x(t) − z, ẋ(t)〉 − 2‖ẋ(t)‖2

≤ 2λ(t)〈z − ẋ(t) − x(t), β(t)Bx(t) + Dx(t) + v〉 − 2‖ẋ(t)‖2

= 2λ(t)〈z − x(t), β(t)Bx(t) + Dx(t) + v〉

+ 2λ(t)〈−ẋ(t), β(t)Bx(t) + Dx(t) + v〉 − 2‖ẋ(t)‖2

≤ 2λ(t)〈z − x(t), β(t)Bx(t) + Dx(t) + v〉 + λ2(t)‖β(t)Bx(t) + Dx(t) + v‖2

≤ 2λ(t)〈z − x(t), β(t)Bx(t) + Dx(t) + v〉 + 3λ2(t)β2(t)‖Bx(t)‖2

+ 3λ2(t)‖Dz + v‖2 + 3λ2(t)‖Dx(t) −Dz‖2.

It remains to evaluate the first term on the right-hand side of the last of the above inequalities. By noticing 
that v = w −Dz − p, from the cocoercivity of D, the definition of the Fitzpatrick function and using that 
σC

(
p

β(t)

)
=
〈
z, p

β(t)

〉
, we obtain for almost every t ≥ 0

2λ(t)〈z − x(t), β(t)Bx(t) + Dx(t) + w −Dz − p〉 =

2λ(t)〈z − x(t), Dx(t) −Dz〉 + 2λ(t)〈z − x(t), β(t)Bx(t) − p〉 + 2λ(t)〈z − x(t), w〉 =

2λ(t)〈z − x(t), Dx(t) −Dz〉 +

2λ(t)β(t)
[
〈z,Bx(t)〉 +

〈
x(t), p

β(t)

〉
− 〈x(t), Bx(t)〉 −

〈
z,

p

β(t)

〉]
+ 2λ(t)〈z − x(t), w〉 ≤

− 2ηλ(t)‖Dx(t) −Dz‖2 + 2λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
+ 2λ(t)〈z − x(t), w〉

and the desired conclusion follows. �
Lemma 7. Consider the setting of Problem 1 and the associated dynamical system (4) under the assumption 
that (H1) holds. Let z ∈ C ∩ domA and v ∈ Az. Then for every ε ≥ 0 and almost every t ≥ 0 we have

d

dt
‖x(t) − z‖2 + 1 + 2ε

1 + ε
‖ẋ(t)‖2 + 2ε

1 + ε
λ(t)β(t)〈x(t) − z,Bx(t)〉 ≤

λ(t)β(t)
(

(1 + ε)λ(t)β(t) − 2μ
1 + ε

)
‖Bx(t)‖2 + 2λ(t)〈z − ẋ(t) − x(t), Dx(t) + v〉. (12)

Proof. As it follows from the first inequality obtained in the proof of Lemma 6, we have for almost every 
t ≥ 0

d

dt
‖x(t) − z‖2 + 2‖ẋ(t)‖2 ≤ 2λ(t)β(t)〈z − x(t), Bx(t)〉 + 2λ(t)β(t)〈−ẋ(t), Bx(t)〉

+ 2λ(t)〈z − ẋ(t) − x(t), Dx(t) + v〉.

Since B is μ-cocoercive and Bz = 0, we have for almost every t ≥ 0

〈z − x(t), Bx(t)〉 ≤ −μ‖Bx(t)‖2,
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hence

2λ(t)β(t)〈z − x(t), Bx(t)〉 ≤ − 2μ
1 + ε

λ(t)β(t)‖Bx(t)‖2 + 2ε
1 + ε

λ(t)β(t)〈z − x(t), Bx(t)〉.

The conclusion follows by using that for almost every t ≥ 0

2λ(t)β(t)〈−ẋ(t), Bx(t)〉 ≤ 1
1 + ε

‖ẋ(t)‖2 + (1 + ε)λ2(t)β2(t)‖Bx(t)‖2. �
Lemma 8. Consider the setting of Problem 1 and the associated dynamical system (4) under the assumption 
that (H1) holds. Moreover, suppose that lim supt→+∞ λ(t)β(t) < 2μ and let be z ∈ C ∩ domA and v ∈ Az. 
Then there exist a, b > 0 and t0 > 0 such that for almost every t ≥ t0 it holds

d

dt
‖x(t) − z‖2 + a

(
‖ẋ(t)‖2 + λ(t)β(t)〈x(t) − z,Bx(t)〉 + λ(t)β(t)‖Bx(t)‖2) ≤(

bλ2(t) − 2ηλ(t)
)
‖Dx(t) −Dz‖2 + 2λ(t)〈z − x(t), v + Dz〉 + bλ2(t)‖Dz + v‖2. (13)

Proof. Let us evaluate the second term of right-hand side of the inequality (12). The cocoercivity of D
yields for almost every t ≥ 0

2λ(t)〈z − ẋ(t) − x(t), Dx(t) + v〉 =

2λ(t)〈−ẋ(t), Dx(t) + v〉 + 2λ(t)〈z − x(t), Dx(t) −Dz〉 + 2λ(t)〈z − x(t), v + Dz〉 ≤
ε

2(1 + ε)‖ẋ(t)‖2 + 2(1 + ε)
ε

λ2(t)‖Dx(t) + v‖2 −

2ηλ(t)‖Dx(t) −Dz‖2 + 2λ(t)〈z − x(t), v + Dz〉 ≤
ε

2(1 + ε)‖ẋ(t)‖2 + 4(1 + ε)
ε

λ2(t)‖Dx(t) −Dz‖2 + 4(1 + ε)
ε

λ2(t)‖Dz + v‖2 −

2ηλ(t)‖Dx(t) −Dz‖2 + 2λ(t)〈z − x(t), v + Dz〉.

Combining this inequality with (12) we obtain for almost every t ≥ 0

d

dt
‖x(t) − z‖2 + 2 + 3ε

2(1 + ε)‖ẋ(t)‖2 + 2ε
1 + ε

λ(t)β(t)〈x(t) − z,Bx(t)〉 + ε

1 + ε
λ(t)β(t)‖Bx(t)‖2 ≤

λ(t)β(t)
(

(1 + ε)λ(t)β(t) − 2μ
1 + ε

+ ε

1 + ε

)
‖Bx(t)‖2 +

(
4(1 + ε)

ε
λ2(t) − 2ηλ(t)

)
‖Dx(t) −Dz‖2 +

2λ(t)〈z − x(t), Dz + v〉 + 4(1 + ε)
ε

λ2(t)‖Dz + v‖2.

Further, there exist α and ε0 > 0 such that

lim sup
t→+∞

λ(t)β(t) < α < 2μ

and

(1 + ε0)α− 2μ
1 + ε0

+ ε0

1 + ε0
< 0.

By taking a := ε0 and b := 4(1+ε0) the desired conclusion follows. �
2(1+ε0) ε0
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Lemma 9. Consider the setting of Problem 1 and the associated dynamical system (4) under the assumption 
that (H1) holds. Moreover, suppose that lim supt→+∞ λ(t)β(t) < 2μ and lim inft→+∞ λ(t) = 0 and let be 
(z, w) ∈ Gr(A +D+NC) such that w = v+ p +Dz, where v ∈ Az and p ∈ NC(z). Then there exist a, b > 0
and t1 > 0 such that for almost every t ≥ t1 it holds

d

dt
‖x(t) − z‖2 + a

(
‖ẋ(t)‖2 + λ(t)β(t)

2 〈x(t) − z,Bx(t)〉 + λ(t)β(t)‖Bx(t)‖2
)

≤

aλ(t)β(t)
2

[
sup
u∈C

ϕB

(
u,

4p
aβ(t)

)
− σC

(
4p

aβ(t)

)]
+ 2λ(t)〈z − x(t), w〉 + bλ2(t)‖Dz + v‖2. (14)

Proof. According to Lemma 8, there exist a, b > 0 and t0 > 0 such that for almost every t ≥ t0 the inequality 
(13) holds. Since lim inft→∞ λ(t) = 0, there exists t1 ≥ t0 such that bλ2(t) − 2ηλ(t) ≤ 0 for every t ≥ t1, 
hence for almost every t ≥ t1

d

dt
‖x(t) − z‖2 + a

(
‖ẋ(t)‖2 + λ(t)β(t)〈x(t) − z,Bx(t)〉 + λ(t)β(t)‖Bx(t)‖2) ≤

2λ(t)〈z − x(t), v + Dz〉 + bλ2(t)‖Du + v‖2.

The conclusion follows by combining this inequality with the following one, which holds for almost every 
t ≥ 0

2λ(t)〈z − x(t), v + Dz〉 + aλ(t)β(t)
2 〈z − x(t), Bx(t)〉 =

2λ(t)〈z − x(t),−p〉 + aλ(t)β(t)
2 〈z − x(t), Bx(t)〉 + 2λ(t)〈z − x(t), w〉 =

aλ(t)β(t)
2

(
〈z,Bx(t)〉 +

〈
x(t), 4p

aβ(t)

〉
− 〈x(t), Bx(t)〉 −

〈
z,

4p
aβ(t)

〉)
+ 2λ(t)〈z − x(t), w〉 ≤

aλ(t)β(t)
2

[
sup
u∈C

ϕB

(
u,

4p
aβ(t)

)
− σC

(
4p

aβ(t)

)]
+ 2λ(t)〈z − x(t), w〉. �

For proving the convergence statement for the trajectories generated by the dynamical system (4) we will 
make use of the following ergodic version of the continuous Opial Lemma. The proof of this result follows 
similarly to the one of [4, Lemma 2.3] and therefore we omit it.

Lemma 10. Let S ⊆ H be a nonempty set, x : [0, +∞) → H a given map and λ : [0, +∞) → (0, +∞) such 
that 

∫ +∞
0 λ(t) = +∞. Define x̃ : [0, +∞) → H by

x̃(t) = 1∫ t

0 λ(s)ds

t∫
0

λ(s)x(s)ds.

Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t) − z‖ exists;
(ii) every weak sequential cluster point of the map x̃ belongs to S.

Then there exists x∞ ∈ S such that w − limt→+∞ x̃(t) = x∞.

We will prove the convergence results under the following hypotheses, which can be seen as continuous 
counterparts of the conditions considered in [17] in the discrete case (see also [4,6]):



R.I. Boţ, E.R. Csetnek / J. Math. Anal. Appl. 435 (2016) 1688–1700 1697
(H2) A + NC is maximally monotone and zer(A + D + NC) 
= ∅;
(H3) λ(·) ∈ L2([0, +∞)) \ L1([0, +∞));

(Hfitz) For every p ∈ ranNC , 
∫ +∞
0 λ(t)β(t) 

[
sup
u∈C

ϕB

(
u, p

β(t)

)
− σC

(
p

β(t)

)]
dt < +∞.

Remark 11.

(a) Since A is maximally monotone and C is a nonempty, convex and closed set, A +NC is maximally mono-
tone, provided that a so-called regularity condition is fulfilled. We refer the reader to [10,13–16,28,30] for 
conditions guaranteeing the maximal monotonicity of the sum of two maximally monotone operators. 
Further, as D is maximally monotone (see [10, Example 20.28]) and domD = H, (H2) guarantees that 
A + D + NC is maximally monotone, too (see [10, Corollary 24.4]).

(b) The condition (H3) is obviously satisfied for the function λ(t) = 1
t+1 .

(c) Let us turn now our attention to (Hfitz). The discrete version of this condition has been considered for 
the first time in [17]. We notice that for each p ∈ ranNC we have

sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)
≥ 0 ∀t ≥ 0.

Indeed, if p ∈ ranNC , then there exists u ∈ C such that p ∈ NC(u). This implies that

sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)
≥
〈
u,

p

βn

〉
− σC

(
p

βn

)
= 0 ∀t ≥ 0.

Let us consider the particular case B = ∇Ψ, where Ψ : H → R is a convex and differentiable function 
with Lipschitz continuous gradient and satisfies minΨ = 0. In this case C = argmin Ψ, Ψ(x) = 0 for 
x ∈ C and it holds (see [11])

ϕ∇Ψ(x, u) ≤ Ψ(x) + Ψ∗(u) ∀(x, u) ∈ H ×H, (15)

where Ψ∗ : H → R ∪ {+∞}, Ψ∗(u) = supx∈H{〈u, x〉 − Ψ(x)}, is the Fenchel conjugate of Ψ.
This means that (Hfitz) is in this particular case fulfilled, if one has:
(H) For every p ∈ ranNC , 

∫ +∞
0 λ(t)β(t) 

[
Ψ∗
(

p
β(t)

)
− σC

(
p

β(t)

)]
dt < +∞.

Let us mention that (H) is the continuous counterpart of a condition used in [6] in the context of 
proving convergence for penalty-type iterative schemes. It has its origins in the work [4], where a similar 
condition has been used in the convergence analysis of coupled dynamical systems with multiscale 
aspects.
Let us present a particular setting in which (H) and, consequently, (Hfitz) are fulfilled. This example 
is inspired by [4, Section 1.3(b)]. Take Ψ : H → R, Ψ(x) = 1

2d
2(x, C) = 1

2 infy∈C ‖x − y‖2. For its 
conjugate function one gets Ψ∗(x) = 1

2‖x‖2 + σC(x) ∀x ∈ H, hence (H) reduces to

+∞∫
0

λ(t)
β(t)dt < +∞,

which is obviously fulfilled for λ(t) = 1
t+1 and β(t) = 1 + t. For other particular instances where (Hfitz)

(in its continuous or discrete version) holds we refer the reader to [4–6,8,26,27].

Let us state now the main result concerning the convergence of the trajectories generated by the dynamical 
system (4).
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Theorem 12. Consider the setting of Problem 1 and the associated dynamical system (4). Assume that 
lim supt→+∞ λ(t)β(t) < 2μ and that (H1)–(H3) and (Hfitz) hold. Let x̃ : [0, +∞) → H be defined by

x̃(t) = 1∫ t

0 λ(s)ds

t∫
0

λ(s)x(s)ds.

Then the following statements are true:

(i) for every z ∈ zer(A + D + NC), ‖x(t) − z‖ converges as t → +∞; moreover, 
∫ +∞
0 ‖ẋ(t)‖2dt < +∞, ∫ +∞

0 λ(t)β(t)〈Bx(t), x(t) − z〉dt < +∞ and 
∫ +∞
0 λ(t)β(t)‖Bx(t)‖2dt < +∞;

(ii) x̃(t) converges weakly to an element in zer(A + D + NC) as t → +∞;
(iii) if, additionally, A is strongly monotone, then x(t) converges strongly to the unique element in zer(A +

D + NC) as t → +∞.

Proof. (i) According to (H3), the function λ(·) satisfies the relation lim inft→∞ λ(t) = 0. Take z ∈ zer(A +
D +NC) and v ∈ Az and p ∈ NC(z) fulfilling 0 = v + p +Dz. Applying Lemma 9 for w = 0, it follows that 
there exist a, b > 0 and t1 > 0 such that for almost every t ≥ t1 it holds

d

dt
‖x(t) − z‖2 + a

(
‖ẋ(t)‖2 + λ(t)β(t)

2 〈x(t) − z,Bx(t)〉 + λ(t)β(t)‖Bx(t)‖2
)

≤

aλ(t)β(t)
2

[
sup
u∈C

ϕB

(
u,

4p
aβ(t)

)
− σC

(
4p

aβ(t)

)]
+ bλ2(t)‖Dz + v‖2.

Since the function (having as argument t) on the right-hand side of the above inequality belongs to 
L1([0, +∞)), by using also [2, Lemma 5.1], the statements follow.

(ii) According to Lemma 10, it is enough to show that every weak sequential cluster limit of x̃ belongs to 
zer(A +D+NC). Let x be such a weak sequential cluster limit, that is, there exists a sequence (tn)n≥0 → +∞
such that x̃(tn) weakly converges to x as n → +∞.

Take an arbitrary (z, w) ∈ Gr(A + D + NC) such that w = v + p + Dz, where v ∈ Az and p ∈ NC(z). 
From Lemma 6 and by using that lim inft→+∞ λ(t) = 0 it follows that there exists t2 > 0 such that for 
almost every t ≥ t2 we have

d

dt
‖x(t) − z‖2 ≤ 2λ(t)β(t)

[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]

+ 3λ2(t)β2(t)‖Bx(t)‖2 + 3λ2(t)‖Dz + v‖2 + 2λ(t)〈z − x(t), w〉.

By integrating from t2 to T , where T ≥ t2, we obtain

‖x(T ) − z‖2 − ‖x(t2) − z‖2 ≤ L + 2
〈⎛⎝ T∫

t2

λ(t)dt

⎞
⎠ z −

T∫
t2

λ(t)x(t)dt, w
〉
, (16)

where, according to the hypotheses and statement (i),

L := 2
+∞∫
0

λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
dt

+ 3
+∞∫

λ2(t)β2(t)‖Bx(t)‖2dt + 3‖Dz + v‖2
+∞∫

λ2(t)dt < +∞.
0 0
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Now dividing (16) by 
∫ T

0 λ(t)dt and discarding the nonnegative term ‖x(T ) − z‖2, we obtain

−‖x(t2) − z‖2∫ T

0 λ(t)dt
≤ L′∫ T

0 λ(t)dt
+ 2
〈
z − 1∫ T

0 λ(t)dt

T∫
0

λ(t)x(t)dt, w
〉
, (17)

where

L′ := L + 2
〈⎛⎝−

t2∫
0

λ(t)dt

⎞
⎠ z +

t2∫
0

λ(t)x(t)dt, w
〉

< +∞.

Letting T := tn in (17) for any n ≥ 0, passing to n → +∞ and using (H3) and the definition of x̃, it follows

0 ≤ 2〈z − x,w〉.

Since (z, w) was taken arbitrary in Gr(A + D + NC), we obtain from (3) that x ∈ zer(A + D + NC) and 
from here the conclusion follows.

(iii) Suppose that A is γ-strongly monotone, where γ > 0. Let z be the unique element in zer(A +D+NC)
and v ∈ Az and p ∈ NC(z) such that 0 = v + p +Dz. Following the lines of the proof of Lemma 6, one can 
prove that for almost every t ≥ 0

2γλ(t)‖ẋ(t) + x(t) − z‖2 + d

dt
‖x(t) − z‖2 + λ(t)(2η − 3λ(t))‖Dx(t) −Dz‖2 ≤

2λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
+ 3λ2(t)β2(t)‖Bx(t)‖2 + 3λ2(t)‖Dz + v‖2.

Since lim inft→+∞ λ(t) = 0, it follows that there exists t2 > 0 such that for almost every t ≥ t2

2γλ(t)‖ẋ(t) + x(t) − z‖2 + d

dt
‖x(t) − z‖2 ≤

2λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
+ 3λ2(t)β2(t)‖Bx(t)‖2 + 3λ2(t)‖Dz + v‖2,

thus

γλ(t)‖x(t) − z‖2 + d

dt
‖x(t) − z‖2 ≤ 2γλ(t)‖ẋ(t)‖2 +

2λ(t)β(t)
[
sup
u∈C

ϕB

(
u,

p

β(t)

)
− σC

(
p

β(t)

)]
+ 3λ2(t)β2(t)‖Bx(t)‖2 + 3λ2(t)‖Dz + v‖2.

By using the hypotheses and statement (i), after integration of the last inequality one obtains

+∞∫
0

λ(t)‖x(t) − z‖2dt < +∞.

Using the convergence of ‖x(t) − z‖ as t → +∞ and (H3) it follows that x(t) must converge to z as 
t → +∞. �
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